1
|
Giacomini JJ, Torres-Morales J, Dewhirst FE, Borisy GG, Mark Welch JL. Spatial ecology of the Neisseriaceae family in the human oral cavity. Microbiol Spectr 2025; 13:e0327524. [PMID: 40197060 PMCID: PMC12054151 DOI: 10.1128/spectrum.03275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
The human oral microbiome is a diverse ecosystem in which bacterial species have evolved to occupy specific niches within the oral cavity. The Neisseriaceae family, which includes human oral species in the genera Neisseria, Eikenella, Kingella, and Simonsiella, plays a significant role in both commensal and pathogenic relationships. In this study, we investigate the distribution and functional adaptations of Neisseriaceae species across oral habitats, focusing on their site tropisms and ecological roles. We employed a metapangenomic approach in which a curated set of reference genomes representing Neisseriaceae diversity was used for competitive mapping of metagenomic reads. Our analysis revealed distinct habitat preferences among Neisseriaceae species, with Kingella oralis, Neisseria elongata, and Neisseria mucosa primarily found in dental plaque; Neisseria subflava on the tongue dorsum; and Neisseria cinerea in the keratinized gingiva. Functional enrichment analyses identified genes and pathways underpinning habitat-specific adaptations. Plaque specialists showed metabolic versatility, with adaptations in nitrogen metabolism, including nitrate reduction and denitrification, lysine degradation, and galactose metabolism. Tongue dorsum specialists exhibited adaptations including enhanced capabilities for amino acid biosynthesis, short-chain fatty acid and glycerol transport, as well as lipopolysaccharide glycosylation, which may aid in resisting antimicrobial peptides and maintaining membrane integrity. These findings provide insights into the ecological roles and adaptive strategies of Neisseriaceae species within the human oral microbiome and establish a foundation for exploring functional specialization and microbial interactions in these niches.IMPORTANCEUnraveling the distribution and functional adaptations of Neisseriaceae within the human oral microbiome is essential for understanding the roles of these abundant and prevalent commensals in both health and disease. Through a metapangenomic approach, we uncovered distinct habitat preferences of various Neisseriaceae taxa across the oral cavity and identified key genetic traits that may drive their habitat specialization and role in host-microbe interactions. These insights enhance our understanding of the microbial dynamics that shape oral microbial ecology, offering potential pathways for advancing oral health research.
Collapse
Affiliation(s)
| | | | - Floyd E. Dewhirst
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Jessica L. Mark Welch
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Howell A, Chogule S, Djoko KY. Copper homeostasis in Streptococcus and Neisseria: Known knowns and unknown knowns. Adv Microb Physiol 2025; 86:99-140. [PMID: 40404273 DOI: 10.1016/bs.ampbs.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Our research group studies copper (Cu) homeostasis in Streptococcus and Neisseria, with a current focus on species that colonise the human oral cavity. Our early ventures into this field very quickly revealed major differences between well-characterised Cu homeostasis systems in species with well-known pathogenic potential and the uncharacterised systems in species that are considered as components of the normal healthy human microflora. In this article, we summarise the known and predicted mechanisms of Cu homeostasis in Streptococcus and Neisseria. We focus exclusively on proteins that directly sense and change (increase or decrease) cellular Cu availability. Where relevant, we make comparisons with examples from species isolated from outside the human oral cavity and from animal hosts. The emerging picture depicts diverse cellular strategies for handling Cu, even among closely related bacterial species.
Collapse
Affiliation(s)
- Archie Howell
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Safa Chogule
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Karrera Y Djoko
- Department of Biosciences, Durham University, Durham, United Kingdom.
| |
Collapse
|
3
|
Fukuda S, Akatsu T, Fujii A, Kawano S, Minegishi Y, Ota N. Commensal Neisseria Inhibit Porphyromonas Gingivalis Invasion of Gingival Epithelial Cells. ORAL HEALTH & PREVENTIVE DENTISTRY 2024; 22:609-616. [PMID: 39620245 PMCID: PMC12099076 DOI: 10.3290/j.ohpd.b5866430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/11/2024] [Indexed: 05/26/2025]
Abstract
PURPOSE Periodontal disease is caused by periodontal invasion by pathogens such as Porphyromonas gingivalis. Although recent metagenomic analyses have shown that oral commensal bacteria are abundant in the mouth of healthy individuals, few studies have experimentally verified the benefits and functions of oral commensal bacteria in periodontal diseases. In this study, we focused on Neisseria among the oral commensal bacteria and aimed to experimentally verify its effects on P. gingivalis invasion. MATERIALS AND METHODS We evaluated the inhibitory effect of Neisseria spp. on P. gingivalis invasion using a flow cytometry-based invasion assay and analysed bacterial interactions by visualisation using scanning electron microscopy. Furthermore, we constructed a new experimental pre-mixed culture system that reproduced the interaction environment to evaluate the relevance of this interaction in invasion inhibition. RESULTS Flow cytometry-based invasion assays showed that all Neisseria spp. inhibited P. gingivalis invasion, with Neisseria mucosa and Neisseria elongata being particularly effective. Interaction analysis using scanning electron microscopy showed that N. mucosa and N. elongata, which have strong inhibitory effects on P. gingivalis invasion, interacted with P. gingivalis at high frequencies. CONCLUSION Commensal Neisseria was found to exert a beneficial function by directly interacting with P. gingivalis and inhibiting its invasion of gingival epithelial cells. These results suggest that Neisseria, as a probiotic or synbiotic oral commensal, may represent an innovative approach to preventing periodontal disease.
Collapse
Affiliation(s)
- Shota Fukuda
- Shota Fukuda Research Scientist, Biological Science Research, Kao Corporation. Experimental design, performed experiments, analysed the data, wrote the manuscript, and contributed substantially to the discussion
| | - Tomoki Akatsu
- Tomoki Akatsu Research Scientist, Biological Science Research, Kao Corporation. Provided advice on the experimental design, reviewed the manuscript, and contributed substantially to the discussion
| | - Akihiko Fujii
- Akihiko Fujii Research Scientist, Biological Science Research, Kao Corporation. Provided advice on the experimental design, reviewed the manuscript, and contributed substantially to the discussion
| | - Sawako Kawano
- Sawako Kawano Research Scientist, Biological Science Research, Kao Corporation. Performed experiments, reviewed the manuscript, and contributed substantially to the discussion
| | - Yoshihiko Minegishi
- Yoshihiko Minegishi Manager, Biological Science Research, Kao Corporation. Contributed substantially to the discussion, edited the manuscript, and approved the final manuscript
| | | |
Collapse
|
4
|
Boutroux M, Favre-Rochex S, Gorgette O, Touak G, Mühle E, Bouchier C, Chesneau O, Veyrier FJ, Clermont D, Rahi P. Neisseria leonii sp. nov., isolated from the nose, lung, and liver of rabbits. Int J Syst Evol Microbiol 2024; 74:006460. [PMID: 39023135 PMCID: PMC11316581 DOI: 10.1099/ijsem.0.006460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
A taxogenomic study of three strains (3986T, 51.81, and JF 2415) isolated from rabbits between 1972 and 2000 led to the description of a new Neisseria species. The highest sequence similarity of the 16S rRNA gene was found to Neisseria animalis NCTC 10212T (96.7 %). The 16S rRNA gene similarity above 99 % and average nucleotide identity (ANI) values above 96 % among the strains, indicated that they belong to the same species. At the same time, the strains shared ANI values below 81 % and dDDH values below 24 % with all described Neisseria species. In the bac120 gene phylogenetic tree, the three strains clustered near Neisseria elongata and Neisseria bacilliformis in the Neisseria clade. However, the Neisseria clade is not monophyletic, and includes the type strains of Morococcus cerebrosus, Bergeriella denitrificans, Kingella potus, Uruburuella suis, and Uruburuella testudinis. Neisseria shayeganii clustered outside the clade with members of the genus Eikenella. Amino acid identity (AAI) values were calculated, and a threshold of 71 % was used to circumscribe the genus Neisseria. According to this proposed AAI threshold, strains 3986T, 51.81, and JF 2415 were placed within the genus Neisseria. The cells of the three strains were Gram-stain-negative diplococcobacilli and non-motile. Optimal growth on trypticase soy agar occurred at 37 °C and pH 8.5 in aerobic conditions. Notably, all strains exhibited indole production in the API-NH test, which is atypical for Neisseria and the family Neisseriaceae. The strains exhibited a common set of 68 peaks in their MALDI-TOF MS profiles, facilitating the swift and accurate identification of this species. Based on genotypic and phenotypic data, it is proposed that strains 3986T, 51.81, and JF 2415 represent a novel species within the genus Neisseria, for which the name Neisseria leonii sp. nov. is proposed (type strain 3986T=R726T=CIP 109994T=LMG 32907T).
Collapse
Affiliation(s)
- Martin Boutroux
- Institut Pasteur, Université Paris Cité, Center of Biological Resources of Institut Pasteur (CRBIP), 75015 Paris, France
| | - Sandrine Favre-Rochex
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Olivier Gorgette
- Institut Pasteur, Université Paris Cité, Ultrastructural BioImaging Unit, 75015 Paris, France
| | - Gérald Touak
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Estelle Mühle
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Christiane Bouchier
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Olivier Chesneau
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Frédéric J. Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Praveen Rahi
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| |
Collapse
|
5
|
Chattopadhyay S, Malayil L, Chopyk J, Smyth E, Kulkarni P, Raspanti G, Thomas SB, Sapkota A, Mongodin EF, Sapkota AR. Oral microbiome dysbiosis among cigarette smokers and smokeless tobacco users compared to non-users. Sci Rep 2024; 14:10394. [PMID: 38710815 DOI: 10.1038/s41598-024-60730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3-V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance of Firmicutes and a lower relative abundance of Proteobacteria, when compared to non-users. Non-users had a higher relative abundance of Actinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, and Veillonella in buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users including Neisseria subflava, Bulleidia moorei and Porphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users.
