1
|
Sharma V, Pal J, Dashora V, Chattopadhyay S, Kapoor Y, Singha B, Arimbasseri GA, Saha S. The SET29 and SET7 proteins of Leishmania donovani exercise non-redundant convergent as well as collaborative functions in moderating the parasite's response to oxidative stress. J Biol Chem 2025; 301:108208. [PMID: 39842664 PMCID: PMC11871502 DOI: 10.1016/j.jbc.2025.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
SET proteins are lysine methyltransferases. In investigating Leishmania donovani SET29, we found depletion of LdSET29 by two-thirds did not affect promastigote growth, nor alter the parasite's response to UV-induced or HU-induced stress, but made it more tolerant to H2O2-induced oxidizing environment. The deviant response to oxidative stress was coupled to lowered accumulation of reactive oxygen species, which was linked to enhanced scavenging activity. The set29 mutants' response to H2O2 exposure was similar to that of set7 mutants, prompting an investigation into genetic and physical interactions between the two proteins. While neither protein could rescue the aberrant phenotypes of the other set mutant, the two proteins interacted physically in vitro and in vivo. Transcriptome analyses revealed that neither protein regulated global gene expression, but LdSET7 controlled transcript levels of a limited number of genes, including several peroxidases. In working towards identifying targets through which SET7/SET29 mediate the cell's response to an oxidative milieu, we found HSP60/CNP60 and TCP1 to be possible candidates. LdHSP60 has earlier been implicated in the regulation of the response of virulent promastigotes to H2O2 exposure, and LdTCP1 has previously been found to have a protective effect against oxidative stress. set7 and set29 mutants survived more proficiently in host macrophages as well. The data suggest an alliance between LdSET29 and LdSET7 in mounting the parasite's response to oxidative stress, each protein playing its own distinctive role. They ensure the parasite not only establishes infection but also maintains the balance with host cells to enable the persistence of infection.
Collapse
Affiliation(s)
- Varshni Sharma
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Jyoti Pal
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Vishal Dashora
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | | - Yogita Kapoor
- Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Biplab Singha
- National Institute of Immunology, New Delhi, India; Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
2
|
Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica. Microorganisms 2023; 11:microorganisms11010228. [PMID: 36677520 PMCID: PMC9860978 DOI: 10.3390/microorganisms11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Leishmania tropica is a tropical parasite causing cutaneous leishmaniasis (CL) in humans. Leishmaniasis is a serious public health threat, affecting an estimated 350 million people in 98 countries. The global rise in antileishmanial drug resistance has triggered the need to explore novel therapeutic strategies against this parasite. In the present study, we utilized the recently available multidrug resistant L. tropica strain proteome data repository to identify alternative therapeutic drug targets based on comparative subtractive proteomic and druggability analyses. Additionally, small drug-like compounds were scanned against novel targets based on virtual screening and ADME profiling. The analysis unveiled 496 essential cellular proteins of L. tropica that were nonhomologous to the human proteome set. The druggability analyses prioritized nine parasite-specific druggable proteins essential for the parasite's basic cellular survival, growth, and virulence. These prioritized proteins were identified to have appropriate binding pockets to anchor small drug-like compounds. Among these, UDPase and PCNA were prioritized as the top-ranked druggable proteins. The pharmacophore-based virtual screening and ADME profiling predicted MolPort-000-730-162 and MolPort-020-232-354 as the top hit drug-like compounds from the Pharmit resource to inhibit L. tropica UDPase and PCNA, respectively. The alternative drug targets and drug-like molecules predicted in the current study lay the groundwork for developing novel antileishmanial therapies.
