1
|
Huang Y, Yu C, Sun C, Saleem M, Li P, Li B, Wang C. β-Glucosidase VmGlu2 Contributes to the Virulence of Valsa mali in Apple Tree. Front Microbiol 2021; 12:695112. [PMID: 34394036 PMCID: PMC8361449 DOI: 10.3389/fmicb.2021.695112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
The apple tree canker is caused by Valsa mali, which produces major pathogenic factors involving multiple cell wall-degrading enzymes (CWDEs) and toxins. The β-glucosidases are among the main CWDEs, and thus, they play important roles in the virulence of necrotrophic pathogens. However, the specific roles of β-glucosidases in the virulence of V. mlai remain largely unknown. In this study, we identified a β-glucosidase gene, VmGlu2, which was upregulated during the V. mali infection. We found that VmGlu2 protein had high enzyme activity of β-glucosidase using p-nitrophenyl-β-D-glucopyranoside (pNPG) as a substrate, while the VmGlu2 could convert phloridzin to phloretin with the release of glucose. The deletion and overexpression of VmGlu2 showed no effect on vegetative growth, but gene deletion mutants of V. mlai showed significantly reduced pycnidia formation. The gene deletion mutants had lower β-glucosidase activities and toxin levels as compared to the wild-type strain. Therefore, these mutants showed a reduced virulence. Moreover, the overexpression of VmGlu2 did not affect toxin levels, but it significantly enhanced β-glucosidase activities, which resulted in an increased pathogenicity. Thus, we conclude that VmGlu2 is required for the full virulence of V. mali. These results provide valuable evidence to the complex role of CWDEs in the fungal pathogenicity.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chunlei Yu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Cuicui Sun
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Pingliang Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baohua Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Caixia Wang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Province Key Laboratory of Applied Mycology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Abstract
Aspergilli have been widely used in the production of organic acids, enzymes, and secondary metabolites for almost a century. Today, several GRAS (generally recognized as safe) Aspergillus species hold a central role in the field of industrial biotechnology with multiple profitable applications. Since the 1990s, research has focused on the use of Aspergillus species in the development of cell factories for the production of recombinant proteins mainly due to their natively high secretion capacity. Advances in the Aspergillus-specific molecular toolkit and combination of several engineering strategies (e.g., protease-deficient strains and fusions to carrier proteins) resulted in strains able to generate high titers of recombinant fungal proteins. However, the production of non-fungal proteins appears to still be inefficient due to bottlenecks in fungal expression and secretion machinery. After a brief overview of the different heterologous expression systems currently available, this review focuses on the filamentous fungi belonging to the genus Aspergillus and their use in recombinant protein production. We describe key steps in protein synthesis and secretion that may limit production efficiency in Aspergillus systems and present genetic engineering approaches and bioprocessing strategies that have been adopted in order to improve recombinant protein titers and expand the potential of Aspergilli as competitive production platforms.
Collapse
|
3
|
Martins MP, Martinez-Rossi NM, Sanches PR, Rossi A. The PAC-3 transcription factor critically regulates phenotype-associated genes in Neurospora crassa. Genet Mol Biol 2020; 43:e20190374. [PMID: 32584919 PMCID: PMC7355564 DOI: 10.1590/1678-4685-gmb-2019-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Transcription factors play an important role in fungal environmental adaptive process by promoting adjustment to challenging stimuli via gene modulation and activation of signaling networks. The transcription factor encoded by the pac-3/rim101/pacC gene is involved in pH regulation and is associated with a wide variety of cellular functions. The deletion of pac-3 affects fungal development. In Neurospora crassa, the Δpac-3 strain presents diminished aerial growth and reduced conidiation. However, the PAC-3-regulated genes associated with this altered phenotype have not been elucidated. In this study, we used RNA-seq to analyze the phenotypic plasticity induced after pac-3 deletion in the filamentous fungus N. crassa cultivated in media supplemented with sufficient or limited inorganic phosphate. Genes related to morphology, hyphal development, and conidiation were of particular interest in this study. Our results suggest a pac-3 dependency in gene regulation in a Pi-dependent manner. Furthermore, our analysis suggested that the fungus attempts to overcome the deletion effects in a Δpac-3 mutant through a complex combined regulatory mechanism. Finally, the modulatory responses observed in the Δpac-3 strain, a double mutant generated based on the Δmus-52 mutant strain, is strain-specific, highlighting that the phenotypic impact may be attributed to pac-3 absence despite the combined mus-52 deletion.
