1
|
Wang X, Sun B. Metabolic proteins with crucial roles in Edwardsiella tarda antioxidative adaptation and intracellular proliferation. mSystems 2023; 8:e0039123. [PMID: 37729581 PMCID: PMC10654080 DOI: 10.1128/msystems.00391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Edwardsiella tarda is a significant fish pathogen that can live in challenging environments of reactive oxygen species (ROS), such as inside the phagocytes. Metabolic reconfiguration has been increasingly associated with bacterial oxidative tolerance and virulence. However, the metabolic proteins of E. tarda involved in such processes remain elusive. By proteomic analysis and functional characterization of protein null mutants, the present study identified eight crucial proteins for bacterial oxidative resistance and intracellular infection. Seven of them are metabolic proteins dictating the metabolic flux toward the generation of pyruvate, a key metabolite capable of scavenging ROS molecules. Furthermore, L-aspartate uptake, which can fuel the pyruvate generation, was found essential for the full antioxidative capacity of E. tarda. These findings identified seven metabolic proteins involved in bacterial oxidative adaptation and indicate that metabolic reprogramming toward pyruvate was likely a pivotal strategy of bacteria for antioxidative adaptation and intracellular survival.
Collapse
Affiliation(s)
- Xinhui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
2
|
Clomburg JM, Cintolesi A, Gonzalez R. In silico and in vivo analyses reveal key metabolic pathways enabling the fermentative utilization of glycerol in Escherichia coli. Microb Biotechnol 2021; 15:289-304. [PMID: 34699695 PMCID: PMC8719807 DOI: 10.1111/1751-7915.13938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Most microorganisms can metabolize glycerol when external electron acceptors are available (i.e. under respiratory conditions). However, few can do so under fermentative conditions owing to the unique redox constraints imposed by the high degree of reduction of glycerol. Here, we utilize in silico analysis combined with in vivo genetic and biochemical approaches to investigate the fermentative metabolism of glycerol in Escherichia coli. We found that E. coli can achieve redox balance at alkaline pH by reducing protons to H2 , complementing the previously reported role of 1,2-propanediol synthesis under acidic conditions. In this new redox balancing mode, H2 evolution is coupled to a respiratory glycerol dissimilation pathway composed of glycerol kinase (GK) and glycerol-3-phosphate (G3P) dehydrogenase (G3PDH). GK activates glycerol to G3P, which is further oxidized by G3PDH to generate reduced quinones that drive hydrogenase-dependent H2 evolution. Despite the importance of the GK-G3PDH route under alkaline conditions, we found that the NADH-generating glycerol dissimilation pathway via glycerol dehydrogenase (GldA) and phosphoenolpyruvate (PEP)-dependent dihydroxyacetone kinase (DHAK) was essential under both alkaline and acidic conditions. We assessed system-wide metabolic impacts of the constraints imposed by the PEP dependency of the GldA-DHAK route. This included the identification of enzymes and pathways that were not previously known to be involved in glycerol metabolisms such as PEP carboxykinase, PEP synthetase, multiple fructose-1,6-bisphosphatases and the fructose phosphate bypass.
Collapse
Affiliation(s)
- James M Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.,Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Angela Cintolesi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.,Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
3
|
Liu X. Effects of Methyl Donors on L-Tryptophan Fermentation. Bioengineered 2021:21655979.2021.1882821. [PMID: 33522354 DOI: 10.1080/21655979.2021.1882821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022] Open
Abstract
Methyl donors, a class of compounds that supply methyl groups to methyl acceptors, play important roles in the function, growth, and proliferation of cells; however, the methyl donor content in cells is not sufficient to meet their normal needs. In L-tryptophan production with E. coli, the growth and acid-producing ability of E. coli cells are weak due to the presence of exogenous plasmids that inhibit the growth of E. coli, and reduce the efficiency of exogenous gene expression. Therefore, the effect of methyl donors on L-tryptophan production was investigated. Among the methyl donors tested, choline chloride showed the most significant effect in promoting fermentation, followed by methionine. The optimum addition method involved the addition of 1.5 g/L methionine to the culture medium, combined with continuous feeding with a glucose solution containing 1 g/L choline chloride. The final tryptophan titer reached 53.5 g/L; the highest biomass of bacteria reached 51.8 g/L; and the main by-product, acetic acid, was reduced to 2.23 g/L, which had a significant impact on the fermentation results.