Collapse
|
3
|
DNA replication protein Cdc45 directly interacts with PCNA via its PIP box in Leishmania donovani and the Cdc45 PIP box is essential for cell survival. PLoS Pathog 2020; 16:e1008190. [PMID: 32413071 PMCID: PMC7255605 DOI: 10.1371/journal.ppat.1008190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/28/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
DNA replication protein Cdc45 is an integral part of the eukaryotic replicative helicase whose other components are the Mcm2-7 core, and GINS. We identified a PIP box motif in Leishmania donovani Cdc45. This motif is typically linked to interaction with the eukaryotic clamp proliferating cell nuclear antigen (PCNA). The homotrimeric PCNA can potentially bind upto three different proteins simultaneously via a loop region present in each monomer. Multiple binding partners have been identified from among the replication machinery in other eukaryotes, and the concerted /sequential binding of these partners are central to the fidelity of the replication process. Though conserved in Cdc45 across Leishmania species and Trypanosoma cruzi, the PIP box is absent in Trypanosoma brucei Cdc45. Here we investigate the possibility of Cdc45-PCNA interaction and the role of such an interaction in the in vivo context. Having confirmed the importance of Cdc45 in Leishmania DNA replication we establish that Cdc45 and PCNA interact stably in whole cell extracts, also interacting with each other directly in vitro. The interaction is mediated via the Cdc45 PIP box. This PIP box is essential for Leishmania survival. The importance of the Cdc45 PIP box is also examined in Schizosaccharomyces pombe, and it is found to be essential for cell survival here as well. Our results implicate a role for the Leishmania Cdc45 PIP box in recruiting or stabilizing PCNA on chromatin. The Cdc45-PCNA interaction might help tether PCNA and associated replicative DNA polymerase to the DNA template, thus facilitating replication fork elongation. Though multiple replication proteins that associate with PCNA have been identified in other eukaryotes, this is the first report demonstrating a direct interaction between Cdc45 and PCNA, and while our analysis suggests the interaction may not occur in human cells, it indicates that it may not be confined to trypanosomatids.
Collapse
|
4
|
John R, Atri Y, Chand V, Jaiswal N, Raj K, Nag A. Cell cycle-dependent regulation of cytoglobin by Skp2. FEBS Lett 2017; 591:3507-3522. [PMID: 28948618 DOI: 10.1002/1873-3468.12864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022]
Abstract
Cytoglobin (Cygb) is a cellular haemoprotein belonging to the globin family with ambiguous biological functions. Downregulation of Cygb in many cancers is indicative of its tumour-suppressive role. This is the first report showing the cell cycle regulation of Cygb, which was found to peak at G1 and rapidly decline in S phase. Importantly, Skp2-mediated degradation of Cygb was identified as the key mechanism for controlling its oscillating levels during the cell cycle. Moreover, overexpression of Cygb stimulates hypophosphorylation of Rb causing delayed cell cycle progression. Overall, the study reveals a novel mechanism for the regulated expression of Cygb and also assigns a new role to Cygb in cell cycle control.
Collapse
Affiliation(s)
- Rince John
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Yama Atri
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Vaibhav Chand
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Neha Jaiswal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Kritika Raj
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
5
|
Nuclear DNA Replication in Trypanosomatids: There Are No Easy Methods for Solving Difficult Problems. Trends Parasitol 2017; 33:858-874. [PMID: 28844718 PMCID: PMC5662062 DOI: 10.1016/j.pt.2017.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023]
Abstract
In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens. In trypanosomatids, DNA replication is tightly controlled by protein complexes that diverge from those of model eukaryotes. There is no consensus for the number of replication origins used by trypanosomatids; how their replication dynamics compares with that of model organisms is the subject of debate. The DNA replication rate in trypanosomatids is similar to, but slightly higher than, that of model eukaryotes, which may be related to chromatin structure and function. Recent data suggest that the origin recognition complex in trypanosomatids closely resembles the multisubunit eukaryotic model. The absence of fundamental replication-associated proteins in trypanosomatids suggests that new signaling pathways may be present in these parasites to direct DNA replication and the replicative stress response.