Collapse
Affiliation(s)
- Maíra Pompeu Martins
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Nilce Maria Martinez-Rossi
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Pablo Rodrigo Sanches
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| | - Antonio Rossi
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Genética, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Identification of membrane proteome of Paracoccidioides lutzii and its regulation by zinc. Future Sci OA 2017; 3:FSO232. [PMID: 29134119 PMCID: PMC5676091 DOI: 10.4155/fsoa-2017-0044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
Aim: During infection development in the host, Paracoccidioides spp. faces the deprivation of micronutrients, a mechanism called nutritional immunity. This condition induces the remodeling of proteins present in different metabolic pathways. Therefore, we attempted to identify membrane proteins and their regulation by zinc in Paracoccidioides lutzii. Materials & methods: Membranes enriched fraction of yeast cells of P. lutzii were isolated, purified and identified by 2D LC–MS/MS detection and database search. Results & conclusion: Zinc deprivation suppressed the expression of membrane proteins such as glycoproteins, those involved in cell wall synthesis and those related to oxidative phosphorylation. This is the first study describing membrane proteins and the effect of zinc deficiency in their regulation in one member of the genus Paracoccidioides. The methodology of protein identification allows the characterization of biological processes performed by those molecules. Therefore, we performed a membrane proteomic analysis of Paracoccidioides lutzii and further evaluated the responses of the fungus to zinc deprivation. The results obtained in the work allowed the characterization of membrane proteins present in organelles that are related to different cellular functions. Zinc deprivation changes processes related to cellular physiology and metabolism. These results help us to understand the process of pathogen–host interaction, since zinc deprivation is a condition present during infection.
Collapse
|
5
|
Wang J, Zhou H, Lu H, Du T, Luo Y, Wilson IBH, Jin C. Kexin-like endoprotease KexB is required for N-glycan processing, morphogenesis and virulence in Aspergillus fumigatus. Fungal Genet Biol 2015; 76:57-69. [PMID: 25687931 DOI: 10.1016/j.fgb.2015.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/18/2022]
Abstract
Kexin-like proteins belong to the subtilisin-like family of the proteinases that cleave secretory proproteins to their active forms. Several fungal kexin-like proteins have been investigated. The mutants lacking of kexin-like protein display strong phenotypes such as cell wall defect, abnormal polarity, and, in case of Candida albicans, diminished virulence. However, only several proteins have been confirmed as the substrates of kexin-like proteases in these fungal species. It still remains unclear how kexin-like proteins contribute to the morphogenesis in these fungal species. In this study, a kexB-null mutant of the human opportunistic fungal pathogen Aspergillus fumigatus was constructed and analyzed. The ΔkexB mutant showed retarded growth, temperature-sensitive cell wall defect, reduced conidia formation, and abnormal polarity. Biochemical analyses revealed that deletion of the kexB gene resulted in impaired N-glycan processing, activation of the MpkA-dependent cell wall integrity signaling pathway, and ER-stress. Results from in vivo assays demonstrated that the mutant exhibited an attenuated virulence in immunecompromised mice. Based on our results, the kexin-like endoprotease KexB was involved in the N-glycan processing, which provides a novel insight to understand how kexin-like protein affects the cell-wall modifying enzymes and therefore morphogenesis in fungi.
