1
|
Dye KJ, Yang Z. Analysis of Myxococcus xanthus Vegetative Biofilms With Microtiter Plates. Front Microbiol 2022; 13:894562. [PMID: 35572678 PMCID: PMC9100584 DOI: 10.3389/fmicb.2022.894562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterium Myxococcus xanthus forms both developmental and vegetative types of biofilms. While the former has been studied on both agar plates and submerged surfaces, the latter has been investigated predominantly on agar surfaces as swarming colonies. Here we describe the development of a microplate-based assay for the submerged biofilms of M. xanthus under vegetative conditions. We examined the impacts of inoculation, aeration, and temperature to optimize the conditions for the assay. Aeration was observed to be critical for the effective development of submerged biofilms by M. xanthus, an obligate aerobic bacterium. In addition, temperature plays an important role in the development of M. xanthus submerged biofilms. It is well established that the formation of submerged biofilms by many bacteria requires both exopolysaccharide (EPS) and the type IV pilus (T4P). EPS constitutes part of the biofilm matrix that maintains and organizes bacterial biofilms while the T4P facilitates surface attachment as adhesins. For validation, we used our biofilm assay to examine a multitude of M. xanthus strains with various EPS and T4P phenotypes. The results indicate that the levels of EPS, but not of piliation, positively correlate with submerged biofilm formation in M. xanthus.
Collapse
|
2
|
The type IV pilus assembly ATPase PilB functions as a signaling protein to regulate exopolysaccharide production in Myxococcus xanthus. Sci Rep 2017; 7:7263. [PMID: 28779124 PMCID: PMC5544727 DOI: 10.1038/s41598-017-07594-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Myxococcus xanthus possesses a form of surface motility powered by the retraction of the type IV pilus (T4P). Additionally, exopolysaccharide (EPS), the major constituent of bacterial biofilms, is required for this T4P-mediated motility in M. xanthus as the putative trigger of T4P retraction. The results here demonstrate that the T4P assembly ATPase PilB functions as an intermediary in the EPS regulatory pathway composed of the T4P upstream of the Dif signaling proteins in M. xanthus. A suppressor screen isolated a pilB mutation that restored EPS production to a T4P− mutant. An additional PilB mutant variant, which is deficient in ATP hydrolysis and T4P assembly, supports EPS production without the T4P, indicating PilB can regulate EPS production independently of its function in T4P assembly. Further analysis confirms that PilB functions downstream of the T4P filament but upstream of the Dif proteins. In vitro studies suggest that the nucleotide-free form of PilB assumes the active signaling conformation in EPS regulation. Since M. xanthus PilB possesses conserved motifs with high affinity for c-di-GMP binding, the findings here suggest that c-di-GMP can regulate both motility and biofilm formation through a single effector in this surface-motile bacterium.
Collapse
|
3
|
Black WP, Wang L, Davis MY, Yang Z. The orphan response regulator EpsW is a substrate of the DifE kinase and it regulates exopolysaccharide in Myxococcus xanthus. Sci Rep 2015; 5:17831. [PMID: 26639551 PMCID: PMC4671073 DOI: 10.1038/srep17831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022] Open
Abstract
Here we attempted to identify the downstream target of the DifE histidine kinase in the regulation of exopolysaccharide (EPS) production in the Gram-negative bacterium Myxococcus xanthus. This bacterium is an important model system for the studies of Type IV pilus (T4P) because it is motile by social (S) motility which is powered by T4P retraction. EPS is critical for S motility because it is the preferred anchor for T4P retraction in this bacterium. Previous studies identified the Dif chemosensory pathway as crucial for the regulation of EPS production. However, the downstream target of the DifE kinase in this pathway was unknown. In this study, EpsW, an orphan and single-domain response regulator (RR), was identified as a potential DifE target first by bioinformatics. Subsequent experiments demonstrated that epsW is essential for EPS biosynthesis in vivo and that EpsW is directly phosphorylated by DifE in vitro. Targted mutagenesis of epsW suggests that EpsW is unlikely the terminal RR of the Dif pathway. We propose instead that EpsW is an intermediary in a multistep phosphorelay that regulates EPS in M. xanthus.