Collapse
|
6
|
da Silva MS, Muñoz PAM, Armelin HA, Elias MC. Differences in the Detection of BrdU/EdU Incorporation Assays Alter the Calculation for G1, S, and G2 Phases of the Cell Cycle in Trypanosomatids. J Eukaryot Microbiol 2017; 64:756-770. [PMID: 28258618 DOI: 10.1111/jeu.12408] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 01/22/2023]
Abstract
Trypanosomatids are the etiologic agents of various infectious diseases in humans. They diverged early during eukaryotic evolution and have attracted attention as peculiar models for evolutionary and comparative studies. Here, we show a meticulous study comparing the incorporation and detection of the thymidine analogs BrdU and EdU in Leishmania amazonensis, Trypanosoma brucei, and Trypanosoma cruzi to monitor their DNA replication. We used BrdU- and EdU-incorporated parasites with the respective standard detection approaches: indirect immunofluorescence to detect BrdU after standard denaturation (2 M HCl) and "click" chemistry to detect EdU. We found a discrepancy between these two thymidine analogs due to the poor detection of BrdU, which is reflected on the estimative of the duration of the cell cycle phases G1, S, and G2. To solve this discrepancy, we increase the exposure of incorporated BrdU using different concentrations of HCl. Using a new value for HCl concentration, we re-estimated the phases G1, S, G2 + M, and cytokinesis durations, confirming the values found by this approach using EdU. In conclusion, we suggest that the studies using BrdU with standard detection approach, not only in trypanosomatids but also in others cell types, should be reviewed to ensure an accurate estimation of DNA replication monitoring.
Collapse
Affiliation(s)
- Marcelo Santos da Silva
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| | - Paula Andrea Marin Muñoz
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| | - Hugo Aguirre Armelin
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, 1500, Vital Brasil Avenue, 05503-900, São Paulo, Brazil
| |
Collapse
|
7
|
Uzcanga G, Lara E, Gutiérrez F, Beaty D, Beske T, Teran R, Navarro JC, Pasero P, Benítez W, Poveda A. Nuclear DNA replication and repair in parasites of the genus Leishmania: Exploiting differences to develop innovative therapeutic approaches. Crit Rev Microbiol 2016; 43:156-177. [PMID: 27960617 DOI: 10.1080/1040841x.2016.1188758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leishmaniasis is a common tropical disease that affects mainly poor people in underdeveloped and developing countries. This largely neglected infection is caused by Leishmania spp, a parasite from the Trypanosomatidae family. This parasitic disease has different clinical manifestations, ranging from localized cutaneous to more harmful visceral forms. The main limitations of the current treatments are their high cost, toxicity, lack of specificity, and long duration. Efforts to improve treatments are necessary to deal with this infectious disease. Many approved drugs to combat diseases as diverse as cancer, bacterial, or viral infections take advantage of specific features of the causing agent or of the disease. Recent evidence indicates that the specific characteristics of the Trypanosomatidae replication and repair machineries could be used as possible targets for the development of new treatments. Here, we review in detail the molecular mechanisms of DNA replication and repair regulation in trypanosomatids of the genus Leishmania and the drugs that could be useful against this disease.
Collapse
Affiliation(s)
- Graciela Uzcanga
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,b Programa Prometeo , SENESCYT, Whymper E7-37 y Alpallana, Quito , Ecuador.,c Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK Calle Alberto Einstein sn y 5ta transversal , Quito , Ecuador.,d Fundación Instituto de Estudios Avanzados-IDEA , Caracas , Venezuela
| | - Eliana Lara
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,e Institute of Human Genetics , CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer , Montpellier cedex 5 , France
| | - Fernanda Gutiérrez
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Doyle Beaty
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Timo Beske
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Rommy Teran
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Juan-Carlos Navarro
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,f Universidad Central de Venezuela, Instituto de Zoología y Ecología Tropical , Caracas , Venezuela.,g Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK, Calle Alberto Einstein sn y 5ta transversal , Quito , Ecuador
| | - Philippe Pasero
- e Institute of Human Genetics , CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer , Montpellier cedex 5 , France
| | - Washington Benítez
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Ana Poveda
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| |
Collapse
|
8
|
Dzamba D, Valihrach L, Kubista M, Anderova M. The correlation between expression profiles measured in single cells and in traditional bulk samples. Sci Rep 2016; 6:37022. [PMID: 27848982 PMCID: PMC5111061 DOI: 10.1038/srep37022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022] Open
Abstract
Reverse transcription quantitative PCR (RT-qPCR) is already an established tool for mRNA detection and quantification. Since recently, this technique has been successfully employed for gene expression analyses, and also in individual cells (single cell RT-qPCR). Although the advantages of single cell measurements have been proven several times, a study correlating the expression measured on single cells, and in bulk samples consisting of a large number of cells, has been missing. Here, we collected a large data set to explore the relation between gene expression measured in single cells and in bulk samples, reflected by qPCR Cq values. We measured the expression of 95 genes in 12 bulk samples, each containing thousands of astrocytes, and also in 693 individual astrocytes. Combining the data, we described the relation between Cq values measured in bulk samples with either the percentage of the single cells that express the given genes, or the average expression of the genes across the single cells. We show that data obtained with single cell RT-qPCR are fully consistent with measurements in bulk samples. Our results further provide a base for quality control in single cell expression profiling, and bring new insights into the biological process of cellular expression.
