1
|
Magalon A. History of Maturation of Prokaryotic Molybdoenzymes-A Personal View. Molecules 2023; 28:7195. [PMID: 37894674 PMCID: PMC10609526 DOI: 10.3390/molecules28207195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In prokaryotes, the role of Mo/W enzymes in physiology and bioenergetics is widely recognized. It is worth noting that the most diverse family of Mo/W enzymes is exclusive to prokaryotes, with the probable existence of several of them from the earliest forms of life on Earth. The structural organization of these enzymes, which often include additional redox centers, is as diverse as ever, as is their cellular localization. The most notable observation is the involvement of dedicated chaperones assisting with the assembly and acquisition of the metal centers, including Mo/W-bisPGD, one of the largest organic cofactors in nature. This review seeks to provide a new understanding and a unified model of Mo/W enzyme maturation.
Collapse
Affiliation(s)
- Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| |
Collapse
|
2
|
Banerjee S, Chanakira MN, Hall J, Kerkan A, Dasgupta S, Martin DW. A review on bacterial redox dependent iron transporters and their evolutionary relationship. J Inorg Biochem 2022; 229:111721. [PMID: 35033753 DOI: 10.1016/j.jinorgbio.2022.111721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
Iron is an essential yet toxic micronutrient and its transport across biological membranes is tightly regulated in all living organisms. One such iron transporter, the Ftr-type permeases, is found in both eukaryotic and prokaryotic cells. These Ftr-type transporters are required for iron transport, predicted to form α-helical transmembrane structures, and conserve two ArgGluxxGlu (x = any amino acid) motifs. In the yeast Ftr transporter (Ftr1p), a ferroxidase (Fet3p) is required for iron transport in an oxidation coupled transport step. None of the bacterial Ftr-type transporters (EfeU and FetM from E. coli; cFtr from Campylobacter jejuni; FtrC from Brucella, Bordetella, and Burkholderia spp.) contain a ferroxidase protein. Bioinformatics report predicted periplasmic EfeO and FtrB (from the EfeUOB and FtrABCD systems) as novel cupredoxins. The Cu2+ binding and the ferrous oxidation properties of these proteins are uncharacterized and the other two bacterial Ftr-systems are expressed without any ferroxidase/cupredoxin, leading to controversy about the mode of function of these transporters. Here, we review published data on Ftr-type transporters to gain insight into their functional diversity. Based on original bioinformatics data presented here evolutionary relations between these systems are presented.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA.
| | - Mina N Chanakira
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Jonathan Hall
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Alexa Kerkan
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | - Saumya Dasgupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Kolkata, WB 700135, India
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
3
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|
4
|
Bacterial nitrous oxide respiration: electron transport chains and copper transfer reactions. Adv Microb Physiol 2019; 75:137-175. [PMID: 31655736 DOI: 10.1016/bs.ampbs.2019.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biologically catalyzed nitrous oxide (N2O, laughing gas) reduction to dinitrogen gas (N2) is a desirable process in the light of ever-increasing atmospheric concentrations of this important greenhouse gas and ozone depleting substance. A diverse range of bacterial species produce the copper cluster-containing enzyme N2O reductase (NosZ), which is the only known enzyme that converts N2O to N2. Based on phylogenetic analyses, NosZ enzymes have been classified into clade I or clade II and it has turned out that this differentiation is also applicable to nos gene clusters (NGCs) and some physiological traits of the corresponding microbial cells. The NosZ enzyme is the terminal reductase of anaerobic N2O respiration, in which electrons derived from a donor substrate are transferred to NosZ by means of an electron transport chain (ETC) that conserves energy through proton motive force generation. This chapter presents models of the ETCs involved in clade I and clade II N2O respiration as well as of the respective NosZ maturation and maintenance processes. Despite differences in NGCs and growth yields of N2O-respiring microorganisms, the deduced bioenergetic framework in clade I and clade II N2O respiration is assumed to be equivalent. In both cases proton motive quinol oxidation by N2O is thought to be catalyzed by the Q cycle mechanism of a membrane-bound Rieske/cytochrome bc complex. However, clade I and clade II organisms are expected to differ significantly in terms of auxiliary electron transport processes as well as NosZ active site maintenance and repair.