Collapse
Affiliation(s)
- Suhana Chattopadhyay
- Department of Global, Environmental, and Occupational Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Leena Malayil
- Department of Global, Environmental, and Occupational Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Jessica Chopyk
- Department of Global, Environmental, and Occupational Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Eoghan Smyth
- Department of Global, Environmental, and Occupational Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Prachi Kulkarni
- Department of Global, Environmental, and Occupational Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Greg Raspanti
- Department of Global, Environmental, and Occupational Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Stephen B Thomas
- Center for Health Equity, School of Public Health, University of Maryland, College Park, MD, USA
| | - Amir Sapkota
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD, USA
| | - Emmanuel F Mongodin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA
| | - Amy R Sapkota
- Department of Global, Environmental, and Occupational Health, School of Public Health, University of Maryland, College Park, MD, USA.
| |
Collapse
|
6
|
Potter AD, Criss AK. Dinner date: Neisseria gonorrhoeae central carbon metabolism and pathogenesis. Emerg Top Life Sci 2024; 8:15-28. [PMID: 37144661 PMCID: PMC10625648 DOI: 10.1042/etls20220111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, is a human-adapted pathogen that does not productively infect other organisms. The ongoing relationship between N. gonorrhoeae and the human host is facilitated by the exchange of nutrient resources that allow for N. gonorrhoeae growth in the human genital tract. What N. gonorrhoeae 'eats' and the pathways used to consume these nutrients have been a topic of investigation over the last 50 years. More recent investigations are uncovering the impact of N. gonorrhoeae metabolism on infection and inflammatory responses, the environmental influences driving N. gonorrhoeae metabolism, and the metabolic adaptations enabling antimicrobial resistance. This mini-review is an introduction to the field of N. gonorrhoeae central carbon metabolism in the context of pathogenesis. It summarizes the foundational work used to characterize N. gonorrhoeae central metabolic pathways and the effects of these pathways on disease outcomes, and highlights some of the most recent advances and themes under current investigation. This review ends with a brief description of the current outlook and technologies under development to increase understanding of how the pathogenic potential of N. gonorrhoeae is enabled by metabolic adaptation.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
7
|
LaSarre B, Morlen R, Neumann GC, Harwood CS, McKinlay JB. Nitrous oxide reduction by two partial denitrifying bacteria requires denitrification intermediates that cannot be respired. Appl Environ Microbiol 2024; 90:e0174123. [PMID: 38078768 PMCID: PMC10807417 DOI: 10.1128/aem.01741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/04/2023] [Indexed: 01/25/2024] Open
Abstract
Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one or some of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here, we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2, and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used both for electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in darkness. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a β-galactosidase reporter, we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2- but not NO3- activated N2O reduction, but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.IMPORTANCEDenitrification is a form of microbial respiration wherein nitrate is converted via several nitrogen oxide intermediates into harmless dinitrogen gas. Partial denitrifying bacteria, which individually have some but not all denitrifying enzymes, can achieve complete denitrification as a community by cross-feeding nitrogen oxide intermediates. However, the last intermediate, nitrous oxide (N2O), is a potent greenhouse gas that often escapes, motivating efforts to understand and improve the efficiency of denitrification. Here, we found that at least some partial denitrifying N2O reducers can sense and respond to nitrogen oxide intermediates that they cannot otherwise use. The regulatory effects of nitrogen oxides on partial denitrifiers are thus an important consideration in understanding and applying denitrifying bacterial communities to combat greenhouse gas emissions.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ryan Morlen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Gina C. Neumann
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Caroline S. Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - James B. McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
8
|
Le Ho H, Tran-Van L, Quyen PTQ, Kim SG, Jiang LM, Chew KW, Khoo KS, Chan SS, Tran TNT, Nguyen TDP. Bioinformatic Approach to Investigate Larvae Gut Microbiota Cellulosimicrobium protaetiae via Whole-Genome Analysis. Mol Biotechnol 2024:10.1007/s12033-023-00984-9. [PMID: 38231315 DOI: 10.1007/s12033-023-00984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The insect larvae Protaetia brevitarsis seulensis have recently been researched as a nutritious food source and concentrated on their environmental impacts. Therefore, their gut microbiota has been studied to elucidate their effects and roles on the environment. Of the abundance of bacterial genus identified based on the 16S rRNA genes from isolates of the gut of insect larva Protaetia brevitarsis seulensis, six of the prominent genus were identified as Bacillus (40.2%), Cellulosimicrobium (33.5%), Microbacterium (2.8%), Streptomyces (3%), Krasilnikoviella (17.5%), and Isoptericola (3%) and their similarity of 16S rRNA blast changed from 99 to 100%. Cellulosimicrobium protaetiae BI34T showed strong denitrification and cellulose degradation activity. The newly complete genome sequence of BI34T and the genomes of five species was published in the genus Cellulosimicrobium with emphasis on the denitrification and secondary metabolite genes. In order to elucidate the relationship between the strain BI34T and the host insect larva, the whole-genome sequence was analyzed and compared with the genomes of five strains in the same genus, Cellulosimicrobium, loaded from GenBank. Our results revealed the composition of the gut microbiota of the insect larvae and analyzed the genomic data for the new strain to predict its characteristics and to understand the nitrogen metabolism pathway.
Collapse
Affiliation(s)
- Han Le Ho
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550 000, Vietnam
| | - Luan Tran-Van
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550 000, Vietnam
| | - Phan Thi Quy Quyen
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang, 550 000, Vietnam
| | - Song-Gun Kim
- Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, 181 Ipsingil, Jeongeup, 56212, Jeonbuk, Korea
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Korea
| | - Ling Min Jiang
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong, Daejeon, 34113, Korea
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Sook Sin Chan
- Institut Sains Biologi, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Thi Ngoc Thu Tran
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang, 550 000, Vietnam
| | - Thi Dong Phuong Nguyen
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang, 550 000, Vietnam.
| |
Collapse
|
9
|
Takahashi H, Morita M, Yasuda M, Ohama Y, Kobori Y, Kojima M, Shimuta K, Akeda Y, Ohnishi M. Detection of Novel US Neisseria meningitidis Urethritis Clade Subtypes in Japan. Emerg Infect Dis 2023; 29:2210-2217. [PMID: 37877502 PMCID: PMC10617353 DOI: 10.3201/eid2911.231082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Neisseria meningitidis causes invasive meningococcal diseases and has also been identified as a causative agent of sexually transmitted infections, including urethritis. Unencapsulated sequence type 11 meningococci containing the gonococcal aniA-norB locus and belonging to the United States N. meningitidis urethritis clade (US_NmUC) are causative agents of urethral infections in the United States, predominantly among men who have sex with men. We identified 2 subtypes of unencapsulated sequence type 11 meningococci in Japan that were phylogenetically close to US_NmUC, designated as the Japan N. meningitidis urethritis clade (J_NmUC). The subtypes were characterized by PCR, serologic testing, and whole-genome sequencing. Our study suggests that an ancestor of US_NmUC and J_NmUS urethritis-associated meningococci is disseminated worldwide. Global monitoring of urethritis-associated N. meningitidis isolates should be performed to further characterize microbiologic and epidemiologic characteristics of urethritis clade meningococci.
Collapse
|
10
|
Rodriguez EI, Tzeng YL, Stephens DS. Continuing genomic evolution of the Neisseria meningitidis cc11.2 urethritis clade, NmUC: a narrative review. Microb Genom 2023; 9:001113. [PMID: 37850987 PMCID: PMC10634446 DOI: 10.1099/mgen.0.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
Neisseria meningitidis (Nm) is a bacterial pathogen responsible for invasive meningococcal disease. Though typically colonizing the nasopharynx, multiple outbreaks of meningococcal urethritis were first reported in 2015-2016; outbreaks originally presumed to be caused by Neisseria gonorrhoeae (Ng). Genomic analysis revealed that the Nm isolates causing these outbreaks were a distinct clade, and had integrated gonococcal DNA at multiple genomic sites, including the gonococcal denitrification apparatus aniA-norB, a partial gonococcal operon of five genes containing ispD, and the acetylglutamate kinase gene argB with the adjacent gonococcal locus NGO0843. The urethritis isolates had also deleted the group C capsule biosynthesis genes cssA/B/C and csc, resulting in loss of capsule. Collectively, these isolates form the N. meningitidis urethritis clade (NmUC). Genomic analysis of recent (2016-2022) NmUC isolates revealed that the genomic features have been maintained in the clade, implying that they are important for NmUC's status as a urogenital pathogen. Furthermore, the analysis revealed the emergence of a sub-clade, designated NmUC-B, phylogenetically separated from the earlier NmUC-A. This sub-clade has integrated additional gonococcal alleles into the genome, including alleles associated with antimicrobial resistance. NmUC continues to adapt to a urethral niche and evolve as a urogenital pathogen.
Collapse
Affiliation(s)
- Emilio I. Rodriguez
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Tzeng YL, Sannigrahi S, Berman Z, Bourne E, Edwards JL, Bazan JA, Turner AN, Moir JWB, Stephens DS. Acquisition of Gonococcal AniA-NorB Pathway by the Neisseria meningitidis Urethritis Clade Confers Denitrifying and Microaerobic Respiration Advantages for Urogenital Adaptation. Infect Immun 2023; 91:e0007923. [PMID: 37092998 PMCID: PMC10187123 DOI: 10.1128/iai.00079-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Neisseria meningitidis historically has been an infrequent and sporadic cause of urethritis and other urogenital infections. However, a nonencapsulated meningococcal clade belonging to the hyperinvasive clonal complex 11.2 lineage has recently emerged and caused clusters of urethritis cases in the United States and other countries. One of the genetic signatures of the emerging N. meningitidis urethritis clade (NmUC) is a chromosomal gene conversion event resulting in the acquisition of the Neisseria gonorrhoeae denitrification apparatus-the N. gonorrhoeae alleles encoding the nitrite reductase AniA, the nitric oxide (NO) reductase NorB, and the intergenic promoter region. The biological importance of the N. gonorrhoeae AniA-NorB for adaptation of the NmUC to a new environmental niche is investigated herein. We found that oxygen consumption, nitrite utilization, and NO production were significantly altered by the conversion event, resulting in different denitrifying aerobic and microaerobic growth of the clade. Further, transcription of aniA and norB in NmUC isolates differed from canonical N. meningitidis, and important polymorphisms within the intergenic region, which influenced aniA promoter activity of the NmUC, were identified. The contributions of three known meningococcal regulators (NsrR, FNR, and NarQP) in controlling the denitrification pathway and endogenous NO metabolism were distinct. Overall, transcription of aniA was dampened relative to canonical N. meningitidis, and this correlated with the lower NO accumulation in the clade. Denitrification and microaerobic respiration were bolstered, and protection against host-derived NO was likely enhanced. The acquisition of the N. gonorrhoeae denitrification pathway by the NmUC supports the clade's adaptation and survival in a microaerobic urogenital environment.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Soma Sannigrahi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zachary Berman
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emily Bourne
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Jennifer L. Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children’s Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Jose A. Bazan
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Sexual Health Clinic, Columbus Public Health, Columbus, Ohio, USA
| | - Abigail Norris Turner
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James W. B. Moir
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
12
|
A New Perspective for Vineyard Terroir Identity: Looking for Microbial Indicator Species by Long Read Nanopore Sequencing. Microorganisms 2023; 11:microorganisms11030672. [PMID: 36985245 PMCID: PMC10054463 DOI: 10.3390/microorganisms11030672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Grapevine is one of the most important fruit crops worldwide, being Portugal one of the top wine producers. It is well established that wine sensory characteristics from a particular region are defined by the physiological responses of the grapevine to its environment and thus, the concept of terroir in viticulture was established. Among all the factors that contribute to terroir definition, soil microorganisms play a major role from nutrient recycling to a drastic influence on plant fitness (growth and protection) and of course wine production. Soil microbiome from four different terroirs in Quinta dos Murças vineyard was analysed through long-read Oxford Nanopore sequencing. We have developed an analytical pipeline that allows the identification of function, ecologies, and indicator species based on long read sequencing data. The Douro vineyard was used as a case study, and we were able to establish microbiome signatures of each terroir.