Collapse
Affiliation(s)
- David Dzamba
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 2 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, BIOCEV, Vestec, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, BIOCEV, Vestec, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- 2 Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Guan Y, Huang D, Chen F, Gao C, Tao T, Shi H, Zhao S, Liao Z, Lo LJ, Wang Y, Chen J, Peng J. Phosphorylation of Def Regulates Nucleolar p53 Turnover and Cell Cycle Progression through Def Recruitment of Calpain3. PLoS Biol 2016; 14:e1002555. [PMID: 27657329 PMCID: PMC5033581 DOI: 10.1371/journal.pbio.1002555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/19/2016] [Indexed: 01/15/2023] Open
Abstract
Digestive organ expansion factor (Def) is a nucleolar protein that plays dual functions: it serves as a component of the ribosomal small subunit processome for the biogenesis of ribosomes and also mediates p53 degradation through the cysteine proteinase calpain-3 (CAPN3). However, nothing is known about the exact relationship between Def and CAPN3 or the regulation of the Def function. In this report, we show that CAPN3 degrades p53 and its mutant proteins p53A138V, p53M237I, p53R248W, and p53R273P but not the p53R175H mutant protein. Importantly, we show that Def directly interacts with CAPN3 in the nucleoli and determines the nucleolar localisation of CAPN3, which is a prerequisite for the degradation of p53 in the nucleolus. Furthermore, we find that Def is modified by phosphorylation at five serine residues: S50, S58, S62, S87, and S92. We further show that simultaneous phosphorylations at S87 and S92 facilitate the nucleolar localisation of Capn3 that is not only essential for the degradation of p53 but is also important for regulating cell cycle progression. Hence, we propose that the Def-CAPN3 pathway serves as a nucleolar checkpoint for cell proliferation by selective inactivation of cell cycle-related substrates during organogenesis.
Collapse
Affiliation(s)
- Yihong Guan
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Delai Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ting Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui Shi
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuyi Zhao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zuyuan Liao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JRP)
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JRP)
| |
Collapse
|
10
|
Marques CA, Tiengwe C, Lemgruber L, Damasceno JD, Scott A, Paape D, Marcello L, McCulloch R. Diverged composition and regulation of the Trypanosoma brucei origin recognition complex that mediates DNA replication initiation. Nucleic Acids Res 2016; 44:4763-84. [PMID: 26951375 PMCID: PMC4889932 DOI: 10.1093/nar/gkw147] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/01/2016] [Indexed: 01/14/2023] Open
Abstract
Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying.