Collapse
|
5
|
Significance of MccR, MccC, MccD, MccL and 8-methylmenaquinone in sulfite respiration of Wolinella succinogenes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:12-21. [DOI: 10.1016/j.bbabio.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/26/2018] [Accepted: 10/13/2018] [Indexed: 11/17/2022]
|
6
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Garg N, Taylor AJ, Kelly DJ. Bacterial periplasmic nitrate and trimethylamine-N-oxide respiration coupled to menaquinol-cytochrome c reductase (Qcr): Implications for electrogenic reduction of alternative electron acceptors. Sci Rep 2018; 8:15478. [PMID: 30341307 PMCID: PMC6195509 DOI: 10.1038/s41598-018-33857-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
The periplasmic reduction of the electron acceptors nitrate (Em +420 mV) and trimethylamine-N-oxide (TMAO; Em +130 mV) by Nap and Tor reductases is widespread in Gram-negative bacteria and is usually considered to be driven by non-energy conserving quinol dehydrogenases. The Epsilonproteobacterium Campylobacter jejuni can grow by nitrate and TMAO respiration and it has previously been assumed that these alternative pathways of electron transport are independent of the proton-motive menaquinol-cytochrome c reductase complex (QcrABC) that functions in oxygen-linked respiration. Here, we show that a qcrABC deletion mutant is completely deficient in oxygen-limited growth on both nitrate and TMAO and is unable to reduce these oxidants with physiological electron donors. As expected, the mutant grows normally on fumarate under oxygen-limited conditions. Thus, the periplasmic Nap and Tor reductases receive their electrons via QcrABC in C. jejuni, explaining the general absence of NapC and TorC quinol dehydrogenases in Epsilonproteobacteria. Moreover, the specific use of menaquinol (Em -75 mV) coupled with a Qcr complex to drive reduction of nitrate or TMAO against the proton-motive force allows the process to be electrogenic with a H+/2e- ratio of 2. The results have general implications for the role of Qcr complexes in bacterial oxygen-independent respiration and growth.
Collapse
Affiliation(s)
- Nitanshu Garg
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
8
|
Buttet GF, Willemin MS, Hamelin R, Rupakula A, Maillard J. The Membrane-Bound C Subunit of Reductive Dehalogenases: Topology Analysis and Reconstitution of the FMN-Binding Domain of PceC. Front Microbiol 2018; 9:755. [PMID: 29740408 PMCID: PMC5928378 DOI: 10.3389/fmicb.2018.00755] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Organohalide respiration (OHR) is the energy metabolism of anaerobic bacteria able to use halogenated organic compounds as terminal electron acceptors. While the terminal enzymes in OHR, so-called reductive dehalogenases, are well-characterized, the identity of proteins potentially involved in electron transfer to the terminal enzymes remains elusive. Among the accessory genes identified in OHR gene clusters, the C subunit (rdhC) could well code for the missing redox protein between the quinol pool and the reductive dehalogenase, although it was initially proposed to act as transcriptional regulator. RdhC sequences are characterized by the presence of multiple transmembrane segments, a flavin mononucleotide (FMN) binding motif and two conserved CX3CP motifs. Based on these features, we propose a curated selection of RdhC proteins identified in general sequence databases. Beside the Firmicutes from which RdhC sequences were initially identified, the identified sequences belong to three additional phyla, the Chloroflexi, the Proteobacteria, and the Bacteriodetes. The diversity of RdhC sequences mostly respects the phylogenetic distribution, suggesting that rdhC genes emerged relatively early in the evolution of the OHR metabolism. PceC, the C subunit of the tetrachloroethene (PCE) reductive dehalogenase is encoded by the conserved pceABCT gene cluster identified in Dehalobacter restrictus PER-K23 and in several strains of Desulfitobacterium hafniense. Surfaceome analysis of D. restrictus cells confirmed the predicted topology of the FMN-binding domain (FBD) of PceC that is the exocytoplasmic face of the membrane. Starting from inclusion bodies of a recombinant FBD protein, strategies for successful assembly of the FMN cofactor and refolding were achieved with the use of the flavin-trafficking protein from D. hafniense TCE1. Mass spectrometry analysis and site-directed mutagenesis of rFBD revealed that threonine-168 of PceC is binding FMN covalently. Our results suggest that PceC, and more generally RdhC proteins, may play a role in electron transfer in the metabolism of OHR.