Collapse
|
13
|
Plant-Pathogenic Ralstonia Phylotypes Evolved Divergent Respiratory Strategies and Behaviors To Thrive in Xylem. mBio 2023; 14:e0318822. [PMID: 36744950 PMCID: PMC9973335 DOI: 10.1128/mbio.03188-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial pathogens in the Ralstonia solanacearum species complex (RSSC) infect the water-transporting xylem vessels of plants, causing bacterial wilt disease. Strains in RSSC phylotypes I and III can reduce nitrate to dinitrogen via complete denitrification. The four-step denitrification pathway enables bacteria to use inorganic nitrogen species as terminal electron acceptors, supporting their growth in oxygen-limited environments such as biofilms or plant xylem. Reduction of nitrate, nitrite, and nitric oxide all contribute to the virulence of a model phylotype I strain. However, little is known about the physiological role of the last denitrification step, the reduction of nitrous oxide to dinitrogen by NosZ. We found that phylotypes I and III need NosZ for full virulence. However, strains in phylotypes II and IV are highly virulent despite lacking NosZ. The ability to respire by reducing nitrate to nitrous oxide does not greatly enhance the growth of phylotype II and IV strains. These partial denitrifying strains reach high cell densities during plant infection and cause typical wilt disease. However, unlike phylotype I and III strains, partial denitrifiers cannot grow well under anaerobic conditions or form thick biofilms in culture or in tomato xylem vessels. Furthermore, aerotaxis assays show that strains from different phylotypes have different oxygen and nitrate preferences. Together, these results indicate that the RSSC contains two subgroups that occupy the same habitat but have evolved divergent energy metabolism strategies to exploit distinct metabolic niches in the xylem. IMPORTANCE Plant-pathogenic Ralstonia spp. are a heterogeneous globally distributed group of bacteria that colonize plant xylem vessels. Ralstonia cells multiply rapidly in plants and obstruct water transport, causing fatal wilting and serious economic losses of many key food security crops. The virulence of these pathogens depends on their ability to grow to high cell densities in the low-oxygen xylem environment. Plant-pathogenic Ralstonia can use denitrifying respiration to generate ATP. The last denitrification step, nitrous oxide reduction by NosZ, contributes to energy production and virulence for only one of the three phytopathogenic Ralstonia species. These complete denitrifiers form thicker biofilms in culture and in tomato xylem, suggesting they are better adapted to hypoxic niches. Strains with partial denitrification physiology form less biofilm and are more often planktonic. They are nonetheless highly virulent. Thus, these closely related bacteria have adapted their core metabolic functions to exploit distinct microniches in the same habitat.
Collapse
|
14
|
Canary in the Coal Mine: How Resistance Surveillance in Commensals Could Help Curb the Spread of AMR in Pathogenic Neisseria. mBio 2022; 13:e0199122. [PMID: 36154280 DOI: 10.1128/mbio.01991-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is widespread within Neisseria gonorrhoeae populations. Recent work has highlighted the importance of commensal Neisseria (cN) as a source of AMR for their pathogenic relatives through horizontal gene transfer (HGT) of AMR alleles, such as mosaic penicillin binding protein 2 (penA), multiple transferable efflux pump (mtr), and DNA gyrase subunit A (gyrA) which impact beta-lactam, azithromycin, and ciprofloxacin susceptibility, respectively. However, nonpathogenic commensal species are rarely characterized. Here, we propose that surveillance of the universally carried commensal Neisseria may play the role of the "canary in the coal mine," and reveal circulating known and novel antimicrobial resistance determinants transferable to pathogenic Neisseria. We summarize the current understanding of commensal Neisseria as an AMR reservoir, and call to increase research on commensal Neisseria species, through expanding established gonococcal surveillance programs to include the collection, isolation, antimicrobial resistance phenotyping, and whole-genome sequencing (WGS) of commensal isolates. This will help combat AMR in the pathogenic Neisseria by: (i) determining the contemporary AMR profile of commensal Neisseria, (ii) correlating AMR phenotypes with known and novel genetic determinants, (iii) qualifying and quantifying horizontal gene transfer (HGT) for AMR determinants, and (iv) expanding commensal Neisseria genomic databases, perhaps leading to the identification of new drug and vaccine targets. The proposed modification to established Neisseria collection protocols could transform our ability to address AMR N. gonorrhoeae, while requiring minor modifications to current surveillance practices. IMPORTANCE Contemporary increases in the prevalence of antimicrobial resistance (AMR) in Neisseria gonorrhoeae populations is a direct threat to global public health and the effective treatment of gonorrhea. Substantial effort and financial support are being spent on identifying resistance mechanisms circulating within the gonococcal population. However, these surveys often overlook a known source of resistance for gonococci-the commensal Neisseria. Commensal Neisseria and pathogenic Neisseria frequently share DNA through horizontal gene transfer, which has played a large role in rendering antibiotic therapies ineffective in pathogenic Neisseria populations. Here, we propose the expansion of established gonococcal surveillance programs to integrate a collection, AMR profiling, and genomic sequencing pipeline for commensal species. This proposed expansion will enhance the field's ability to identify resistance in and from nonpathogenic reservoirs and anticipate AMR trends in pathogenic Neisseria.
Collapse
|
15
|
Matsumura H, Faponle AS, Hagedoorn PL, Tosha T, de Visser SP, Moënne-Loccoz P. Mechanism of substrate inhibition in cytochrome-c dependent NO reductases from denitrifying bacteria (cNORs). J Inorg Biochem 2022; 231:111781. [DOI: 10.1016/j.jinorgbio.2022.111781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
|
16
|
Sunkavalli A, McClure R, Genco C. Molecular Regulatory Mechanisms Drive Emergent Pathogenetic Properties of Neisseria gonorrhoeae. Microorganisms 2022; 10:922. [PMID: 35630366 PMCID: PMC9147433 DOI: 10.3390/microorganisms10050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022] Open
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection (STI) gonorrhea, with an estimated 87 million annual cases worldwide. N. gonorrhoeae predominantly colonizes the male and female genital tract (FGT). In the FGT, N. gonorrhoeae confronts fluctuating levels of nutrients and oxidative and non-oxidative antimicrobial defenses of the immune system, as well as the resident microbiome. One mechanism utilized by N. gonorrhoeae to adapt to this dynamic FGT niche is to modulate gene expression primarily through DNA-binding transcriptional regulators. Here, we describe the major N. gonorrhoeae transcriptional regulators, genes under their control, and how these regulatory processes lead to pathogenic properties of N. gonorrhoeae during natural infection. We also discuss the current knowledge of the structure, function, and diversity of the FGT microbiome and its influence on gonococcal survival and transcriptional responses orchestrated by its DNA-binding regulators. We conclude with recent multi-omics data and modeling tools and their application to FGT microbiome dynamics. Understanding the strategies utilized by N. gonorrhoeae to regulate gene expression and their impact on the emergent characteristics of this pathogen during infection has the potential to identify new effective strategies to both treat and prevent gonorrhea.
Collapse
Affiliation(s)
- Ashwini Sunkavalli
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Ryan McClure
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Caroline Genco
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| |
Collapse
|
17
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
18
|
Neri A, Palmieri A, Prignano G, Giuliani M, Latini A, Fazio C, Vacca P, Ambrosio L, Ciammaruconi A, Fillo S, Anselmo A, Fortunato A, Lista R, Stefanelli P. Molecular characterisation and antibiotic susceptibility of meningococcal isolates from healthy men who have sex with men. Sex Transm Infect 2021; 98:420-426. [PMID: 34789510 PMCID: PMC9411889 DOI: 10.1136/sextrans-2021-055173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/31/2021] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES To evaluate and characterise meningococcal carriage among healthy men who have sex with men (MSM) within a screening programme for Neisseria gonorrhoeae infection at the San Gallicano Dermatological Institute, Italy. METHODS A total of 441 MSM attending the STI/HIV Centre of the San Gallicano Institute, Rome, Italy, in 2016 were routinely screened for N. gonorrhoeae infection by pharyngeal and rectal swabs. N. meningitidis isolates were evaluated for antibiotic susceptibility and characterised by whole genome sequencing. Genetic relationships among the meningococcal carriage isolates were determined using core genome multilocus sequence typing analysis. The soluble domain of AniA (sAniA) protein expression by western blotting was also evaluated. RESULTS A total of 62 (14.1%, 95% CI 11.1 to 17.6) carriage meningococci were found among 441 MSM. Forty-three viable N. meningitidis isolates were cultivated (42 from pharyngeal and 1 from rectal swabs). All the viable isolates were susceptible to cefotaxime, ceftriaxone, ciprofloxacin and rifampicin. Four isolates were penicillin G-resistant and 73% of those penicillin G-susceptible showed a minimum inhibitory concentration from 0.064 μg/mL to 0.25 μg/mL. Serogroup B was the most frequent (44.2%), followed by Z (16.3%), E (9.3%), and Y and W (2.3%), respectively. Multilocus sequence typing analysis identified 29 sequence types belonging to 12 clonal complexes. The sAniA protein was expressed in 8 out of 28 (29%) screened meningococcal carriage isolates. CONCLUSIONS Serogroup B meningococcal carriage identified from oral and anal specimens among healthy MSM was the most frequent serogroup identified in this study. Molecular evaluation revealed a degree of similarity among strains belonging to the same clonal complex.