Collapse
Affiliation(s)
- Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Calvin Tiengwe
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jeziel D Damasceno
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Alan Scott
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Daniel Paape
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Lucio Marcello
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
11
|
Kumar G, Kajuluri LP, Gupta CM, Sahasrabuddhe AA. A twinfilin-like protein coordinates karyokinesis by influencing mitotic spindle elongation and DNA replication in Leishmania. Mol Microbiol 2016; 100:173-87. [PMID: 26713845 DOI: 10.1111/mmi.13310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2015] [Indexed: 11/30/2022]
Abstract
Twinfilin is an evolutionarily conserved actin-binding protein, which regulates actin-dynamics in eukaryotic cells. Homologs of this protein have been detected in the genome of various protozoan parasites causing diseases in human. However, very little is known about their core functions in these organisms. We show here that a twinfilin homolog in a human pathogen Leishmania, primarily localizes to the nucleolus and, to some extent, also in the basal body region. In the dividing cells, nucleolar twinfilin redistributes to the mitotic spindle and remains there partly associated with the spindle microtubules. We further show that approximately 50% depletion of this protein significantly retards the cell growth due to sluggish progression of S phase of the cell division cycle, owing to the delayed nuclear DNA synthesis. Interestingly, overexpression of this protein results in significantly increased length of the mitotic spindle in the dividing Leishmania cells, whereas, its depletion adversely affects spindle elongation and architecture. Our results indicate that twinfilin controls on one hand, the DNA synthesis and on the other, the mitotic spindle elongation, thus contributing to karyokinesis in Leishmania.
Collapse
Affiliation(s)
- Gaurav Kumar
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| | - Lova P Kajuluri
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| | - Chhitar M Gupta
- Department of Biosciences, Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City, Phase-I, Bangaluru, PIN-560 100, India
| | - Amogh A Sahasrabuddhe
- CSIR-Central Drug Research Institute, Jankipuram Extension-10, Sitapur Road, Lucknow, PIN-226 031, India
| |
Collapse
|
12
|
Leishmanicidal activities of novel methylseleno-imidocarbamates. Antimicrob Agents Chemother 2015; 59:5705-13. [PMID: 26149985 DOI: 10.1128/aac.00997-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022] Open
Abstract
The generation of new antileishmanial drugs has become a priority. Selenium and its derivatives stand out as having promising leishmanicidal activity. In fact, some parasites express selenoproteins and metabolize selenium. Recently, selenium derivatives have shown the potential to reduce parasitemia, clinical manifestations, and mortality in parasite-infected mice. In this paper, after selecting four candidates according to drug similarity parameters, we observed that two of them, called compounds 2b [methyl-N,N'-di(thien-2-ylcarbonyl)-imidoselenocarbamate] and 4b [methyl-N,N'-di(5-nitrothien-3-ylcarbonyl)-imidoselenocarbamate], exhibit low 50% inhibitory concentrations (IC50s) (<3 μM) and good selectivity indexes (SIs) (>5) in Leishmania major promastigotes and lack toxicity on macrophages. In addition, in analysis of their therapeutic potential against L. major in vitro infection, both compounds display a dramatic reduction of amastigote burden (∼80%) with sublethal concentrations. Furthermore, in macrophages, these selenocompounds induce nitric oxide production, which has been described to be critical for defense against intracellular pathogens. Compounds 2b and 4b were demonstrated to cause cell cycle arrest in G1. Interestingly, evaluation of expression of genes related to proliferation (PCNA), treatment resistance (ABC transporter and alpha-tubulin), and virulence (quinonoid dihydropteridine reductase [QDPR]) showed several alterations in gene expression profiling. All these results prompt us to propose both compounds as candidates to treat leishmanial infections.