Collapse
Affiliation(s)
- Jingyang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Lu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanming Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Lim FY, Ames B, Walsh CT, Keller NP. Co-ordination between BrlA regulation and secretion of the oxidoreductase FmqD directs selective accumulation of fumiquinazoline C to conidial tissues in Aspergillus fumigatus. Cell Microbiol 2014; 16:1267-83. [PMID: 24612080 DOI: 10.1111/cmi.12284] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
Abstract
Aerial spores, crucial for propagation and dispersal of the Kingdom Fungi, are commonly the initial inoculum of pathogenic fungi. Natural products (secondary metabolites) have been correlated with fungal spore development and enhanced virulence in the human pathogen Aspergillus fumigatus but mechanisms for metabolite deposition in the spore are unknown. Metabolomic profiling of A. fumigatus deletion mutants of fumiquinazoline (Fq) cluster genes reveal that the first two products of the Fq cluster, FqF and FqA, are produced to comparable levels in all fungal tissues but the final enzymatically derived product, FqC, predominantly accumulates in the fungal spore. Loss of the sporulation-specific transcription factor, BrlA, yields a strain unable to produce FqA or FqC. Fluorescence microscopy showed FmqD, the oxidoreductase required to generate FqC, was secreted via the Golgi apparatus to the cell wall in an actin-dependent manner. In contrast, all other members of the Fq pathway including the putative transporter, FmqE - which had no effect on Fq biosynthesis - were internal to the hyphae. The co-ordination of BrlA-mediated tissue specificity with FmqD secretion to the cell wall presents a previously undescribed mechanism to direct localization of specific secondary metabolites to spores of the differentiating fungus.
Collapse
Affiliation(s)
- Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
7
|
In vitro analyses of mild heat stress in combination with antifungal agents against Aspergillus fumigatus biofilm. Antimicrob Agents Chemother 2013; 58:1443-50. [PMID: 24342649 DOI: 10.1128/aac.01007-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aspergillus fumigatus biofilms still present a challenge for effective treatment in clinical settings. While mild heat stress has been introduced as a treatment for infectious diseases, the effectiveness of mild heat stress on A. fumigatus biofilm formation and antifungal susceptibility is still unknown. In the present study, confocal laser scanning microscopy (CLSM) was used to image and quantify Aspergillus fumigatus biofilm formation under three different regimens of continuous mild heat stress: at 37, 39, and 41°C. Furthermore, fungal growth has been investigated under the above conditions in combination with antifungal drugs (amphotericin B [AMB], micafungin [MCF], and voriconazole [VOC]) at early and late stages. CLSM analysis showed that higher temperatures induce earlier germination and greater hyphal elongation but poorer polar growth and reduced biofilm thickness. In the early stage of biofilm formation, the combination of treatment at 39 or 41°C with MCF or VOC produced no visible difference in biomass formation from similar treatments at 37°C with the same drug. Interestingly, AMB treatment at 37°C inhibited early stage biofilm formation to a much greater extent than at 39 and 41°C. At the late stage of biofilm formation, the mild heat treatments at 39 and 41°C with AMB, MCF, and VOC inhibited biomass formation compared to that at 37°C. The present data show that mild heat stress has a negative regulatory effect on biofilm formation in vitro, and antifungal drug improvement with mild heat treatment at late-stage biofilm formation provides useful indications of possible effective strategies for clinical management of aspergillosis.
Collapse
|
8
|
Fernández-Álvarez A, Elías-Villalobos A, Jiménez-Martín A, Marín-Menguiano M, Ibeas JI. Endoplasmic reticulum glucosidases and protein quality control factors cooperate to establish biotrophy in Ustilago maydis. THE PLANT CELL 2013; 25:4676-90. [PMID: 24280385 PMCID: PMC3875743 DOI: 10.1105/tpc.113.115691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/04/2013] [Accepted: 11/04/2013] [Indexed: 05/21/2023]
Abstract
Secreted fungal effectors mediate plant-fungus pathogenic interactions. These proteins are typically N-glycosylated, a common posttranslational modification affecting their location and function. N-glycosylation consists of the addition, and subsequent maturation, of an oligosaccharide core in the endoplasmic reticulum (ER) and Golgi apparatus. In this article, we show that two enzymes catalyzing specific stages of this pathway in maize smut (Ustilago maydis), glucosidase I (Gls1) and glucosidase II β-subunit (Gas2), are essential for its pathogenic interaction with maize (Zea mays). Gls1 is required for the initial stages of infection following appressorium penetration, and Gas2 is required for efficient fungal spreading inside infected tissues. While U. maydis Δgls1 cells induce strong plant defense responses, Δgas2 hyphae are able to repress them, showing that slight differences in the N-glycoprotein processing can determine the extent of plant-fungus interactions. Interestingly, the calnexin protein, a central element of the ER quality control system for N-glycoproteins in eukaryotic cells, is essential for avoiding plant defense responses in cells with defective N-glycoproteins processing. Thus, N-glycoprotein maturation and this conserved checkpoint appear to play an important role in the establishment of an initial biotrophic state with the plant, which allows subsequent colonization.