Collapse
Affiliation(s)
- Arianna Neri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Annapina Palmieri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, IRCC San Gallicano Institute, Rome, Italy
| | - Massimo Giuliani
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Istituto Dermatologico San Gallicano, Roma, Italy
| | - Alessandra Latini
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Istituto Dermatologico San Gallicano, Roma, Italy
| | - Cecilia Fazio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Paola Vacca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Luigina Ambrosio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Andrea Ciammaruconi
- Scientific Department, Army Medical Center, Centro Studi e Ricerche di Sanita' e Veterinaria dell' Esercito, Roma, Italy
| | - Silvia Fillo
- Scientific Department, Army Medical Center, Centro Studi e Ricerche di Sanita' e Veterinaria dell' Esercito, Roma, Italy
| | - Anna Anselmo
- Scientific Department, Army Medical Center, Centro Studi e Ricerche di Sanita' e Veterinaria dell' Esercito, Roma, Italy
| | - Antonella Fortunato
- Scientific Department, Army Medical Center, Centro Studi e Ricerche di Sanita' e Veterinaria dell' Esercito, Roma, Italy
| | - Romano Lista
- Scientific Department, Army Medical Center, Centro Studi e Ricerche di Sanita' e Veterinaria dell' Esercito, Roma, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Neisseria meningitidis (Nm) is primarily associated with asymptomatic nasopharyngeal carriage and invasive meningococcal disease (sepsis and meningitis), but like N. gonorrhoea (Ng), Nm can colonize urogenital and rectal mucosal surfaces and cause disease. First noted in 2015, but with origins in 2011, male urethritis clusters caused by a novel Nm clade were reported in the USA (the US_NmUC). This review describes research developments that characterize this urogenital-tropic Nm. RECENT FINDINGS The US_NmUC evolved from encapsulated Nm serogroup C strains. Loss of capsule expression, lipooligosaccharide (LOS) sialylation, genetic acquisition of gonococcal alleles (including the gonococcal anaerobic growth aniA/norB cassette), antimicrobial peptide heteroresistance and high surface expression of a unique factor-H-binding protein, can contribute to the urethra-tropic phenotype. Loss-of-function mutations in mtrC are overrepresented in clade isolates. Similar to Ng, repeat US_NmUC urethritis episodes can occur. The US_NmUC is now circulating in the UK and Southeast Asia. Genomic sequencing has defined the clade and rapid diagnostic tests are being developed for surveillance. SUMMARY The US_NmUC emerged as a cause of urethritis due to acquisition of gonococcal genetic determinants and phenotypic traits that facilitate urogenital tract infection. The epidemiology and pathogenesis of this urogenital-tropic pathogen continues to be defined.
Collapse
|
20
|
Sinha R, Zhao N, Goedert JJ, Byrd DA, Wan Y, Hua X, Hullings AG, Knight R, Breda SV, Mathijs K, de Kok TM, Ward MH. Effects of processed meat and drinking water nitrate on oral and fecal microbial populations in a controlled feeding study. ENVIRONMENTAL RESEARCH 2021; 197:111084. [PMID: 33785324 PMCID: PMC8388086 DOI: 10.1016/j.envres.2021.111084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND One mechanism that can explain the link between processed meat consumption and colorectal cancer (CRC) is the production of carcinogenic N-nitroso compounds (NOCs) in the gastrointestinal tract. Oral and gut microbes metabolize ingested proteins (a source of secondary and tertiary amines and amides) and can reduce nitrate to nitrite, generating potentially carcinogenic NOCs. OBJECTIVE We evaluated whether nitrate/nitrite in processed meat or water influences the fecal or salivary microbiota. DESIGN In this dietary intervention study, 63 volunteers consumed diets high in conventional processed meats for two weeks, switched to diets high in poultry for two weeks, and then consumed phytochemical-enriched conventional processed or low-nitrite processed meat diets for two weeks. During the intervention, they drank water with low nitrate concentrations and consumed a healthy diet with low antioxidants. Then the volunteers drank nitrate-enriched water for 1 week, in combination with one of the four different diets. We measured creatinine-adjusted urinary nitrate levels and characterized the oral and fecal microbiota using 16S rRNA amplicon sequencing. RESULTS Using linear mixed models, we found that, compared to baseline, urinary nitrate levels were reduced during the phytochemical-enriched low-nitrite meat diet (p-value = 0.009) and modestly during the poultry diet (p-value = 0.048). In contrast, urinary nitrate increased after 1-week of drinking nitrate-enriched water (p-value<10-5). Nitrate-enriched water, but not processed meats with or without phytochemicals, altered the saliva microbial population (p-value ≤0.001), and significantly increased abundance of 8 bacterial taxa, especially genus Neisseria and other nitrate-reducing taxa. Meats, phytochemicals and nitrate-enriched water had no significant effects on saliva alpha diversity or any diversity parameter measured for the fecal microbiota. CONCLUSION These findings support the hypothesis that drinking high nitrate water increases oral nitrate-reducing bacteria, which likely results in increased NOC. However, meat nitrate/nitrite at the levels tested had no effect on either the gut or oral bacteria. CLINICALTRIALS. GOV IDENTIFIER NCT04138654.
Collapse
Affiliation(s)
- Rashmi Sinha
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ni Zhao
- Department of Biostatistics, Bloomberg School of Public Health, The Johns Hopkins University Baltimore, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Doratha A Byrd
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yunhu Wan
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xing Hua
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Autumn G Hullings
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rob Knight
- Departments of Pediatrics, Bioengineering, and Computer Science & Engineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Simone van Breda
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, P.O Box 616, 6200, MD, Maastricht, the Netherlands
| | - Karen Mathijs
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, P.O Box 616, 6200, MD, Maastricht, the Netherlands
| | - Theo M de Kok
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, P.O Box 616, 6200, MD, Maastricht, the Netherlands
| | - Mary H Ward
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Jockel-Schneider Y, Schlagenhauf U, Stölzel P, Goßner S, Carle R, Ehmke B, Prior K, Hagenfeld D. Nitrate-rich diet alters the composition of the oral microbiota in periodontal recall patients. J Periodontol 2021; 92:1536-1545. [PMID: 33742692 DOI: 10.1002/jper.20-0778] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND This follow-up study evaluated microbiome changes in periodontal recall patients after consuming a nitrate-rich diet that led to a marked decrease of gingival inflammation. METHODS Subgingival microbial samples of 37 patients suffering from gingival inflammation with reduced periodontium were taken before professional mechanical plaque removal (baseline) and subsequently after 2 weeks of regularly consuming a lettuce juice beverage (day 14) containing a daily dosage of 200 mg of nitrate (test group, n = 18) or being void of nitrate (placebo group, n = 19). Three hundred base pairs paired-end sequencing of the V3-V4 hypervariable region of the 16S rDNA was performed. RESULTS At baseline, there were no significant differences about the bacterial diversity parameters between the groups (Mann-Whitney U test). After intervention in the test group, Rothia and Neisseria, including species reducing nitrate, increased significantly (negative binomial regression model). Alpha diversity decreased significantly from 115.69 ± 24.30 to 96.42 ± 24.82 aRSVs/sample (P = 0.04, Wilcoxon signed-rank test), accompanied by a significant change in beta diversity (P < 0.001, PERMANOVA). In the control group, however, no genus changed significantly, and alpha-, as well as beta-diversity did not change significantly. CONCLUSIONS The decrease of gingival inflammation in periodontal recall patients induced by a nitrate-rich diet is accompanied by significant compositional changes within the subgingival microbiome.
Collapse
Affiliation(s)
- Yvonne Jockel-Schneider
- Division of Periodontology, University Hospital of Julius-Maximilians-University, Würzburg, Germany
| | - Ulrich Schlagenhauf
- Division of Periodontology, University Hospital of Julius-Maximilians-University, Würzburg, Germany
| | - Peggy Stölzel
- Division of Periodontology, University Hospital of Julius-Maximilians-University, Würzburg, Germany
| | - Sophia Goßner
- Institute of Food Technology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany
| | - Reinhold Carle
- Institute of Food Technology, Chair Plant Foodstuff Technology and Analysis, University of Hohenheim, Stuttgart, Germany.,Faculty of Science, Biological Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Benjamin Ehmke
- Department of Periodontology and Operative Dentistry, University Hospital of Münster, Münster, Germany
| | - Karola Prior
- Department of Periodontology and Operative Dentistry, University Hospital of Münster, Münster, Germany
| | - Daniel Hagenfeld
- Department of Periodontology and Operative Dentistry, University Hospital of Münster, Münster, Germany
| |
Collapse
|
22
|
Barbadoro P, Ponzio E, Coccia E, Prospero E, Santarelli A, Rappelli GGL, D'Errico MM. Association between hypertension, oral microbiome and salivary nitric oxide: A case-control study. Nitric Oxide 2020; 106:66-71. [PMID: 33186726 DOI: 10.1016/j.niox.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nitric oxide (NO) produced in the oral cavity is a powerful resource for the human body, especially when NO-syntethase production is not adequate. The role of oral microbiome in determining blood pressure levels has been linked to the active role of some bacterial species involved in the nitro-reducing process. In the present study we investigated the correlation between selected oral microbiome characteristics, nitric oxide (NO) concentration in saliva and their association with hypertension. METHODS A case-control study including 48 (25 normotensive and 23 hypertensive subjects), subjects between 50 and 70 years old, was carried out at the dental clinic of an Italian teaching hospital. Characteristics of participants have been evaluated by means of a physical examination, and by an assisted interview. A real-time polymerase chain reaction in samples of saliva and plaque was used to detect Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Tannerella forsythia, Porphyromonas gingivalis, Treponema denticola, Streptococcus mutans, Streptococcus sanguinis, Veillonella dispar and Neisseria subflava as well as total bacterial count. Nitric oxide in saliva was evaluated by the ELISA method. RESULTS Normotensive subjects, compared with hypertensive subjects, had significantly higher concentration of NO (165.77 ± 61.7 vs 57.49 ± 19.61 μmol/l; p = 0.023), and higher bacterial concentration of the supragingival plaque (4.73E+07 ± 4.33+07 vs 4.02E+07 ± 4.00+07; p = 0.024). Bacterial species, usually associated to good oral health status, such as Neisseria subflava, were significantly more present in normotensive subjects than in hypertensive ones (9090.88 ± 5481.49 vs 4791.35 ± 4349.37; p < 0.001). considering the concentration of bacteria as a biomarker of the development of hypertension. CONCLUSIONS The results support the association between hypertension, oral microbiome and salivary nitric oxide, in fact do the results allow us to establish any biomarkers (microbial or biochemical, NO) that allow early therapeutic intervention.