Collapse
|
13
|
Kumar D, Saha S. HAT3-mediated acetylation of PCNA precedes PCNA monoubiquitination following exposure to UV radiation in Leishmania donovani. Nucleic Acids Res 2015; 43:5423-41. [PMID: 25948582 PMCID: PMC4477661 DOI: 10.1093/nar/gkv431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
Histone modifications impact various processes. In examining histone acetyltranferase HAT3 of Leishmania donovani, we find elimination of HAT3 causes decreased cell viability due to defects in histone deposition, and aberrant cell cycle progression pattern. HAT3 associates with proliferating cell nuclear antigen (PCNA), helping load PCNA onto chromatin in proliferating cells. HAT3-nulls show heightened sensitivity to UV radiation. Following UV exposure, PCNA cycles off/on chromatin only in cells expressing HAT3. Inhibition of the ubiquitin-proteasome pathway prior to UV exposure allows accumulation of chromatin-bound PCNA, and reveals that HAT3-nulls are deficient in PCNA monoubiquitination as well as polyubiquitination. While poor monoubiquitination of PCNA may adversely affect translesion DNA synthesis-based repair processes, polyubiquitination deficiencies may result in continued retention of chromatin-bound PCNA, leading to genomic instability. On suppressing the proteasome pathway we also find that HAT3 mediates PCNA acetylation in response to UV. HAT3-mediated PCNA acetylation may serve as a flag for PCNA ubiquitination, thus aiding DNA repair. While PCNA acetylation has previously been linked to its degradation following UV exposure, this is the first report linking a HAT-mediated PCNA acetylation to PCNA monoubiquitination. These findings add a new dimension to our knowledge of the mechanisms regulating PCNA ubiquitination post-UV exposure in eukaryotes.
Collapse
Affiliation(s)
- Devanand Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
14
|
Zhang F, Mijiti M, Ding W, Song J, Yin Y, Sun W, Li Z. (+)‑Terrein inhibits human hepatoma Bel‑7402 proliferation through cell cycle arrest. Oncol Rep 2015; 33:1191-200. [PMID: 25592371 DOI: 10.3892/or.2015.3719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/11/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatoma is a common malignant tumor. Thus, the development of a high‑efficacy therapeutic drug for hepatoma is required. In this study, (+)‑terrein isolated from the marine sponge‑derived Aspergillus terreus PF‑26 against cell growth, apoptosis and cell cycle were assessed by MTT and flow cytometry. mRNA array containing 73 cell cycle‑related genes and three cell morphology‑related genes was generated and its performance evaluated. The cell cycle pathway map was created using the pathview package. The results showed that (+)‑terrein inhibited the growth of Bel‑7402 cells with alterations in cell morphology and a reduced transcript expression of cell morphology genes (fibronectin, N‑cadherin, and vimentin). In addition, flow cytometric analysis revealed that (+)‑terrein arrested the Bel‑7402 cell cycle without inducing apoptosis. Based on multiple mRNA analysis, the downregulated expression of the CCND2, CCNE2, CDKN1C, CDKN2B, ANAPC, PKMYT1, CHEK2 and PCNA genes was observed in 10 µM (+)‑terrein‑treated Bel‑7402 cells (>2‑fold and P≤0.05), compared with the controls. Thus, the antiprolife-rative mechanism of (+)‑terrein against Bel‑7402 cells may be due to the cell cycle arrest by blocking cell cycle gene expression and changing cell morphology.
Collapse
Affiliation(s)
- Fengli Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Meiheriguli Mijiti
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Wei Ding
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jiale Song
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ying Yin
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Wei Sun
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
15
|
Characterization of the proliferating cell nuclear antigen of Leishmania donovani clinical isolates and its association with antimony resistance. Antimicrob Agents Chemother 2014; 58:2997-3007. [PMID: 24614385 DOI: 10.1128/aac.01847-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previously, through a proteomic analysis, proliferating cell nuclear antigen (PCNA) was found to be overexpressed in the sodium antimony gluconate (SAG)-resistant clinical isolate compared to that in the SAG-sensitive clinical isolate of Leishmania donovani. The present study was designed to explore the potential role of the PCNA protein in SAG resistance in L. donovani. For this purpose, the protein was cloned, overexpressed, purified, and modeled. Western blot (WB) and real-time PCR (RT-PCR) analyses confirmed that PCNA was overexpressed by ≥ 3-fold in the log phase, stationary phase, and peanut agglutinin isolated procyclic and metacyclic stages of the promastigote form and by ~5-fold in the amastigote form of the SAG-resistant isolate compared to that in the SAG-sensitive isolate. L. donovani PCNA (LdPCNA) was overexpressed as a green fluorescent protein (GFP) fusion protein in a SAG-sensitive clinical isolate of L. donovani, and modulation of the sensitivities of the transfectants to pentavalent antimonial (Sb(V)) and trivalent antimonial (Sb(III)) drugs was assessed in vitro against promastigotes and intracellular (J774A.1 cell line) amastigotes, respectively. Overexpression of LdPCNA in the SAG-sensitive isolate resulted in an increase in the 50% inhibitory concentrations (IC50) of Sb(V) (from 41.2 ± 0.6 μg/ml to 66.5 ± 3.9 μg/ml) and Sb(III) (from 24.0 ± 0.3 μg/ml to 43.4 ± 1.8 μg/ml). Moreover, PCNA-overexpressing promastigote transfectants exhibited less DNA fragmentation compared to that of wild-type SAG-sensitive parasites upon Sb(III) treatment. In addition, SAG-induced nitric oxide (NO) production was found to be significantly inhibited in the macrophages infected with the transfectants compared with that in wild-type SAG-sensitive parasites. Consequently, we infer that LdPCNA has a significant role in SAG resistance in L. donovani clinical isolates, which warrants detailed investigations regarding its mechanism.