Collapse
Affiliation(s)
- Wesley P Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lingling Wang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Manli Y Davis
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Yu W, Chen Z, Shen L, Wang Y, Li Q, Yan S, Zhong CJ, He N. Proteomic profiling ofBacillus licheniformisreveals a stress response mechanism in the synthesis of extracellular polymeric flocculants. Biotechnol Bioeng 2015; 113:797-806. [DOI: 10.1002/bit.25838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Wencheng Yu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
| | - Zhen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
| | - Shan Yan
- Department of Chemistry; State University of New York at Binghamton; Binghamton 13902 New York
| | - Chuan-Jian Zhong
- Department of Chemistry; State University of New York at Binghamton; Binghamton 13902 New York
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
- Department of Chemistry; State University of New York at Binghamton; Binghamton 13902 New York
| |
Collapse
|
5
|
Moak PL, Black WP, Wallace RA, Li Z, Yang Z. The Hsp70-like StkA functions between T4P and Dif signaling proteins as a negative regulator of exopolysaccharide in Myxococcus xanthus. PeerJ 2015; 3:e747. [PMID: 25674362 PMCID: PMC4319316 DOI: 10.7717/peerj.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/13/2015] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus displays a form of surface motility known as social (S) gliding. It is mediated by the type IV pilus (T4P) and requires the exopolysaccharide (EPS) to function. It is clear that T4P retraction powers S motility. EPS on a neighboring cell or deposited on a gliding surface is proposed to anchor the distal end of a pilus and trigger T4P retraction at its proximal end. Inversely, T4P has been shown to regulate EPS production upstream of the Dif signaling pathway. Here we describe the isolation of two Tn insertions at the stk locus which had been known to play roles in cellular cohesion and formation of cell groups. An insertion in stkA (MXAN_3474) was identified based on its ability to restore EPS to a pilA deletion mutant. The stkA encodes a DnaK or Hsp70 homolog and it is upstream of stkB (MXAN_3475) and stkC (MXAN_3476). A stkB insertion was identified in a separate genetic screen because it eliminated EPS production of an EPS(+) parental strain. Our results with in-frame deletions of these three stk genes indicated that the stkA mutant produced increased level of EPS while stkB and stkC mutants produced less EPS relative to the wild type. S motility and developmental aggregation were affected by deletions of stkA and stkB but only minimally by the deletion of stkC. Genetic epistasis indicated that StkA functions downstream of T4P but upstream of the Dif proteins as a negative regulator of EPS production in M. xanthus.
Collapse
Affiliation(s)
- Pamela L. Moak
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Wesley P. Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Regina A. Wallace
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Zhuo Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
6
|
Wallace RA, Black WP, Yang X, Yang Z. A CRISPR with roles in Myxococcus xanthus development and exopolysaccharide production. J Bacteriol 2014; 196:4036-43. [PMID: 25201946 PMCID: PMC4248871 DOI: 10.1128/jb.02035-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/03/2014] [Indexed: 01/03/2023] Open
Abstract
The Gram-negative soil bacterium Myxococcus xanthus utilizes its social (S) gliding motility to move on surfaces during its vegetative and developmental cycles. It is known that S motility requires the type IV pilus (T4P) and the exopolysaccharide (EPS) to function. The T4P is the S motility motor, and it powers cell movement by retraction. As the key regulator of the S motor, EPS is proposed to be the anchor and trigger for T4P retraction. The production of EPS is regulated in turn by the T4P in M. xanthus, and T4P(-) mutants are S(-) and EPS(-). In this study, a ΔpilA strain (T4P(-) and EPS(-)) was mutagenized by a transposon and screened for EPS(+) mutants. A pilA suppressor isolated as such harbored an insertion in the 3rd clustered regularly interspaced short palindromic repeat (CRISPR3) in M. xanthus. Evidence indicates that this transposon insertion, designated CRISPR3*, is a gain-of-function (GOF) mutation. Moreover, CRISPR3* eliminated developmental aggregation in both the wild-type and the pilA mutant backgrounds. Upstream of CRISPR3 are genes encoding the repeat-associated mysterious proteins (RAMPs). These RAMP genes are indispensable for CRISPR3* to affect development and EPS in M. xanthus. Analysis by reverse transcription (RT)-PCR suggested that CRISPR3* led to an increase in the processing of the RNA transcribed from CRISPR3. We propose that certain CRISPR3 transcripts, once expressed and processed, target genes critical for M. xanthus fruiting body development and EPS production in a RAMP-dependent manner.