Collapse
Affiliation(s)
- Pamela Barbadoro
- Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, Ancona, Italy
| | - Elisa Ponzio
- Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, Ancona, Italy.
| | - Erminia Coccia
- School of Dentistry, Università Politecnica Delle Marche, Ancona, Italy
| | - Emilia Prospero
- Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, Ancona, Italy
| | - Andrea Santarelli
- School of Dentistry, Università Politecnica Delle Marche, Ancona, Italy
| | | | - Marcello M D'Errico
- Department of Biomedical Sciences and Public Health, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
23
|
Abdelhamed H, Nho SW, Karsi A, Lawrence ML. The role of denitrification genes in anaerobic growth and virulence of Flavobacterium columnare. J Appl Microbiol 2020; 130:1062-1074. [PMID: 32955778 DOI: 10.1111/jam.14855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022]
Abstract
AIMS Comparative genomics analyses indicated that the Flavobacterium columnare genome has unique denitrification genes relative to Flavobacterium psychrophilum and Flavobacterium johnsoniae, including nasA (nitrate reductase), nirS (nitrite reductase), norB (nitric oxide reductase) and nosZ (nitrous oxide reductase). The current study determines the roles of nasA, nirS, norB and nosZ in anaerobic growth, nitrate reduction, biofilm formation and virulence. METHODS AND RESULTS Four in-frame deletion mutants in virulent F. columnare strain 94-081 were constructed by allelic exchange using pCP29 plasmid. Compared with parent strain 94-081, FcΔnasA,FcΔnirS and FcΔnosZ mutants did not grow as well anaerobically, whereas the growth of FcΔnorB strain was similar to the parent strain (FcWT). Exogenous nitrate was not significantly consumed under anaerobic conditions in FcΔnasA, FcΔnirS and FcΔnosZ compared to parent strain 94-081. Under anaerobic conditions, Fc∆nasA, Fc∆norB and Fc∆nosZ formed significantly less biofilm than the wild type strain at 24 and 96 h, but FcΔnirS was not significantly affected. The nitrite reductase mutant FcΔnirS was highly attenuated in catfish, whereas FcΔnasA, FcΔnorB and FcΔnosZ had similar virulence to FcWT. CONCLUSIONS These results show, for the first time, that denitrification genes enable F. columnare to grow anaerobically using nitrate as an electron acceptor, and nitrite reductase contributes to F. columnare virulence. SIGNIFICANCE AND IMPACT OF THE STUDY These findings indicate potential for F. columnare to grow in nitrate-rich anaerobic zones in catfish production ponds, and they suggest that a Fc∆nirS strain could be useful as a safe live vaccine if it protects catfish against columnaris disease.
Collapse
Affiliation(s)
- H Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - S W Nho
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - A Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - M L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
24
|
Muenzner P, Hauck CR. Neisseria gonorrhoeae Blocks Epithelial Exfoliation by Nitric-Oxide-Mediated Metabolic Cross Talk to Promote Colonization in Mice. Cell Host Microbe 2020; 27:793-808.e5. [PMID: 32289262 DOI: 10.1016/j.chom.2020.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Several pathogens suppress exfoliation, a key defense of epithelia against microbial colonization. Common among these pathogens, exemplified by Neisseria gonorrhoeae, is their ability to bind carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). Gonococcal CEACAM engagement triggers the expression of CD105, which is necessary to block epithelial exfoliation, whereas homotypic CEACAM-CEACAM interactions or antibody-mediated CEACAM clustering does not lead to CD105 expression. Here, we show that CEACAM-associated bacteria release nitric oxide (NO) during anaerobic respiration, and membrane-permeable NO initiates a eukaryotic signaling pathway involving soluble guanylate cyclase (sGC), protein kinase G, and the transcription factor CREB to upregulate CD105 expression. A murine vaginal infection model with N. gonorrhoeae reveals this metabolic cross communication allows bacterial suppression of epithelial exfoliation to facilitate mucosal colonization. Disrupting NO-initiated responses in host cells re-establishes epithelial exfoliation and inhibits mouse genital tract colonization by N. gonorrhoeae, suggesting a host-directed approach to prevent bacterial infections.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl Für Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Für Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
25
|
Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose. Nitric Oxide 2019; 89:54-63. [DOI: 10.1016/j.niox.2019.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022]
|
26
|
Ambrosio L, Neri A, Fazio C, Rossolini GM, Vacca P, Riccobono E, Voller F, Miglietta A, Stefanelli P. Genomic analysis of Neisseria meningitidis carriage isolates during an outbreak of serogroup C clonal complex 11, Tuscany, Italy. PLoS One 2019; 14:e0217500. [PMID: 31136624 PMCID: PMC6538176 DOI: 10.1371/journal.pone.0217500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/13/2019] [Indexed: 11/19/2022] Open
Abstract
Background In 2015–2016, a cross-sectional carriage survey was performed in Tuscany Region, Italy, during an outbreak of invasive meningococcal disease due to Neisseria meningitidis serogroup C clonal complex 11 (MenC:cc11). This study aims to evaluate the genomic profile of meningococcal carriage isolates collected during the survey. Methods Whole-genome sequencing (WGS) was performed using Illumina MiSeq on 85 cultivated meningococcal carriage isolates received at the Dept. of Infectious Disease, National Institute of Health (Istituto Superiore di Sanità, ISS), as National Reference Laboratory (NRL) for Invasive Meningococcal Disease (IMD). De novo assembled genomes were scanned by the BIGSdb platform to assign: the genotypic profiles, the cgMLST, the vaccine antigen variants and allele types of antimicrobial resistance associated genes, together with denitrification pathway loci. Results Capsule null and non-groupable meningococci accounted for 52.9% and 10.6%, respectively. Among the remaining carriage isolates, serogroup B was the predominant (71.0%). Serogroup C meningococci were culture negative and unavailable for WGS. Overall, 64 genotypic profiles were identified and, based on cgMLST, isolates clustered according to clonal complexes. Eight isolates (9.4%) harbored at least one gene encoding a 4CMenB vaccine antigen. Mutated penA alleles were found in more than 82%. Finally, complete aniA and norB coding sequences were detected among 71.8% of carriage isolates. Conclusions Meningococcal carriage isolates collected during the MenC:cc11 outbreak were characterized by an extensive genetic diversity. The lack of outbreak-related isolates among carriage might be attributable to the high transmissibility with low duration of colonization of MenC:cc11 meningococci.
Collapse
Affiliation(s)
- Luigina Ambrosio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Arianna Neri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Fazio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Paola Vacca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Riccobono
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fabio Voller
- Regional Health Agency of Tuscany, Epidemiologic Observatory, Florence, Italy
| | - Alessandro Miglietta
- Regional Health Agency of Tuscany, Epidemiologic Observatory, Florence, Italy
- Units of Epidemiology and Preventive Medicine, Central Tuscany Health Authority, Florence, Italy
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
27
|
Sigurlásdóttir S, Wassing GM, Zuo F, Arts M, Jonsson AB. Deletion of D-Lactate Dehydrogenase A in Neisseria meningitidis Promotes Biofilm Formation Through Increased Autolysis and Extracellular DNA Release. Front Microbiol 2019; 10:422. [PMID: 30891026 PMCID: PMC6411758 DOI: 10.3389/fmicb.2019.00422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterium that asymptomatically colonizes the human nasopharyngeal mucosa. Pilus-mediated initial adherence of N. meningitidis to the epithelial mucosa is followed by the formation of three-dimensional aggregates, called microcolonies. Dispersal from microcolonies contributes to the transmission of N. meningitidis across the epithelial mucosa. We have recently discovered that environmental concentrations of host cell-derived lactate influences N. meningitidis microcolony dispersal. Here, we examined the ability of N. meningitidis mutants deficient in lactate metabolism to form biofilms. A lactate dehydrogenease A (ldhA) mutant had an increased level of biofilm formation. Deletion of ldhA increased the N. meningitidis cell surface hydrophobicity and aggregation. In this study, we used FAM20, which belongs to clonal complex ST-11 that forms biofilms independently of extracellular DNA (eDNA). However, treatment with DNase I abolished the increased biofilm formation and aggregation of the ldhA-deficient mutant, suggesting a critical role for eDNA. Compared to wild-type, the ldhA-deficient mutant exhibited an increased autolytic rate, with significant increases in the eDNA concentrations in the culture supernatants and in biofilms. Within the ldhA mutant biofilm, the transcription levels of the capsule, pilus, and bacterial lysis genes were downregulated, while norB, which is associated with anaerobic respiration, was upregulated. These findings suggest that the absence of ldhA in N. meningitidis promotes biofilm formation and aggregation through autolysis-mediated DNA release.
Collapse
Affiliation(s)
- Sara Sigurlásdóttir
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Gabriela M Wassing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fanglei Zuo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melanie Arts
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
28
|
Tribble GD, Angelov N, Weltman R, Wang BY, Eswaran SV, Gay IC, Parthasarathy K, Dao DHV, Richardson KN, Ismail NM, Sharina IG, Hyde ER, Ajami NJ, Petrosino JF, Bryan NS. Frequency of Tongue Cleaning Impacts the Human Tongue Microbiome Composition and Enterosalivary Circulation of Nitrate. Front Cell Infect Microbiol 2019; 9:39. [PMID: 30881924 PMCID: PMC6406172 DOI: 10.3389/fcimb.2019.00039] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/07/2019] [Indexed: 01/25/2023] Open
Abstract
The oral microbiome has the potential to provide an important symbiotic function in human blood pressure physiology by contributing to the generation of nitric oxide (NO), an essential cardiovascular signaling molecule. NO is produced by the human body via conversion of arginine to NO by endogenous nitric oxide synthase (eNOS) but eNOS activity varies by subject. Oral microbial communities are proposed to supplement host NO production by reducing dietary nitrate to nitrite via bacterial nitrate reductases. Unreduced dietary nitrate is delivered to the oral cavity in saliva, a physiological process termed the enterosalivary circulation of nitrate. Previous studies demonstrated that disruption of enterosalivary circulation via use of oral antiseptics resulted in increases in systolic blood pressure. These previous studies did not include detailed information on the oral health of enrolled subjects. Using 16S rRNA gene sequencing and analysis, we determined whether introduction of chlorhexidine antiseptic mouthwash for 1 week was associated with changes in tongue bacterial communities and resting systolic blood pressure in healthy normotensive individuals with documented oral hygiene behaviors and free of oral disease. Tongue cleaning frequency was a predictor of chlorhexidine-induced changes in systolic blood pressure and tongue microbiome composition. Twice-daily chlorhexidine usage was associated with a significant increase in systolic blood pressure after 1 week of use and recovery from use resulted in an enrichment in nitrate-reducing bacteria on the tongue. Individuals with relatively high levels of bacterial nitrite reductases had lower resting systolic blood pressure. These results further support the concept of a symbiotic oral microbiome contributing to human health via the enterosalivary nitrate-nitrite-NO pathway. These data suggest that management of the tongue microbiome by regular cleaning together with adequate dietary intake of nitrate provide an opportunity for the improvement of resting systolic blood pressure.