Collapse
|
9
|
Zhao G, Yao Y, Wang C, Hou L, Cao X. Comparative genomic analysis of Aspergillus oryzae strains 3.042 and RIB40 for soy sauce fermentation. Int J Food Microbiol 2013; 164:148-54. [DOI: 10.1016/j.ijfoodmicro.2013.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 11/28/2022]
|
10
|
Zhao W, Lü Y, Ouyang H, Zhou H, Yan J, Du T, Jin C. N-Glycosylation of Gel1 or Gel2 is vital for cell wall β-glucan synthesis in Aspergillus fumigatus. Glycobiology 2013; 23:955-68. [PMID: 23650256 DOI: 10.1093/glycob/cwt032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fungal cell wall is a dynamic structure that communicates with and protects the cell from outside stress. In Aspergillus fumigatus, the cell wall β-glucans are mainly elongated by β-1,3-glucanosyltransferases Gels, which consist of seven family members (Gel1-7) utilizing β-1,3-glucan chains as substrates. Previously, we have shown that the mutant deficient of N-glycan processing displays a reduction in the cell wall β-glucans, suggesting that N-glycosylation is required for the proper function of β-1,3-glucanosyltransferase. To verify this hypothesis, in this study, the gene encoding β-1,3-glucanosyltransferase Gel1 or Gel2 was deleted in the Δcwh41 mutant to construct a double-mutant Δgel1Δcwh41 or Δgel2Δcwh41. The growth phenotypes of both double mutants were similar to the single-mutant Δcwh41, suggesting that Gel1 and Gel2 are proteins that are mainly affected by deficient N-glycan processing in Δcwh41. Furthermore, the mutant Δgel1(Gel1-NM) or Δgel2(Gel2-NM), in which all potential N-glycosylation sites on Gel1 or Gel2 were removed by site-directed mutagenesis, showed phenotypes similar to the single-mutant Δgel1 or Δgel2. Biochemical analysis revealed that N-glycosylation was essential for the function of Gel1 or Gel2 and thus required for β-glucan synthesis in A. fumigatus.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Yan J, Du T, Zhao W, Hartmann T, Lu H, Lü Y, Ouyang H, Jiang X, Sun L, Jin C. Transcriptome and biochemical analysis reveals that suppression of GPI-anchor synthesis leads to autophagy and possible necroptosis in Aspergillus fumigatus. PLoS One 2013; 8:e59013. [PMID: 23527074 PMCID: PMC3601126 DOI: 10.1371/journal.pone.0059013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/08/2013] [Indexed: 11/30/2022] Open
Abstract
Previously, it has been shown that GPI proteins are required for cell wall synthesis and organization in Aspergillus fumigatus, a human opportunistic pathogen causing life-threatening invasive aspergillosis (IA) in immunocompromised patients. Blocking GPI anchor synthesis leads to severe phenotypes such as cell wall defects, increased cell death, and attenuated virulence. However, the mechanism by which these phenotypes are induced is unclear. To gain insight into global effects of GPI anchoring in A. fumigatus, in this study a conditional expression mutant was constructed and a genome wide transcriptome analysis was carried out. Our results suggested that suppression of GPI anchor synthesis mainly led to activation of phosphatidylinositol (PtdIns) signaling and ER stress. Biochemical and morphological evidence showed that autophagy was induced in response to suppression of the GPI anchor synthesis, and also an increased necroptosis was observed. Based on our results, we propose that activation of PtdIns3K and increased cytosolic Ca2+, which was induced by both ER stress and PtdIns signaling, acted as the main effectors to induce autophagy and possible necroptosis.