Collapse
Affiliation(s)
- Géraldine F Buttet
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Mathilde S Willemin
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Romain Hamelin
- Protein Core Facility, Faculty of Life Sciences, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Aamani Rupakula
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, Institute for Environmental Engineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Hein S, Witt S, Simon J. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex. Environ Microbiol 2017; 19:4913-4925. [PMID: 28925551 DOI: 10.1111/1462-2920.13935] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 01/20/2023]
Abstract
Microbial reduction of nitrous oxide (N2 O) is an environmentally significant process in the biogeochemical nitrogen cycle. However, it has been recognized only recently that the gene encoding N2 O reductase (nosZ) is organized in varying genetic contexts, thereby defining clade I (or 'typical') and clade II (or 'atypical') N2 O reductases and nos gene clusters. This study addresses the enzymology of the clade II Nos system from Wolinella succinogenes, a nitrate-ammonifying and N2 O-respiring Epsilonproteobacterium that contains a cytochrome c N2 O reductase (cNosZ). The characterization of single non-polar nos gene deletion mutants demonstrated that the NosG, -C1, -C2, -H and -B proteins were essential for N2 O respiration. Moreover, cells of a W. succinogenes mutant lacking a putative menaquinol-oxidizing Rieske/cytochrome bc complex (QcrABC) were found to be incapable of N2 O (and also nitrate) respiration. Proton motive menaquinol oxidation by N2 O is suggested, supported by the finding that the molar yield for W. succinogenes cells grown by N2 O respiration using formate as electron donor exceeded that of fumarate respiration by about 30%. The results demand revision of the electron transport chain model of clade II N2 O respiration and challenge the assumption that NosGH(NapGH)-type iron-sulfur proteins are menaquinol-reactive.
Collapse
Affiliation(s)
- Sascha Hein
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Samantha Witt
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| |
Collapse
|
10
|
rNAV 2.0: a visualization tool for bacterial sRNA-mediated regulatory networks mining. BMC Bioinformatics 2017; 18:188. [PMID: 28335718 PMCID: PMC5364647 DOI: 10.1186/s12859-017-1598-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial sRNA-mediated regulatory networks has been introduced as a powerful way to analyze the fast rewiring capabilities of a bacteria in response to changing environmental conditions. The identification of mRNA targets of bacterial sRNAs is essential to investigate their functional activities. However, this step remains challenging with the lack of knowledge of the topological and biological constraints behind the formation of sRNA-mRNA duplexes. Even with the most sophisticated bioinformatics target prediction tools, the large proportion of false predictions may be prohibitive for further analyses. To deal with this issue, sRNA target analyses can be carried out from the resulting gene lists given by RNA-SEQ experiments when available. However, the number of resulting target candidates may be still huge and cannot be easily interpreted by domain experts who need to confront various biological features to prioritize the target candidates. Therefore, novel strategies have to be carried out to improve the specificity of computational prediction results, before proposing new candidates for an expensive experimental validation stage. RESULT To address this issue, we propose a new visualization tool rNAV 2.0, for detecting and filtering bacterial sRNA targets for regulatory networks. rNAV is designed to cope with a variety of biological constraints, including the gene annotations, the conserved regions of interaction or specific patterns of regulation. Depending on the application, these constraints can be variously combined to analyze the target candidates, prioritized for instance by a known conserved interaction region, or because of a common function. CONCLUSION The standalone application implements a set of known algorithms and interaction techniques, and applies them to the new problem of identifying reasonable sRNA target candidates.