Collapse
Affiliation(s)
- Gena D. Tribble
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Robin Weltman
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Bing-Yan Wang
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Sridhar V. Eswaran
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Isabel C. Gay
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Kavitha Parthasarathy
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Doan-Hieu V. Dao
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Katherine N. Richardson
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Nadia M. Ismail
- Department of Periodontics, School of Dentistry, The University of Texas Health Science Center Houston, Houston, TX, United States
| | - Iraida G. Sharina
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center Houston, Houston, TX, United States
| | | | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of MedicineHouston, TX, United States
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of MedicineHouston, TX, United States
| | - Nathan S. Bryan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
29
|
Stewart LJ, Thaqi D, Kobe B, McEwan AG, Waldron KJ, Djoko KY. Handling of nutrient copper in the bacterial envelope. Metallomics 2019; 11:50-63. [DOI: 10.1039/c8mt00218e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The insertion of copper into bacterial cuproenzymesin vivodoes not always require a copper-binding metallochaperone – why?
Collapse
Affiliation(s)
- Louisa J. Stewart
- Institute for Cell and Molecular Biosciences
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Denis Thaqi
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre
- The University of Queensland
- St Lucia
- Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre
- The University of Queensland
- St Lucia
- Australia
- Institute for Molecular Bioscience
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre
- The University of Queensland
- St Lucia
- Australia
| | - Kevin J. Waldron
- Institute for Cell and Molecular Biosciences
- Newcastle University
- Newcastle upon Tyne
- UK
| | | |
Collapse
|
30
|
Exploration of deep terrestrial subsurface microbiome in Late Cretaceous Deccan traps and underlying Archean basement, India. Sci Rep 2018; 8:17459. [PMID: 30498254 PMCID: PMC6265293 DOI: 10.1038/s41598-018-35940-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/05/2018] [Indexed: 11/08/2022] Open
Abstract
Scientific deep drilling at Koyna, western India provides a unique opportunity to explore microbial life within deep biosphere hosted by ~65 Myr old Deccan basalt and Archaean granitic basement. Characteristic low organic carbon content, mafic/felsic nature but distinct trend in sulfate and nitrate concentrations demarcates the basaltic and granitic zones as distinct ecological habitats. Quantitative PCR indicates a depth independent distribution of microorganisms predominated by bacteria. Abundance of dsrB and mcrA genes are relatively higher (at least one order of magnitude) in basalt compared to granite. Bacterial communities are dominated by Alpha-, Beta-, Gammaproteobacteria, Actinobacteria and Firmicutes, whereas Euryarchaeota is the major archaeal group. Strong correlation among the abundance of autotrophic and heterotrophic taxa is noted. Bacteria known for nitrite, sulfur and hydrogen oxidation represent the autotrophs. Fermentative, nitrate/sulfate reducing and methane metabolising microorganisms represent the heterotrophs. Lack of shared operational taxonomic units and distinct clustering of major taxa indicate possible community isolation. Shotgun metagenomics corroborate that chemolithoautotrophic assimilation of carbon coupled with fermentation and anaerobic respiration drive this deep biosphere. This first report on the geomicrobiology of the subsurface of Deccan traps provides an unprecedented opportunity to understand microbial composition and function in the terrestrial, igneous rock-hosted, deep biosphere.
Collapse
|
31
|
Durica-Mitic S, Göpel Y, Görke B. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0013-2017. [PMID: 29573258 PMCID: PMC11633585 DOI: 10.1128/microbiolspec.rwr-0013-2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
Survival of bacteria in ever-changing habitats with fluctuating nutrient supplies requires rapid adaptation of their metabolic capabilities. To this end, carbohydrate metabolism is governed by complex regulatory networks including posttranscriptional mechanisms that involve small regulatory RNAs (sRNAs) and RNA-binding proteins. sRNAs limit the response to substrate availability and set the threshold or time required for induction and repression of carbohydrate utilization systems. Carbon catabolite repression (CCR) also involves sRNAs. In Enterobacteriaceae, sRNA Spot 42 cooperates with the transcriptional regulator cyclic AMP (cAMP)-receptor protein (CRP) to repress secondary carbohydrate utilization genes when a preferred sugar is consumed. In pseudomonads, CCR operates entirely at the posttranscriptional level, involving RNA-binding protein Hfq and decoy sRNA CrcZ. Moreover, sRNAs coordinate fluxes through central carbohydrate metabolic pathways with carbohydrate availability. In Gram-negative bacteria, the interplay between RNA-binding protein CsrA and its cognate sRNAs regulates glycolysis and gluconeogenesis in response to signals derived from metabolism. Spot 42 and cAMP-CRP jointly downregulate tricarboxylic acid cycle activity when glycolytic carbon sources are ample. In addition, bacteria use sRNAs to reprogram carbohydrate metabolism in response to anaerobiosis and iron limitation. Finally, sRNAs also provide homeostasis of essential anabolic pathways, as exemplified by the hexosamine pathway providing cell envelope precursors. In this review, we discuss the manifold roles of bacterial sRNAs in regulation of carbon source uptake and utilization, substrate prioritization, and metabolism.
Collapse
Affiliation(s)
- Svetlana Durica-Mitic
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
32
|
Genomics and Ecology of Novel N 2O-Reducing Microorganisms. Trends Microbiol 2017; 26:43-55. [PMID: 28803698 DOI: 10.1016/j.tim.2017.07.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 11/22/2022]
Abstract
Microorganisms with the capacity to reduce the greenhouse gas nitrous oxide (N2O) to harmless dinitrogen gas are receiving increased attention due to increasing N2O emissions (and our need to mitigate climate change) and to recent discoveries of novel N2O-reducing bacteria and archaea. The diversity of denitrifying and nondenitrifying microorganisms with capacity for N2O reduction was recently shown to be greater than previously expected. A formerly overlooked group (clade II) in the environment include a large fraction of nondenitrifying N2O reducers, which could be N2O sinks without major contribution to N2O formation. We review the recent advances about fundamental understanding of the genomics, physiology, and ecology of N2O reducers and the importance of these findings for curbing N2O emissions.
Collapse
|
33
|
Peptide Inhibitors Targeting the Neisseria gonorrhoeae Pivotal Anaerobic Respiration Factor AniA. Antimicrob Agents Chemother 2017; 61:AAC.00186-17. [PMID: 28584144 DOI: 10.1128/aac.00186-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/27/2017] [Indexed: 12/24/2022] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, which is highly prevalent worldwide and has a major impact on reproductive and neonatal health. The superbug status of N. gonorrhoeae necessitates the development of drugs with different mechanisms of action. Here, we focused on targeting the nitrite reductase AniA, which is a pivotal component of N. gonorrhoeae anaerobic respiration and biofilm formation. Our studies showed that gonococci expressing AniA containing the altered catalytic residues D137A and H280A failed to grow under anaerobic conditions, demonstrating that the nitrite reductase function is essential. To facilitate the pharmacological targeting of AniA, new crystal structures of AniA were refined to 1.90-Å and 2.35-Å resolutions, and a phage display approach with libraries expressing randomized linear dodecameric peptides or heptameric peptides flanked by a pair of cysteine residues was utilized. Biopanning experiments led to the identification of 29 unique peptides, with 1 of them, C7-3, being identified multiple times. Evaluation of their ability to interact with AniA using enzyme-linked immunosorbent assay and computational docking studies revealed that C7-3 was the most promising inhibitor, binding near the type 2 copper site of the enzyme, which is responsible for interaction with nitrite. Subsequent enzymatic assays and biolayer interferometry with a synthetic C7-3 and its derivatives, C7-3m1 and C7-3m2, demonstrated potent inhibition of AniA. Finally, the MIC50 value of C7-3 and C7-3m2 against anaerobically grown N. gonorrhoeae was 0.6 mM. We present the first peptide inhibitors of AniA, an enzyme that should be further exploited for antigonococcal drug development.
Collapse
|
34
|
Tanwer P, Bauer S, Heinrichs E, Panda G, Saluja D, Rudel T, Beier D. Post-transcriptional regulation of target genes by the sRNA FnrS in Neisseria gonorrhoeae. MICROBIOLOGY-SGM 2017; 163:1081-1092. [PMID: 28691898 DOI: 10.1099/mic.0.000484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small non-coding RNAs (sRNAs) are well-established post-transcriptional regulators of gene expression in bacteria that respond to a variety of environmental stimuli. They usually act by base-pairing with their target mRNAs, which is commonly facilitated by the RNA chaperone Hfq. In this study we initiated the analysis of the sRNA FnrS of Neisseria gonorrhoeae, which is induced under anaerobic conditions. We identified four putative FnrS target genes using bioinformatics approaches and validated these target genes using translational reporter gene fusions in both Escherichia coli and N. gonorrhoeae, thereby demonstrating their downregulation by direct base-pairing between the respective mRNA and FnrS. We demonstrate deregulation of target mRNAs upon deletion of fnrS and provide evidence that the isc gene cluster required for iron-sulfur cluster biosynthesis, which harbours iscS, which is a direct target of FnrS, is coordinately downregulated by the sRNA. By mutational analysis we show that, surprisingly, three distinct regions of FnrS are employed for interaction with different target genes.