Collapse
Affiliation(s)
- Jianghong Yan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Suh MJ, Fedorova ND, Cagas SE, Hastings S, Fleischmann RD, Peterson SN, Perlin DS, Nierman WC, Pieper R, Momany M. Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome. Proteome Sci 2012; 10:30. [PMID: 22545825 PMCID: PMC3424117 DOI: 10.1186/1477-5956-10-30] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/30/2012] [Indexed: 11/14/2022] Open
Abstract
Background The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. Results To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and carbohydrate biosynthesis, and the tricarboxylic acid cycle. Conclusions The observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction during conidial germination, or survival in hostile environments.
Collapse
Affiliation(s)
- Moo-Jin Suh
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Natalie D Fedorova
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Steven E Cagas
- University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Susan Hastings
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | | - Scott N Peterson
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - David S Perlin
- University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - William C Nierman
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Rembert Pieper
- The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD, USA
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
13
|
Protein Glycosylation in Aspergillus fumigatus Is Essential for Cell Wall Synthesis and Serves as a Promising Model of Multicellular Eukaryotic Development. Int J Microbiol 2011; 2012:654251. [PMID: 21977037 PMCID: PMC3184424 DOI: 10.1155/2012/654251] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/19/2011] [Indexed: 02/05/2023] Open
Abstract
Glycosylation is a conserved posttranslational modification that is found in all eukaryotes, which helps generate proteins with multiple functions. Our knowledge of glycosylation mainly comes from the investigation of the yeast Saccharomyces cerevisiae and mammalian cells. However, during the last decade, glycosylation in the human pathogenic mold Aspergillus fumigatus has drawn significant attention. It has been revealed that glycosylation in A. fumigatus is crucial for its growth, cell wall synthesis, and development and that the process is more complicated than that found in the budding yeast S. cerevisiae. The present paper implies that the investigation of glycosylation in A. fumigatus is not only vital for elucidating the mechanism of fungal cell wall synthesis, which will benefit the design of new antifungal therapies, but also helps to understand the role of protein glycosylation in the development of multicellular eukaryotes. This paper describes the advances in functional analysis of protein glycosylation in A. fumigatus.
Collapse
|
14
|
Kniemeyer O. Proteomics of eukaryotic microorganisms: The medically and biotechnologically important fungal genus Aspergillus. Proteomics 2011; 11:3232-43. [DOI: 10.1002/pmic.201100087] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/26/2011] [Accepted: 04/05/2011] [Indexed: 11/09/2022]
|
15
|
Kniemeyer O, Schmidt AD, Vödisch M, Wartenberg D, Brakhage AA. Identification of virulence determinants of the human pathogenic fungi Aspergillus fumigatus and Candida albicans by proteomics. Int J Med Microbiol 2011; 301:368-77. [PMID: 21565549 DOI: 10.1016/j.ijmm.2011.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Both fungi Candida albicans and Aspergillus fumigatus can cause a number of life-threatening systemic infections in humans. The commensal yeast C. albicans is one of the main causes of nosocomial fungal infectious diseases, whereas the filamentous fungus A. fumigatus has become one of the most prevalent airborne fungal pathogens. Early diagnosis of these fungal infections is challenging, only a limited number of antifungals for treatment are available, and the molecular details of pathogenicity are hardly understood. The completion of both the A. fumigatus and C. albicans genome sequence provides the opportunity to improve diagnosis, to define new drug targets, to understand the functions of many uncharacterised proteins, and to study protein regulation on a global scale. With the application of proteomic tools, particularly two-dimensional gel electrophoresis and LC/MS-based methods, a comprehensive overview about the proteins of A. fumigatus and C. albicans present or induced during environmental changes and stress conditions has been obtained in the past 5 years. However, for the discovery of further putative virulence determinants, more sensitive and targeted proteomic methods have to be applied. Here, we review the recent proteome data generated for A. fumigatus and C. albicans that are related to factors required for pathogenicity.