Collapse
|
11
|
Nolan JV, Godwin IR, de Raphélis-Soissan V, Hegarty RS. Managing the rumen to limit the incidence and severity of nitrite poisoning in nitrate-supplemented ruminants. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an15324] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inclusion of nitrate (NO3−) in ruminant diets is a means of increasing non-protein nitrogen intake while at the same time reducing emissions of enteric methane (CH4) and, in Australia, gaining carbon credits. Rumen microorganisms contain intracellular enzymes that use hydrogen (H2) released during fermentation to reduce NO3− to nitrite (NO2−), and then reduce the resulting NO2− to ammonia or gaseous intermediates such as nitrous oxide (N2O) and nitric oxide (NO). This diversion of H2 reduces CH4 formation in the rumen. If NO2− accumulates in the rumen, it may inhibit growth of methanogens and other microorganisms and this may further reduce CH4 production, but also lower feed digestibility. If NO2− is absorbed and enters red blood cells, methaemoglobin is formed and this lowers the oxygen-carrying capacity of the blood. Nitric oxide produced from absorbed NO2− reduces blood pressure, which, together with the effects of methaemoglobin, can, at times, lead to extreme hypoxia and death. Nitric oxide, which can be formed in the gut as well as in tissues, has a variety of physiological effects, e.g. it reduces primary rumen contractions and slows passage of digesta, potentially limiting feed intake. It is important to find management strategies that minimise the accumulation of NO2−; these include slowing the rate of presentation of NO3– to rumen microbes or increasing the rate of removal of NO2−, or both. The rate of reduction of NO3− to NO2− depends on the level of NO3− in feed and its ingestion rate, which is related to the animal’s feeding behaviour. After NO3− is ingested, its peak concentration in the rumen depends on its rate of solubilisation. Once in solution, NO3− is imported by bacteria and protozoa and quickly reduced to NO2−. One management option is to encapsulate the NO3− supplement to lower its solubility. Acclimating animals to NO3− is an established management strategy that appears to limit NO2− accumulation in the rumen by increasing microbial nitrite reductase activity more than nitrate reductase activity; however, it does not guarantee complete protection from NO2− poisoning. Adding concentrates into nitrate-containing diets also helps reduce the risk of poisoning and inclusion of microbial cultures with enhanced NO2−-reducing properties is another potential management option. A further possibility is to inhibit NO2− absorption. Animals differ in their tolerance to NO3− supplementation, so there may be opportunities for breeding animals more tolerant of dietary NO3−. Our review aims to integrate current knowledge of microbial processes responsible for accumulation of NO2− in rumen fluid and to identify management options that could minimise the risks of NO2− poisoning while reducing methane emissions and maintaining or enhancing livestock production.
Collapse
|
12
|
Torres M, Simon J, Rowley G, Bedmar E, Richardson D, Gates A, Delgado M. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv Microb Physiol 2016; 68:353-432. [PMID: 27134026 DOI: 10.1016/bs.ampbs.2016.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation.
Collapse
|
13
|
Uribe-Alvarez C, Chiquete-Félix N, Contreras-Zentella M, Guerrero-Castillo S, Peña A, Uribe-Carvajal S. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations. Pathog Dis 2015; 74:ftv111. [PMID: 26610708 DOI: 10.1093/femspd/ftv111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.
Collapse
Affiliation(s)
- Cristina Uribe-Alvarez
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Natalia Chiquete-Félix
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Martha Contreras-Zentella
- Department of Cellular and Developmental Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Sergio Guerrero-Castillo
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Antonio Peña
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| | - Salvador Uribe-Carvajal
- Department of Molecular Genetics, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México DF, México
| |
Collapse
|
14
|
Kern M, Simon J. Three transcription regulators of the Nss family mediate the adaptive response induced by nitrate, nitric oxide or nitrous oxide in Wolinella succinogenes. Environ Microbiol 2015; 18:2899-912. [PMID: 26395430 DOI: 10.1111/1462-2920.13060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022]
Abstract
Sensing potential nitrogen-containing respiratory substrates such as nitrate, nitrite, hydroxylamine, nitric oxide (NO) or nitrous oxide (N2 O) in the environment and subsequent upregulation of corresponding catabolic enzymes is essential for many microbial cells. The molecular mechanisms of such adaptive responses are, however, highly diverse in different species. Here, induction of periplasmic nitrate reductase (Nap), cytochrome c nitrite reductase (Nrf) and cytochrome c N2 O reductase (cNos) was investigated in cells of the Epsilonproteobacterium Wolinella succinogenes grown either by fumarate, nitrate or N2 O respiration. Furthermore, fumarate respiration in the presence of various nitrogen compounds or NO-releasing chemicals was examined. Upregulation of each of the Nap, Nrf and cNos enzyme systems was found in response to the presence of nitrate, NO-releasers or N2 O, and the cells were shown to employ three transcription regulators of the Crp-Fnr superfamily (homologues of Campylobacter jejuni NssR), designated NssA, NssB and NssC, to mediate the upregulation of Nap, Nrf and cNos. Analysis of single nss mutants revealed that NssA controls production of the Nap and Nrf systems in fumarate-grown cells, while NssB was required to induce the Nap, Nrf and cNos systems specifically in response to NO-generators. NssC was indispensable for cNos production under any tested condition. The data indicate dedicated signal transduction routes responsive to nitrate, NO and N2 O and imply the presence of an N2 O-sensing mechanism.