Collapse
Affiliation(s)
- Pooja Tanwer
- Chair of Microbiology, University of Würzburg, Biocenter, Germany.,Dr B R Ambedkar Center for Biomedical Research, University of Delhi, India
| | - Susanne Bauer
- Chair of Microbiology, University of Würzburg, Biocenter, Germany
| | | | - Gurudutta Panda
- Institute of Network Biology (INET), Helmholtz Zentrum München, Germany
| | - Daman Saluja
- Dr B R Ambedkar Center for Biomedical Research, University of Delhi, India
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg, Biocenter, Germany
| | - Dagmar Beier
- Chair of Microbiology, University of Würzburg, Biocenter, Germany
| |
Collapse
|
35
|
Emergence of a new Neisseria meningitidis clonal complex 11 lineage 11.2 clade as an effective urogenital pathogen. Proc Natl Acad Sci U S A 2017; 114:4237-4242. [PMID: 28373547 DOI: 10.1073/pnas.1620971114] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis (Nm) clonal complex 11 (cc11) lineage is a hypervirulent pathogen responsible for outbreaks of invasive meningococcal disease, including among men who have sex with men, and is increasingly associated with urogenital infections. Recently, clusters of Nm urethritis have emerged primarily among heterosexual males in the United States. We determined that nonencapsulated meningococcal isolates from an ongoing Nm urethritis outbreak among epidemiologically unrelated men in Columbus, Ohio, are linked to increased Nm urethritis cases in multiple US cities, including Atlanta and Indianapolis, and that they form a unique clade (the US Nm urethritis clade, US_NmUC). The isolates belonged to the cc11 lineage 11.2/ET-15 with fine type of PorA P1.5-1, 10-8; FetA F3-6; PorB 2-2 and express a unique FHbp allele. A common molecular fingerprint of US_NmUC isolates was an IS1301 element in the intergenic region separating the capsule ctr-css operons and adjacent deletion of cssA/B/C and a part of csc, encoding the serogroup C capsule polymerase. This resulted in the loss of encapsulation and intrinsic lipooligosaccharide sialylation that may promote adherence to mucosal surfaces. Furthermore, we detected an IS1301-mediated inversion of an ∼20-kb sequence near the cps locus. Surprisingly, these isolates had acquired by gene conversion the complete gonococcal denitrification norB-aniA gene cassette, and strains grow well anaerobically. The cc11 US_NmUC isolates causing urethritis clusters in the United States may have adapted to a urogenital environment by loss of capsule and gene conversion of the Neisseria gonorrheae norB-aniA cassette promoting anaerobic growth.
Collapse
|
36
|
Exploration of Nitrate Reductase Metabolic Pathway in Corynebacterium pseudotuberculosis. Int J Genomics 2017; 2017:9481756. [PMID: 28316974 PMCID: PMC5338063 DOI: 10.1155/2017/9481756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/02/2016] [Accepted: 10/23/2016] [Indexed: 11/18/2022] Open
Abstract
Based on the ability of nitrate reductase synthesis, Corynebacterium pseudotuberculosis is classified into two biovars: Ovis and Equi. Due to the presence of nitrate reductase, the Equi biovar can survive in absence of oxygen. On the other hand, Ovis biovar that does not have nitrate reductase is able to adapt to various ecological niches and can grow on certain carbon sources. Apart from these two biovars, some other strains are also able to carry out the reduction of nitrate. The enzymes that are involved in electron transport chain are also identified by in silico methods. Findings about pathogen metabolism can contribute to the identification of relationship between nitrate reductase and the C. pseudotuberculosis pathogenicity, virulence factors, and discovery of drug targets.
Collapse
|
37
|
Hellenbrand W, Claus H, Schink S, Marcus U, Wichmann O, Vogel U. Risk of Invasive Meningococcal Disease in Men Who Have Sex with Men: Lessons Learned from an Outbreak in Germany, 2012-2013. PLoS One 2016; 11:e0160126. [PMID: 27486669 PMCID: PMC4972413 DOI: 10.1371/journal.pone.0160126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/13/2016] [Indexed: 11/18/2022] Open
Abstract
Background We undertook investigations in response to an invasive meningococcal disease (IMD) outbreak in men who have sex with men (MSM) in Berlin 2012–2013 to better understand meningococcal transmission and IMD risk in MSM. Methods We retrospectively searched for further IMD cases in MSM in Germany through local health departments and undertook exploratory interviews. We performed antigen sequence typing, characterized fHbp and aniA genes of strains with the outbreak finetype and reviewed epidemiologically or spatiotemporally linked cases from 2002–2014. Results Among the 148 IMD-cases notified from 01.01.2012–30.09.2013 in 18–59 year-old men we identified 13 MSM in 6 federal states: 11 serogroup C (MenC, all finetype C:P1.5–1,10–8:F3-6), 2 MenB. Interviews with 7 MSM revealed frequent meeting of multiple partners online or via mobile apps and illicit drug use as potential risk factors. MenC incidence was 13-fold higher in MSM than non-MSM. MenC isolates from 9/11 MSM had a novel fHbp allele 766. All C:P1.5–1,10–8:F3-6 strains from MSM versus 16/23 from non-MSM had intact aniA genes (p = 0.04). Although definitive evidence for transmission among MSM in epidemiological or spatiotemporal clusters in 2002–2014 was lacking, clusters were more frequent in men aged 20–49 years. Molecular analysis of C:P1.5–1,10–8:F3-6 strains revealed cases with intact aniA since 2007, mainly associated with fHbp361, fHbp766 and fHbp813, all involving one or more MSM. Conclusions MenC incidence was elevated in MSM during the study period. Multiple casual sexual contacts and illicit drug use were common in affected MSM. In all strains from MSM we detected an intact aniA gene coding for a nitrite reductase, which permits survival in microanaerobic environments and could play a role in meningococcal transmission in MSM through urogenital colonization. Furthermore, meningococcal transmission among MSM may be sustained over large areas and thus require modified spatiotemporal scanning algorithms for timely detection and control.
Collapse
Affiliation(s)
- Wiebke Hellenbrand
- Immunization Unit, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany
- * E-mail:
| | - Heike Claus
- Institute for Hygiene and Microbiology, Reference laboratory for Meningococci and Haemophilus influenzae, University of Würzburg, Würzburg, Germany
| | - Susanne Schink
- Unit for HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany
- Postgraduate Training for Applied Epidemiology, Robert Koch Institute, Berlin, Germany, affiliated with the European Programme for Intervention Epidemiology Training, European Centres of Disease Control (ECDC), Stockholm, Sweden
| | - Ulrich Marcus
- Unit for HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Ole Wichmann
- Immunization Unit, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, Reference laboratory for Meningococci and Haemophilus influenzae, University of Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
Koopman JE, Buijs MJ, Brandt BW, Keijser BJF, Crielaard W, Zaura E. Nitrate and the Origin of Saliva Influence Composition and Short Chain Fatty Acid Production of Oral Microcosms. MICROBIAL ECOLOGY 2016; 72:479-92. [PMID: 27155967 PMCID: PMC4937104 DOI: 10.1007/s00248-016-0775-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Nitrate is emerging as a possible health benefactor. Especially the microbial conversion of nitrate to nitrite in the oral cavity and the subsequent conversion to nitric oxide in the stomach are of interest in this regard. Yet, how nitrate influences the composition and biochemistry of the oral ecosystem is not fully understood. To investigate the effect of nitrate on oral ecology, we performed a 4-week experiment using the multiplaque artificial mouth (MAM) biofilm model. This model was inoculated with stimulated saliva of two healthy donors. Half of the microcosms (n = 4) received a constant supply of nitrate, while the other half functioned as control (n = 4). Additionally, all microcosms received a nitrate and sucrose pulse, each week, on separate days to measure nitrate reduction and acid formation. The bacterial composition of the microcosms was determined by 16S rDNA sequencing. The origin of the saliva (i.e., donor) showed to be the strongest determinant for the development of the microcosms. The supplementation of nitrate was related to a relatively high abundance of Neisseria in the microcosms of both donors, while Veillonella was highly abundant in the nitrate-supplemented microcosms of only one of the donors. The lactate concentration after sucrose addition was similarly high in all microcosms, irrespective of treatment or donor, while the concentration of butyrate was lower after nitrate addition in the nitrate-receiving microcosms. In conclusion, nitrate influences the composition and biochemistry of oral microcosms, although the result is strongly dependent on the inoculum.
Collapse
Affiliation(s)
- Jessica E Koopman
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Bart J F Keijser
- Research Group Microbiology and Systems Biology, TNO Earth, Life and Social Sciences, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Abstract
The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal.
Collapse
|
40
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
41
|
Nóbrega CS, Saraiva IH, Carreira C, Devreese B, Matzapetakis M, Pauleta SR. The solution structure of the soluble form of the lipid-modified azurin from Neisseria gonorrhoeae , the electron donor of cytochrome c peroxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:169-176. [DOI: 10.1016/j.bbabio.2015.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/25/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022]
|
42
|
Velmurugan S, Gan JM, Rathod KS, Khambata RS, Ghosh SM, Hartley A, Van Eijl S, Sagi-Kiss V, Chowdhury TA, Curtis M, Kuhnle GGC, Wade WG, Ahluwalia A. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 2016; 103:25-38. [PMID: 26607938 PMCID: PMC4691670 DOI: 10.3945/ajcn.115.116244] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/14/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The beneficial cardiovascular effects of vegetables may be underpinned by their high inorganic nitrate content. OBJECTIVE We sought to examine the effects of a 6-wk once-daily intake of dietary nitrate (nitrate-rich beetroot juice) compared with placebo intake (nitrate-depleted beetroot juice) on vascular and platelet function in untreated hypercholesterolemics. DESIGN A total of 69 subjects were recruited in this randomized, double-blind, placebo-controlled parallel study. The primary endpoint was the change in vascular function determined with the use of ultrasound flow-mediated dilatation (FMD). RESULTS Baseline characteristics were similar between the groups, with primary outcome data available for 67 patients. Dietary nitrate resulted in an absolute increase in the FMD response of 1.1% (an ∼24% improvement from baseline) with a worsening of 0.3% in the placebo group (P < 0.001). A small improvement in the aortic pulse wave velocity (i.e., a decrease of 0.22 m/s; 95% CI: -0.4, -0.3 m/s) was evident in the nitrate group, showing a trend (P = 0.06) to improvement in comparison with the placebo group. Dietary nitrate also caused a small but significant reduction (7.6%) in platelet-monocyte aggregates compared with an increase of 10.1% in the placebo group (P = 0.004), with statistically significant reductions in stimulated (ex vivo) P-selectin expression compared with the placebo group (P < 0.05) but no significant changes in unstimulated expression. No adverse effects of dietary nitrate were detected. The composition of the salivary microbiome was altered after the nitrate treatment but not after the placebo treatment (P < 0.01). The proportions of 78 bacterial taxa were different after the nitrate treatment; of those taxa present, 2 taxa were responsible for >1% of this change, with the proportions of Rothia mucilaginosa trending to increase and Neisseria flavescens (P < 0.01) increased after nitrate treatment relative to after placebo treatment. CONCLUSIONS Sustained dietary nitrate ingestion improves vascular function in hypercholesterolemic patients. These changes are associated with alterations in the oral microbiome and, in particular, nitrate-reducing genera. Our findings provide additional support for the assessment of the potential of dietary nitrate as a preventative strategy against atherogenesis in larger cohorts. This trial was registered at clinicaltrials.gov as NCT01493752.