Collapse
Affiliation(s)
- Olaf Kniemeyer
- Dept. of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.
| | | | | | | | | |
Collapse
|
16
|
Li K, Ouyang H, Lü Y, Liang J, Wilson IBH, Jin C. Repression of N-glycosylation triggers the unfolded protein response (UPR) and overexpression of cell wall protein and chitin in Aspergillus fumigatus. MICROBIOLOGY-SGM 2011; 157:1968-1979. [PMID: 21527474 DOI: 10.1099/mic.0.047712-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aspergillus fumigatus is the most common airborne fungal pathogen, causing fatal invasive aspergillosis in immunocompromised patients. The crude mortality is 60-90 % and remains around 29-42 % even with treatment. The main reason for patient death is the low efficiency of the drug therapies. As protein N-glycosylation is involved in cell wall biogenesis in A. fumigatus, a deeper understanding of its role in cell wall biogenesis will help to develop new drug targets. The Afstt3 gene encodes the essential catalytic subunit of oligosaccharyltransferase, an enzyme complex responsible for the transfer of the N-glycan to nascent polypeptides. To evaluate the role of N-glycosylation in cell wall biosynthesis, we constructed the conditional mutant strain CPR-stt3 by replacing the endogenous promoter of Afstt3 with the nitrogen-dependent niiA promoter. Repression of the Afstt3 gene in the CPR-stt3 strain led to a severe retardation of growth and a slight defect in cell wall integrity (CWI). One of the most interesting findings was that upregulation of the cell wall-related genes was not accompanied by an activation of the MpkA kinase, which has been shown to be a central element in the CWI signalling pathway in both Saccharomyces cerevisiae and A. fumigatus. Considering that the unfolded protein response (UPR) was found to be activated, which might upregulate the expression of cell wall protein and chitin, our data suggest that the UPR, instead of the MpkA-dependent CWI signalling pathway, is the major compensatory mechanism induced by repression but not abolition of N-glycosylation in A. fumigatus. Our finding is a key to understanding the complex compensatory mechanisms of cell wall biosynthesis and may provide a new strategy for drug development.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Haomiao Ouyang
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yang Lü
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jingnan Liang
- Core Facility of Equipment, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Cheng Jin
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
17
|
Fang W, Ding W, Wang B, Zhou H, Ouyang H, Ming J, Jin C. Reduced expression of the O-mannosyltransferase 2 (AfPmt2) leads to deficient cell wall and abnormal polarity in Aspergillus fumigatus. Glycobiology 2010; 20:542-52. [PMID: 20053626 DOI: 10.1093/glycob/cwp206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein O-mannosyltransferases (PMTs) initiate O-mannosylation of secretory proteins, which are of fundamental importance in eukaryotes. The human fungal pathogen Aspergillus fumigatus possesses three genes encoding for PMTs, namely, Afpmt1, Afpmt2 and Afpmt4. We have previously shown that lack of AfPmt1 leads to a temperature-sensitive phenotype featured with severe defects in hyphal growth, conidiation, cell wall integrity and morphology at elevated temperatures. In this study, a conditional mutant P2 was constructed by replacing the native promoter of the Afpmt2 with the Aspergillus nidulans alcA promoter. Reduced expression of the Afpmt2 gene led to a lagged germination, retarded hyphal growth, reduced conidiation and defect in cell wall integrity; however, no temperature-sensitive growth was observed. Further analysis revealed that reduced expression of the Afpmt2 caused a failure of the actin re-arrangement. Our results suggest that Afpmt2 gene was required for growth and played a role distinct from that of the Afpmt1 in A. fumigatus.
Collapse
Affiliation(s)
- Wenxia Fang
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|