Collapse
Affiliation(s)
- Melanie Kern
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany.
| |
Collapse
|
15
|
Leimkühler S, Iobbi-Nivol C. Bacterial molybdoenzymes: old enzymes for new purposes. FEMS Microbiol Rev 2015; 40:1-18. [PMID: 26468212 DOI: 10.1093/femsre/fuv043] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 02/06/2023] Open
Abstract
Molybdoenzymes are widespread in eukaryotic and prokaryotic organisms where they play crucial functions in detoxification reactions in the metabolism of humans and bacteria, in nitrate assimilation in plants and in anaerobic respiration in bacteria. To be fully active, these enzymes require complex molybdenum-containing cofactors, which are inserted into the apoenzymes after folding. For almost all the bacterial molybdoenzymes, molybdenum cofactor insertion requires the involvement of specific chaperones. In this review, an overview on the molybdenum cofactor biosynthetic pathway is given together with the role of specific chaperones dedicated for molybdenum cofactor insertion and maturation. Many bacteria are involved in geochemical cycles on earth and therefore have an environmental impact. The roles of molybdoenzymes in bioremediation and for environmental applications are presented.
Collapse
Affiliation(s)
- Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| | - Chantal Iobbi-Nivol
- The Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS, Aix Marseille Université, 13402 Marseille cedex 20, France
| |
Collapse
|
16
|
Visser M, Pieterse MM, Pinkse MWH, Nijsse B, Verhaert PDEM, de Vos WM, Schaap PJ, Stams AJM. Unravelling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis. Environ Microbiol 2015; 18:2843-55. [PMID: 26147498 DOI: 10.1111/1462-2920.12973] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 01/06/2023]
Abstract
The Sporomusa genus comprises anaerobic spore-forming acetogenic bacteria that stain Gram-negative. Sporomusa species typically grow with one-carbon substrates and N-methylated compounds. In the degradation of these compounds methyltransferases are involved. In addition, Sporomusa species can grow autotrophically with H2 and CO2 , and use a variety of sugars for acetogenic growth. Here we describe a genome analysis of Sporomusa strain An4 and a proteome analysis of cells grown under five different conditions. Comparison of the genomes of Sporomusa strain An4 and Sporomusa ovata strain H1 indicated that An4 is a S. ovata strain. Proteome analysis showed a high abundance of several methyltransferases, predominantly trimethylamine methyltransferases, during growth with betaine, whereas trimethylamine is one of the main end-products of betaine degradation. In methanol degradation methyltransferases are also involved. In methanol-utilizing methanogens, two methyltransferases catalyse methanol conversion, methyltransferase 1 composed of subunits MtaB and MtaC and methyltransferase 2, also called MtaA. The two methyltransferase 1 subunits MtaB and MtaC were highly abundant when strain An4 was grown with methanol. However, instead of MtaA a methyltetrahydrofolate methyltransferase was synthesized. We propose a novel methanol degradation pathway in Sporomusa strain An4 that uses a methyltetrahydrofolate methyltransferase instead of MtaA.
Collapse
Affiliation(s)
- Michael Visser
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Mervin M Pieterse
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Martijn W H Pinkse
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Peter D E M Verhaert
- Department of Biotechnology, Technische Universiteit Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands.,Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Veterinary Biosciences, Helsinki University, Helsinki, Finland.,Department of Bacteriology and Immunology, Helsinki University, Helsinki, Finland
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
17
|
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20:403-33. [DOI: 10.1007/s00775-014-1234-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
|
18
|
Abstract
The transition element molybdenum (Mo) is of primordial importance for biological systems, because it is required by enzymes catalyzing key reactions in the global carbon, sulfur, and nitrogen metabolism. To gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo-enzymes in prokaryotes including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox reactions. Mo-enzymes are widespread in prokaryotes and many of them were likely present in the Last Universal Common Ancestor. To date, more than 50--mostly bacterial--Mo-enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Mo-cofactor is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.