Collapse
|
16
|
Kumar D, Kumar D, Saha S. A highly basic sequence at the N-terminal region is essential for targeting the DNA replication protein ORC1 to the nucleus in Leishmania donovani. MICROBIOLOGY-SGM 2012; 158:1775-1782. [PMID: 22575896 DOI: 10.1099/mic.0.055640-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The conserved eukaryotic DNA replication protein ORC1 is one of the constituents of pre-replication complexes that assemble at or very near origins prior to replication initiation. ORC1 has been shown to be constitutively nuclear in Leishmania major. This study investigates the sequences involved in nuclear localization of ORC1 in Leishmania donovani, the causative agent of visceral leishmaniasis. Nuclear localization signals (NLSs) have been reported in only a few Leishmania proteins. Functional analyses have delineated NLSs to regions of ~60 amino acids in length in the tyrosyl DNA phosphodiesterase I and type II DNA topoisomerase of L. donovani, and in the L. major kinesin KIN13-1. Using a panel of site-directed mutations we have identified a sequence essential for nuclear import of LdORC1. This sequence at the N terminus of the protein comprises residues 2-5 (KRSR), with K2, R3 and R5 being crucial. Independent mutation of the K2 residue causes exclusion of the protein from the nucleus, while mutating the R5 residue leads to diffusion of the protein throughout the cell. This sequence, however, is insufficient for targeting a heterologous protein (β-galactosidase) to the nucleus. Analysis of additional ORC1 mutations and reporter constructs reveals that while the highly basic tetra-amino acid sequence at the N terminus is essential for nuclear localization, the ORC1 NLS in its entirety is more complex, and of a distributive character. Our results suggest that nuclear localization signalling sequences in Leishmania nuclear proteins are more complex than what is typically seen in higher eukaryotes.
Collapse
Affiliation(s)
- Devanand Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Diwakar Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
17
|
Kaufmann D, Gassen A, Maiser A, Leonhardt H, Janzen CJ. Regulation and spatial organization of PCNA in Trypanosoma brucei. Biochem Biophys Res Commun 2012; 419:698-702. [PMID: 22387477 DOI: 10.1016/j.bbrc.2012.02.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 11/15/2022]
Abstract
As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.