Collapse
Affiliation(s)
- Xiaocui Liu
- Department of Life Science of Shanxi Datong University, Datong Shanxi 037009, China
| |
Collapse
|
4
|
Arunasri K, Yeruva DK, Vamshi Krishna K, Venkata Mohan S. Monitoring metabolic pathway alterations in Escherichia coli due to applied potentials in microbial electrochemical system. Bioelectrochemistry 2020; 134:107530. [DOI: 10.1016/j.bioelechem.2020.107530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022]
|
5
|
Behr S, Kristoficova I, Witting M, Breland EJ, Eberly AR, Sachs C, Schmitt-Kopplin P, Hadjifrangiskou M, Jung K. Identification of a High-Affinity Pyruvate Receptor in Escherichia coli. Sci Rep 2017; 7:1388. [PMID: 28469239 PMCID: PMC5431176 DOI: 10.1038/s41598-017-01410-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/28/2017] [Indexed: 11/09/2022] Open
Abstract
Two-component systems are crucial for signal perception and modulation of bacterial behavior. Nevertheless, to date, very few ligands have been identified that directly interact with histidine kinases. The histidine kinase/response regulator system YehU/YehT of Escherichia coli is part of a nutrient-sensing network. Here we demonstrate that this system senses the onset of nutrient limitation in amino acid rich media and responds to extracellular pyruvate. Binding of radiolabeled pyruvate was found for full-length YehU in right-side-out membrane vesicles as well as for a truncated, membrane-integrated variant, confirming that YehU is a high-affinity receptor for extracellular pyruvate. Therefore we propose to rename YehU/YehT as BtsS/BtsR, after "Brenztraubensäure", the name given to pyruvic acid when it was first synthesized. The function of BtsS/BtsR was also assessed in a clinically relevant uropathogenic E. coli strain. Quantitative transcriptional analysis revealed BtsS/BtsR importance during acute and chronic urinary-tract infections.
Collapse
Affiliation(s)
- Stefan Behr
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Ivica Kristoficova
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Michael Witting
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, 85764, Neuherberg, Germany
| | - Erin J Breland
- Departments of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Allison R Eberly
- Departments of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Corinna Sachs
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, 85764, Neuherberg, Germany
| | - Maria Hadjifrangiskou
- Departments of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Departments of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany.
| |
Collapse
|
6
|
Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl Environ Microbiol 2014; 80:6195-203. [PMID: 25085487 DOI: 10.1128/aem.02069-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is considered a good host strain for the production of 2,3-butanediol, which is a promising platform chemical with various industrial applications. In this study, three genes, including those encoding glucosyltransferase (wabG), lactate dehydrogenase (ldhA), and pyruvate formate-lyase (pflB), were disrupted in K. pneumoniae to reduce both its pathogenic characteristics and the production of several by-products. In flask cultivation with minimal medium, the yield of 2,3-butanediol from rationally engineered K. pneumoniae (ΔwabG ΔldhA ΔpflB) reached 0.461 g/g glucose, which was 92.2% of the theoretical maximum, with a significant reduction in by-product formation. However, the growth rate of the pflB mutant was slightly reduced compared to that of its parental strain. Comparison with similar mutants of Escherichia coli suggested that the growth defect of pflB-deficient K. pneumoniae was caused by redox imbalance rather than reduced level of intracellular acetyl coenzyme A (acetyl-CoA). From an analysis of the transcriptome, it was confirmed that the removal of pflB from K. pneumoniae significantly repressed the expression of genes involved in the formate hydrogen lyase (FHL) system.