Collapse
|
19
|
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev 2014; 43:676-706. [PMID: 24141308 DOI: 10.1039/c3cs60249d] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
Collapse
|
20
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
21
|
Vetriani C, Voordeckers JW, Crespo-Medina M, O'Brien CE, Giovannelli D, Lutz RA. Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME JOURNAL 2014; 8:1510-21. [PMID: 24430487 DOI: 10.1038/ismej.2013.246] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022]
Abstract
Despite the frequent isolation of nitrate-respiring Epsilonproteobacteria from deep-sea hydrothermal vents, the genes coding for the nitrate reduction pathway in these organisms have not been investigated in depth. In this study we have shown that the gene cluster coding for the periplasmic nitrate reductase complex (nap) is highly conserved in chemolithoautotrophic, nitrate-reducing Epsilonproteobacteria from deep-sea hydrothermal vents. Furthermore, we have shown that the napA gene is expressed in pure cultures of vent Epsilonproteobacteria and it is highly conserved in microbial communities collected from deep-sea vents characterized by different temperature and redox regimes. The diversity of nitrate-reducing Epsilonproteobacteria was found to be higher in moderate temperature, diffuse flow vents than in high temperature black smokers or in low temperatures, substrate-associated communities. As NapA has a high affinity for nitrate compared with the membrane-bound enzyme, its occurrence in vent Epsilonproteobacteria may represent an adaptation of these organisms to the low nitrate concentrations typically found in vent fluids. Taken together, our findings indicate that nitrate reduction is widespread in vent Epsilonproteobacteria and provide insight on alternative energy metabolism in vent microorganisms. The occurrence of the nap cluster in vent, commensal and pathogenic Epsilonproteobacteria suggests that the ability of these bacteria to respire nitrate is important in habitats as different as the deep-sea vents and the human body.
Collapse
Affiliation(s)
- Costantino Vetriani
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - James W Voordeckers
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Melitza Crespo-Medina
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Charles E O'Brien
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Donato Giovannelli
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA [3] Institute of Marine Science - ISMAR, National Research Council of Italy, CNR, Ancona, Italy
| | - Richard A Lutz
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
22
|
Aklujkar M, Coppi MV, Leang C, Kim BC, Chavan MA, Perpetua LA, Giloteaux L, Liu A, Holmes DE. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. MICROBIOLOGY-SGM 2013; 159:515-535. [PMID: 23306674 DOI: 10.1099/mic.0.064089-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole-genome microarray analysis of Geobacter sulfurreducens grown on insoluble Fe(III) oxide or Mn(IV) oxide versus soluble Fe(III) citrate revealed significantly different expression patterns. The most upregulated genes, omcS and omcT, encode cell-surface c-type cytochromes, OmcS being required for Fe(III) and Mn(IV) oxide reduction. Other electron transport genes upregulated on both metal oxides included genes encoding putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc4 and Cbc5, periplasmic c-type cytochromes Dhc2 and PccF, outer membrane c-type cytochromes OmcC, OmcG and OmcV, multicopper oxidase OmpB, the structural components of electrically conductive pili, PilA-N and PilA-C, and enzymes that detoxify reactive oxygen/nitrogen species. Genes upregulated on Fe(III) oxide encode putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc3 and Cbc6, periplasmic c-type cytochromes, including PccG and PccJ, and outer membrane c-type cytochromes, including OmcA, OmcE, OmcH, OmcL, OmcN, OmcO and OmcP. Electron transport genes upregulated on Mn(IV) oxide encode periplasmic c-type cytochromes PccR, PgcA, PpcA and PpcD, outer membrane c-type cytochromes OmaB/OmaC, OmcB and OmcZ, multicopper oxidase OmpC and menaquinone-reducing enzymes. Genetic studies indicated that MacA, OmcB, OmcF, OmcG, OmcH, OmcI, OmcJ, OmcM, OmcV and PccH, the putative Cbc5 complex subunit CbcC and the putative Cbc3 complex subunit CbcV are important for reduction of Fe(III) oxide but not essential for Mn(IV) oxide reduction. Gene expression patterns for Geobacter uraniireducens were similar. These results demonstrate that the physiology of Fe(III)-reducing bacteria differs significantly during growth on different insoluble and soluble electron acceptors and emphasize the importance of c-type cytochromes for extracellular electron transfer in G. sulfurreducens.