Collapse
Affiliation(s)
- Doris Kaufmann
- University of Munich (LMU), Department Biology I, Genetics, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
18
|
Kumar D, Rajanala K, Minocha N, Saha S. Histone H4 lysine 14 acetylation in Leishmania donovani is mediated by the MYST-family protein HAT4. Microbiology (Reading) 2012; 158:328-337. [DOI: 10.1099/mic.0.050211-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Devanand Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Kalpana Rajanala
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Neha Minocha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
19
|
Calderano SG, de Melo Godoy PD, Motta MCM, Mortara RA, Schenkman S, Elias MC. Trypanosoma cruzi DNA replication includes the sequential recruitment of pre-replication and replication machineries close to nuclear periphery. Nucleus 2012; 2:136-45. [PMID: 21738836 DOI: 10.4161/nucl.2.2.15134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 02/03/2011] [Accepted: 02/11/2011] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, many nuclear processes are spatially compartmentalized. Previously, we have shown that in Trypanosoma cruzi, an early-divergent eukaryote, DNA replication occurs at the nuclear periphery where chromosomes remain constrained during the S phase of the cell cycle. We followed Orc1/Cdc6, a pre-replication machinery component and the proliferating cell nuclear antigen (PCNA), a component of replication machinery, during the cell cycle of this protozoon. We found that, at the G(1) stage, TcOrc1/Cdc6 and TcPCNA are dispersed throughout the nuclear space. During the G(1)/S transition, TcOrc1/Cdc6 migrates to a region close to nuclear periphery. At the onset of S phase, TcPCNA is loaded onto the DNA and remains constrained close to nuclear periphery. Finally, in G(2), mitosis and cytokinesis, TcOrc1/Cdc6 and TcPCNA are dispersed throughout the nuclear space. Based on these findings, we propose that DNA replication in T. cruzi is accomplished by the organization of functional machineries in a spatial-temporal manner.
Collapse
Affiliation(s)
- Simone Guedes Calderano
- Laboratório de Parasitologia, Instituto Butantan, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Characterization of Leishmania donovani MCM4: expression patterns and interaction with PCNA. PLoS One 2011; 6:e23107. [PMID: 21829589 PMCID: PMC3146543 DOI: 10.1371/journal.pone.0023107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/06/2011] [Indexed: 12/03/2022] Open
Abstract
Events leading to origin firing and fork elongation in eukaryotes involve several proteins which are mostly conserved across the various eukaryotic species. Nuclear DNA replication in trypanosomatids has thus far remained a largely uninvestigated area. While several eukaryotic replication protein orthologs have been annotated, many are missing, suggesting that novel replication mechanisms may apply in this group of organisms. Here, we characterize the expression of Leishmania donovani MCM4, and find that while it broadly resembles other eukaryotes, noteworthy differences exist. MCM4 is constitutively nuclear, signifying that, unlike what is seen in S.cerevisiae, varying subcellular localization of MCM4 is not a mode of replication regulation in Leishmania. Overexpression of MCM4 in Leishmania promastigotes causes progress through S phase faster than usual, implicating a role for MCM4 in the modulation of cell cycle progression. We find for the first time in eukaryotes, an interaction between any of the proteins of the MCM2-7 (MCM4) and PCNA. MCM4 colocalizes with PCNA in S phase cells, in keeping with the MCM2-7 complex being involved not only in replication initiation, but fork elongation as well. Analysis of a LdMCM4 mutant indicates that MCM4 interacts with PCNA via the PIP box motif of MCM4 - perhaps as an integral component of the MCM2-7 complex, although we have no direct evidence that MCM4 harboring a PIP box mutation can still functionally associate with the other members of the MCM2-7 complex- and the PIP box motif is important for cell survival and viability. In Leishmania, MCM4 may possibly help in recruiting PCNA to chromatin, a role assigned to MCM10 in other eukaryotes.
Collapse
|
21
|
BRUNELLE STEPHANIEA, VAN DOLAH FRANCESM. Post-transcriptional Regulation of S-Phase Genes in the Dinoflagellate, Karenia brevis. J Eukaryot Microbiol 2011; 58:373-82. [DOI: 10.1111/j.1550-7408.2011.00560.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Cardona-Felix CS, Lara-Gonzalez S, Brieba LG. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:497-505. [PMID: 21636889 DOI: 10.1107/s0907444911010547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.
Collapse
Affiliation(s)
- Cesar S Cardona-Felix
- Grupo de Bioquímica Estructural, Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, México
| | | | | |
Collapse
|
23
|
MINOCHA NEHA, KUMAR DEVANAND, RAJANALA KALPANA, SAHA SWATI. Kinetoplast Morphology and Segregation Pattern as a Marker for Cell Cycle Progression in Leishmania donovani1. J Eukaryot Microbiol 2011; 58:249-53. [DOI: 10.1111/j.1550-7408.2011.00539.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|