Collapse
|
7
|
Long Q, Liu X, Yang Y, Li L, Harvey L, McNeil B, Bai Z. The development and application of high throughput cultivation technology in bioprocess development. J Biotechnol 2014; 192 Pt B:323-38. [PMID: 24698846 DOI: 10.1016/j.jbiotec.2014.03.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on recent progress in the technology of high throughput (HTP) cultivation and its increasing application in quality by design (QbD) -driven bioprocess development. Several practical HTP strategies aimed at shortening process development (PD) timelines from DNA to large scale processes involving commercially available HTP technology platforms, including microtiter plate (MTP) culture, micro-scale bioreactors, and in parallel fermentation systems, etc., are critically reviewed in detail. This discussion focuses upon the relative strengths and weaknesses or limitations of each of these platforms in this context. Emerging prototypes of micro-bioreactors reported recently, such as milliliter (mL) scale stirred tank bioreactors, and microfludics integrated micro-scale bioreactors, and their potential for practical application in QbD-driven HTP process development are also critically appraised. The overall aim of such technology is to rapidly gain process insights, and since the analytical technology deployed in HTP systems is critically important to the achievement of this aim, this rapidly developing area is discussed. Finally, general future trends are critically reviewed.
Collapse
Affiliation(s)
- Quan Long
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Xiuxia Liu
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Yankun Yang
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Lu Li
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | | | | | - Zhonghu Bai
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China.
| |
Collapse
|
8
|
Engineering Escherichia coli for improved ethanol production from gluconate. J Biotechnol 2013; 168:101-6. [DOI: 10.1016/j.jbiotec.2013.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 11/20/2022]
|
9
|
Winter G, Krömer JO. Fluxomics - connecting ‘omics analysis and phenotypes. Environ Microbiol 2013; 15:1901-16. [DOI: 10.1111/1462-2920.12064] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Gal Winter
- Centre for Microbial Electrosynthesis (CEMES); Advanced Water Management Centre (AWMC); University of Queensland; Brisbane; Qld; Australia
| | - Jens O. Krömer
- Centre for Microbial Electrosynthesis (CEMES); Advanced Water Management Centre (AWMC); University of Queensland; Brisbane; Qld; Australia
| |
Collapse
|
10
|
Qiu X, Tao Y, Zhu Y, Yuan Y, Zhang Y, Liu H, Gao Y, Teng M, Niu L. Structural insights into decreased enzymatic activity induced by an insert sequence in mannonate dehydratase from Gram negative bacterium. J Struct Biol 2012; 180:327-34. [PMID: 22796868 DOI: 10.1016/j.jsb.2012.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Mannonate dehydratase (ManD; EC4.2.1.8) catalyzes the dehydration of D-mannonate to 2-keto-3-deoxygluconate. It is the third enzyme in the pathway for dissimilation of D-glucuronate to 2-keto-3-deoxygluconate involving in the Entner-Doudoroff pathway in certain bacterial and archaeal species. ManD from Gram negative bacteria has an insert sequence as compared to those from Gram positives revealed by sequence analysis. To evaluate the impact of this insert sequence on the catalytic efficiency, we solved the crystal structures of ManD from Escherichia coli strain K12 and its complex with D-mannonate, which reveal that this insert sequence forms two α helices locating above the active site. The two insert α helices introduce a loop that forms a cap covering the substrate binding pocket, which restricts the tunnels of substrate entering and product releasing from the active site. Site-directed mutations and enzymatic activity assays confirm that the catalytic rate is decreased by this loop. These features are conserved among Gram negative bacteria. Thus, the insert sequence of ManD from Gram negative bacteria acts as a common inducer to decrease the catalytic rate and consequently the glucuronate metabolic rate as compared to those from Gram positives. Moreover, residues essential for substrate to enter the active site were characterized via structural analysis and enzymatic activity assays.
Collapse
Affiliation(s)
- Xiaoting Qiu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol 2011; 77:8234-40. [PMID: 21965410 DOI: 10.1128/aem.05382-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force.
Collapse
|
12
|
Clomburg JM, Gonzalez R. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng 2010; 108:867-79. [DOI: 10.1002/bit.22993] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/11/2010] [Accepted: 10/15/2010] [Indexed: 11/07/2022]
|