Collapse
Affiliation(s)
- M Aklujkar
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - M V Coppi
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - C Leang
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - B C Kim
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - M A Chavan
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - L A Perpetua
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - L Giloteaux
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - A Liu
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - D E Holmes
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
23
|
Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:114-35. [PMID: 22842521 DOI: 10.1016/j.bbabio.2012.07.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022]
Abstract
Nitrogen is an essential element of life that needs to be assimilated in its most reduced form, ammonium. On the other hand, nitrogen exists in a multitude of oxidation states and, consequently, nitrogen compounds (NCs) serve as electron donor and/or acceptors in many catabolic pathways including various forms of microbial respiration that contribute to the global biogeochemical nitrogen cycle. Some of these NCs are also known as reactive nitrogen species able to cause nitrosative stress because of their high redox reactivity. The best understood processes of the nitrogen cycle are denitrification and ammonification (both beginning with nitrate reduction to nitrite), nitrification (aerobic oxidation of ammonium and nitrite) and anaerobic ammonium oxidation (anammox). This review presents examples of the diverse architecture, either elucidated or anticipated, and the high degree of modularity of the corresponding respiratory electron transport processes found in Bacteria and Archaea, and relates these to their respective bioenergetic mechanisms of proton motive force generation. In contrast to the multiplicity of enzymes that catalyze NC transformations, the number of proteins or protein modules involved in connecting electron transport to and from these enzymes with the quinone/quinol pool is comparatively small. These quinone/quinol-reactive protein modules consist of cytochromes b and c and iron-sulfur proteins. Conclusions are drawn towards the evolutionary relationships of bioenergetic systems involved in NC transformation and deduced aspects of the evolution of the biogeochemical nitrogen cycle are presented. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|
24
|
Kern M, Klotz MG, Simon J. The Wolinella succinogenes mcc gene cluster encodes an unconventional respiratory sulphite reduction system. Mol Microbiol 2011; 82:1515-30. [DOI: 10.1111/j.1365-2958.2011.07906.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Kern M, Volz J, Simon J. The oxidative and nitrosative stress defence network of Wolinella succinogenes: cytochrome c nitrite reductase mediates the stress response to nitrite, nitric oxide, hydroxylamine and hydrogen peroxide. Environ Microbiol 2011; 13:2478-94. [PMID: 21672122 DOI: 10.1111/j.1462-2920.2011.02520.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microorganisms employ diverse mechanisms to withstand physiological stress conditions exerted by reactive or toxic oxygen and nitrogen species such as hydrogen peroxide, organic hydroperoxides, superoxide anions, nitrite, hydroxylamine, nitric oxide or NO-generating compounds. This study identified components of the oxidative and nitrosative stress defence network of Wolinella succinogenes, an exceptional Epsilonproteobacterium that lacks both catalase and haemoglobins. Various gene deletion-insertion mutants were constructed, grown by either fumarate respiration or respiratory nitrate ammonification and subjected to disc diffusion, growth and viability assays under stress conditions. It was demonstrated that mainly two periplasmic multihaem c-type cytochromes, namely cytochrome c peroxidase and cytochrome c nitrite reductase (NrfA), mediated resistance to hydrogen peroxide. Two AhpC-type peroxiredoxin isoenzymes were shown to be involved in protection against different organic hydroperoxides. The phenotypes of two superoxide dismutase mutants lacking either SodB or SodB2 implied that both isoenzymes play important roles in oxygen and superoxide stress defence although they are predicted to reside in the cytoplasm and periplasm respectively. NrfA and a cytoplasmic flavodiiron protein (Fdp) were identified as key components of nitric oxide detoxification. In addition, NrfA (but not the hybrid cluster protein Hcp) was found to mediate resistance to hydroxylamine stress. The results indicate the presence of a robust oxidative and nitrosative stress defence network and identify NrfA as a multifunctional cytochrome c involved in both anaerobic respiration and stress protection.