Collapse
Affiliation(s)
- Regina A Wallace
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Wesley P Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xianshuang Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Li C, Wallace RA, Black WP, Li YZ, Yang Z. Type IV pilus proteins form an integrated structure extending from the cytoplasm to the outer membrane. PLoS One 2013; 8:e70144. [PMID: 23922942 PMCID: PMC3724824 DOI: 10.1371/journal.pone.0070144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/20/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterial type IV pilus (T4P) is the strongest biological motor known to date as its retraction can generate forces well over 100 pN. Myxococcus xanthus, a δ-proteobacterium, provides a good model for T4P investigations because its social (S) gliding motility is powered by T4P. In this study, the interactions among M. xanthus T4P proteins were investigated using genetics and the yeast two-hybrid (Y2H) system. Our genetic analysis suggests that there is an integrated T4P structure that crosses the inner membrane (IM), periplasm and the outer membrane (OM). Moreover, this structure exists in the absence of the pilus filament. A systematic Y2H survey provided evidence for direct interactions among IM and OM proteins exposed to the periplasm. For example, the IM lipoprotein PilP interacted with its cognate OM protein PilQ. In addition, interactions among T4P proteins from the thermophile Thermus thermophilus were investigated by Y2H. The results indicated similar protein-protein interactions in the T4P system of this non-proteobacterium despite significant sequence divergence between T4P proteins in T. thermophilus and M. xanthus. The observations here support the model of an integrated T4P structure in the absence of a pilus in diverse bacterial species.
Collapse
Affiliation(s)
- Chengyun Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Regina A. Wallace
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Wesley P. Black
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Berleman JE, Vicente JJ, Davis AE, Jiang SY, Seo YE, Zusman DR. FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS One 2011; 6:e23920. [PMID: 21886839 PMCID: PMC3158785 DOI: 10.1371/journal.pone.0023920] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/27/2011] [Indexed: 02/02/2023] Open
Abstract
Myxococcus xanthus Social (S) motility occurs at high cell densities and is powered by the extension and retraction of Type IV pili which bind ligands normally found in matrix exopolysaccharides (EPS). Previous studies showed that FrzS, a protein required for S-motility, is organized in polar clusters that show pole-to-pole translocation as cells reverse their direction of movement. Since the leading cell pole is the site of both the major FrzS cluster and type IV pilus extension/retraction, it was suggested that FrzS might regulate S-motility by activating pili at the leading cell pole. Here, we show that FrzS regulates EPS production, rather than type IV pilus function. We found that the frzS phenotype is distinct from that of Type IV pilus mutants such as pilA and pilT, but indistinguishable from EPS mutants, such as epsZ. Indeed, frzS mutants can be rescued by the addition of purified EPS, 1% methylcellulose, or co-culturing with wildtype cells. Our data also indicate that the cell density requirement in S-motility is likely a function of the ability of cells to construct functional multicellular clusters surrounding an EPS core.
Collapse
Affiliation(s)
- James E. Berleman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Juan J. Vicente
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Annie E. Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Sharon Y. Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Young-Eun Seo
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - David R. Zusman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol Mol Biol Rev 2010; 74:229-49. [PMID: 20508248 DOI: 10.1128/mmbr.00043-09] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review.
Collapse
|
10
|
|