Collapse
Affiliation(s)
- Shanti Velmurugan
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Jasmine Ming Gan
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Krishnaraj S Rathod
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Rayomand S Khambata
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Suborno M Ghosh
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Amy Hartley
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Sven Van Eijl
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit
| | - Virag Sagi-Kiss
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom; and
| | - Tahseen A Chowdhury
- Barts National Health Service Trust, Department of Diabetes and Metabolic Medicine, The Royal London Hospital, London, United Kingdom
| | | | - Gunter G C Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom; and
| | - William G Wade
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Amrita Ahluwalia
- William Harvey Research Institute, National Institute for Health Research Cardiovascular Biomedical Research Unit,
| |
Collapse
|
43
|
First Draft Genome Sequence of the Acidovorax caeni sp. nov. Type Strain R-24608 (DSM 19327). GENOME ANNOUNCEMENTS 2015; 3:3/6/e01378-15. [PMID: 26586902 PMCID: PMC4653804 DOI: 10.1128/genomea.01378-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of the Acidovorax caeni type strain R-24608 that was isolated from activated sludge of an aerobic-anaerobic wastewater treatment plant. The closest strain to Acidovorax caeni strain R-24608 is Acidovorax sp. strain MR-S7 with a 55.4% (amino-acid sequence) open reading frames (ORFs) average similarity.
Collapse
|
44
|
Mocca B, Yin D, Gao Y, Wang W. Moraxella catarrhalis-produced nitric oxide has dual roles in pathogenicity and clearance of infection in bacterial-host cell co-cultures. Nitric Oxide 2015; 51:52-62. [PMID: 26537639 DOI: 10.1016/j.niox.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/30/2015] [Accepted: 10/26/2015] [Indexed: 11/26/2022]
Abstract
In humans, the free radical nitric oxide (NO) is a concentration-dependent multifunctional signaling or toxic molecule that modulates various physiological and pathological processes, and innate immunity against bacterial infections. Because the expression of bacterial genes encoding nitrite reductase (AniA) and NO reductase (NorB) is highly upregulated in biofilms in vitro, it is important to investigate whether bacterial NO-metabolism might subvert host NO signaling and play pathogenic roles during infection. The Moraxella catarrhalis AniA and NorB directly function in production and reduction of NO. Using M. catarrhalis-human bronchial epithelial cell (HBEC) co-cultures, we recently reported AniA/nitrite-dependent cytotoxic effects on HBECs, including altered protein profiles of HBECs and induced HBEC apoptosis, suggesting bacterial nitrite reduction likely dysregulates host cell gene expression. To further clarify whether nitrite reduction-derived NO or nitrite-dependent stimulation of bacterial growth was responsible for adverse effects on HBECs, we monitored bacterial nitrite reduction, levels of NO in co-cultures and resulted dynamic effects on HBEC proliferation and bacterial viability. This study demonstrated that M. catarrhalis nitrite reduction-derived NO was responsible for observed adverse effects on HBECs at mid-to-late stages of infection. More importantly, our data showed that while nitrite promoted bacterial growth and biofilm formation at early hours of infection, nitrite reduction-derived NO was toxic towards M. catarrhalis in maturing biofilms, suggesting nitrite reduction-derived NO might be a possible dualistic mechanism by which M. catarrhalis promotes diseases and spontaneous resolutions.
Collapse
Affiliation(s)
- Brian Mocca
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Dandan Yin
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Yamei Gao
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Wei Wang
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA.
| |
Collapse
|
45
|
Jen FEC, Djoko KY, Bent SJ, Day CJ, McEwan AG, Jennings MP. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenicNeisseria. FASEB J 2015; 29:3828-38. [DOI: 10.1096/fj.15-270751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/18/2015] [Indexed: 01/21/2023]
|
46
|
Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D. How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines. J Immunol Res 2015; 2015:189153. [PMID: 26351643 PMCID: PMC4553322 DOI: 10.1155/2015/189153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed. Capsular polysaccharide and lipooligosaccharide glycan composition, in particular, play a major role in circumventing immune response. The understanding of these mechanisms has opened new horizons in the field of vaccinology. Nowadays different licensed meningococcal vaccines are available and used: conjugate meningococcal C vaccines, tetravalent conjugate vaccines, an affordable conjugate vaccine against the N. menigitidis serogroup A, and universal vaccines based on multiple antigens each one with a different and peculiar function against meningococcal group B strains.
Collapse
Affiliation(s)
- R. Gasparini
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Panatto
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - N. L. Bragazzi
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - P. L. Lai
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - A. Bechini
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - M. Levi
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - P. Durando
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Amicizia
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
47
|
Abstract
The exclusive reservoir of the genus Neisseria is the human. Of the broad range of species that comprise the Neisseria, only two are frequently pathogenic, and only one of those is a resident of the nasopharynx. Although Neisseria meningitidis can cause severe disease if it invades the bloodstream, the vast majority of interactions between humans and Neisseria are benign, with the bacteria inhabiting its mucosal niche as a non-invasive commensal. Understandably, with the exception of Neisseria gonorrhoeae, which preferentially colonises the urogenital tract, the neisseriae are extremely well adapted to survival in the human nasopharynx, their sole biological niche. The purpose of this review is to provide an overview of the molecular mechanisms evolved by Neisseria to facilitate colonisation and survival within the nasopharynx, focussing on N. meningitidis. The organism has adapted to survive in aerosolised transmission and to attach to mucosal surfaces. It then has to replicate in a nutrition-poor environment and resist immune and competitive pressure within a polymicrobial complex. Temperature and relative gas concentrations (nitric oxide and oxygen) are likely to be potent initial signals of arrival within the nasopharyngeal environment, and this review will focus on how N. meningitidis responds to these to increase the likelihood of its survival.
Collapse
|
48
|
Aas FE, Li X, Edwards J, Hongrø Solbakken M, Deeudom M, Vik Å, Moir J, Koomey M, Aspholm M. Cytochrome c-based domain modularity governs genus-level diversification of electron transfer to dissimilatory nitrite reduction. Environ Microbiol 2014; 17:2114-32. [PMID: 25330335 DOI: 10.1111/1462-2920.12661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/04/2014] [Indexed: 12/19/2022]
Abstract
The genus Neisseria contains two pathogenic species (N. meningitidis and N. gonorrhoeae) in addition to a number of commensal species that primarily colonize mucosal surfaces in man. Within the genus, there is considerable diversity and apparent redundancy in the components involved in respiration. Here, we identify a unique c-type cytochrome (cN ) that is broadly distributed among commensal Neisseria, but absent in the pathogenic species. Specifically, cN supports nitrite reduction in N. gonorrhoeae strains lacking the cytochromes c5 and CcoP established to be critical to NirK nitrite reductase activity. The c-type cytochrome domain of cN shares high sequence identity with those localized c-terminally in c5 and CcoP and all three domains were shown to donate electrons directly to NirK. Thus, we identify three distinct but paralogous proteins that donate electrons to NirK. We also demonstrate functionality for a N. weaverii NirK variant with a C-terminal c-type heme extension. Taken together, modular domain distribution and gene rearrangement events related to these respiratory electron carriers within Neisseria are concordant with major transitions in the macroevolutionary history of the genus. This work emphasizes the importance of denitrification as a selectable trait that may influence speciation and adaptive diversification within this largely host-restricted bacterial genus.
Collapse
Affiliation(s)
- Finn Erik Aas
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| | - Xi Li
- Department of Biology, University of York, York, YO10 5DD, UK
| | - James Edwards
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Monica Hongrø Solbakken
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway.,Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, N-0316, Norway
| | - Manu Deeudom
- Department of Biology, University of York, York, YO10 5DD, UK.,Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Åshild Vik
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| | - James Moir
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Michael Koomey
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway.,Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, N-0316, Norway
| | - Marina Aspholm
- Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| |
Collapse
|
49
|
Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One 2014; 9:e114118. [PMID: 25436772 PMCID: PMC4250227 DOI: 10.1371/journal.pone.0114118] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and the predominant ozone depleting substance. The only enzyme known to reduce N2O is the nitrous oxide reductase, encoded by the nosZ gene, which is present among bacteria and archaea capable of either complete denitrification or only N2O reduction to di-nitrogen gas. To determine whether the occurrence of nosZ, being a proxy for the trait N2O reduction, differed among taxonomic groups, preferred habitats or organisms having either NirK or NirS nitrite reductases encoded by the nirK and nirS genes, respectively, 652 microbial genomes across 18 phyla were compared. Furthermore, the association of different co-occurrence patterns with enzymes reducing nitric oxide to N2O encoded by nor genes was examined. We observed that co-occurrence patterns of denitrification genes were not randomly distributed across taxa, as specific patterns were found to be more dominant or absent than expected within different taxonomic groups. The nosZ gene had a significantly higher frequency of co-occurrence with nirS than with nirK and the presence or absence of a nor gene largely explained this pattern, as nirS almost always co-occurred with nor. This suggests that nirS type denitrifiers are more likely to be capable of complete denitrification and thus contribute less to N2O emissions than nirK type denitrifiers under favorable environmental conditions. Comparative phylogenetic analysis indicated a greater degree of shared evolutionary history between nosZ and nirS. However 30% of the organisms with nosZ did not possess either nir gene, with several of these also lacking nor, suggesting a potentially important role in N2O reduction. Co-occurrence patterns were also non-randomly distributed amongst preferred habitat categories, with several habitats showing significant differences in the frequencies of nirS and nirK type denitrifiers. These results demonstrate that the denitrification pathway is highly modular, thus underpinning the importance of community structure for N2O emissions.
Collapse
|
50
|
Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis. Front Cell Infect Microbiol 2014; 4:114. [PMID: 25191646 PMCID: PMC4138514 DOI: 10.3389/fcimb.2014.00114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023] Open
Abstract
A longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.
Collapse
Affiliation(s)
- Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; Research Center for Infectious Diseases (ZINF), University of Würzburg Würzburg, Germany
| | - Laura Kischkies
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| | - Johannes Elias
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; National Reference Centre for Meningococci and Haemophilus influenzae (NRZMHi), University of Würzburg Würzburg, Germany
| | - Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| |
Collapse
|