Collapse
Affiliation(s)
- Melanie Kern
- Institute of Microbiology and Genetics, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | | | | |
Collapse
|
26
|
Magalon A, Fedor JG, Walburger A, Weiner JH. Molybdenum enzymes in bacteria and their maturation. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.12.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Kern M, Simon J. Production of Recombinant Multiheme Cytochromes c in Wolinella succinogenes. Methods Enzymol 2011; 486:429-46. [DOI: 10.1016/b978-0-12-381294-0.00019-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Kern M, Scheithauer J, Kranz RG, Simon J. Essential histidine pairs indicate conserved haem binding in epsilonproteobacterial cytochrome c haem lyases. MICROBIOLOGY-SGM 2010; 156:3773-3781. [PMID: 20705660 PMCID: PMC3068706 DOI: 10.1099/mic.0.042838-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial cytochrome c maturation occurs at the outside of the cytoplasmic membrane, requires transport of haem b across the membrane, and depends on membrane-bound cytochrome c haem lyase (CCHL), an enzyme that catalyses covalent attachment of haem b to apocytochrome c. Epsilonproteobacteria such as Wolinella succinogenes use the cytochrome c biogenesis system II and contain unusually large CCHL proteins of about 900 amino acid residues that appear to be fusions of the CcsB and CcsA proteins found in other bacteria. CcsBA-type CCHLs have been proposed to act as haem transporters that contain two haem b coordination sites located at different sides of the membrane and formed by histidine pairs. W. succinogenes cells contain three CcsBA-type CCHL isoenzymes (NrfI, CcsA1 and CcsA2) that are known to differ in their specificity for apocytochromes and apparently recognize different haem c binding motifs such as CX2CH (by CcsA2), CX2CK (by NrfI) and CX15CH (by CcsA1). In this study, conserved histidine residues were individually replaced by alanine in each of the W. succinogenes CCHLs. Characterization of NrfI and CcsA1 variants in W. succinogenes demonstrated that a set of four histidines is essential for maturing the dedicated multihaem cytochromes c NrfA and MccA, respectively. The function of W. succinogenes CcsA2 variants produced in Escherichia coli was also found to depend on each of these four conserved histidine residues. The presence of imidazole in the growth medium of both W. succinogenes and E. coli rescued the cytochrome c biogenesis activity of most histidine variants, albeit to different extents, thereby implying the presence of two functionally distinct histidine pairs in each CCHL. The data support a model in which two conserved haem b binding sites are involved in haem transport catalysed by CcsBA-type CCHLs.
Collapse
Affiliation(s)
- Melanie Kern
- Institute of Microbiology and Genetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Juliane Scheithauer
- Institute of Microbiology and Genetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Robert G Kranz
- Department of Biology, Washington University, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Jörg Simon
- Institute of Microbiology and Genetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
29
|
Kern M, Eisel F, Scheithauer J, Kranz RG, Simon J. Substrate specificity of three cytochrome c haem lyase isoenzymes from Wolinella succinogenes: unconventional haem c binding motifs are not sufficient for haem c attachment by NrfI and CcsA1. Mol Microbiol 2009; 75:122-37. [PMID: 19919672 DOI: 10.1111/j.1365-2958.2009.06965.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bacterial c-type cytochrome maturation is dependent on a complex enzymic machinery. The key reaction is catalysed by cytochrome c haem lyase (CCHL) that usually forms two thioether bonds to attach haem b to the cysteine residues of a haem c binding motif (HBM) which is, in most cases, a CX(2)CH sequence. Here, the HBM specificity of three distinct CCHL isoenzymes (NrfI, CcsA1 and CcsA2) from the Epsilonproteobacterium Wolinella succinogenes was investigated using either W. succinogenes or Escherichia coli as host organism. Several reporter c-type cytochromes were employed including cytochrome c nitrite reductases (NrfA) from E. coli and Campylobacter jejuni that differ in their active-site HBMs (CX(2)CK or CX(2)CH). W. succinogenes CcsA2 was found to attach haem to standard CX(2)CH motifs in various cytochromes whereas other HBMs were not recognized. NrfI was able to attach haem c to the active-site CX(2)CK motif of both W. succinogenes and E. coli NrfA, but not to NrfA from C. jejuni. Different apo-cytochrome variants carrying the CX(15)CH motif, assumed to be recognized by CcsA1 during maturation of the octahaem cytochrome MccA, were not processed by CcsA1 in either W. succinogenes or E. coli. It is concluded that the dedicated CCHLs NrfI and CcsA1 attach haem to non-standard HBMs only in the presence of further, as yet uncharacterized structural features. Interestingly, it proved impossible to delete the ccsA2 gene from the W. succinogenes genome, a finding that is discussed in the light of the available genomic, proteomic and functional data on W. succinogenes c-type cytochromes.
Collapse
Affiliation(s)
- Melanie Kern
- Institute of Microbiology and Genetics, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|