1
|
Bloch S, Nejman-Faleńczyk B, Licznerska K, Dydecka A, Topka-Bielecka G, Necel A, Węgrzyn A, Węgrzyn G. Complex effects of the exo-xis region of the Shiga toxin-converting bacteriophage Φ24 B genome on the phage development and the Escherichia coli host physiology. J Appl Genet 2024; 65:191-211. [PMID: 37968427 PMCID: PMC10789677 DOI: 10.1007/s13353-023-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Lambdoid bacteriophages are excellent models in studies on molecular aspects of virus-host interactions. However, some of them carry genes encoding toxins which are responsible for virulence of pathogenic strains of bacteria. Shiga toxin-converting bacteriophages (Stx phages) encode Shiga toxins that cause virulence of enterohemorrhagic Escherichia coli (EHEC), and their effective production depends on Stx prophage induction. The exo-xis region of the lambdoid phage genome consists of genes which are dispensable for the phage multiplication under laboratory conditions; however, they might modulate the virus development. Nevertheless, their exact effects on the phage and host physiology remained unclear. Here, we present results of complex studies on the role of the exo-xis region of bacteriophage Φ24B, one of Stx2b phages. Transcriptomic analyses, together with proteomic and metabolomic studies, provided the basis for understanding the functions of the exo-xis region. Genes from this region promoted lytic development of the phage over lysogenization. Moreover, expression of the host genes coding for DnaK, DnaJ, GrpE, and GroELS chaperones was impaired in the cells infected with the Δexo-xis phage mutant, relative to the wild-type virus, corroborating the conclusion about lytic development promotion by the exo-xis region. Proteomic and metabolomic analyses indicated also modulation of gad and nrf operons, and levels of amino acids and acylcarnitines, respectively. In conclusion, the exo-xis region controls phage propagation and host metabolism by influencing expression of different phage and bacterial genes, directing the virus to the lytic rather than lysogenic developmental mode.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | | | | | | | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Węgrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
2
|
Bloch S, Lewandowska N, Zwolenkiewicz J, Mach P, Łukasiak A, Olejniczak M, Donaldson LW, Węgrzyn G, Nejman-Faleńczyk B. Bacteriophage-encoded 24B_1 molecule resembles herpesviral microRNAs and plays a crucial role in the development of both the virus and its host. PLoS One 2023; 18:e0296038. [PMID: 38117844 PMCID: PMC10732415 DOI: 10.1371/journal.pone.0296038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
The 24B_1 small non-coding RNA molecule has been identified in Escherichia coli after induction of Shiga toxin-converting bacteriophage Φ24B. In this work, we focused on its direct role during phage and bacterial host development. We observed that in many aspects, this phage sRNA resembles herpesviral microRNAs. Similar to microRNAs, the mature 24B_1 is a short molecule, consisting of just 20 nucleotides. It is generated by cleaving the 80-nt long precursor transcript, and likely it undergoes a multi-step maturation process in which the Hfq protein plays an important role, as confirmed by demonstration of its binding to the 24B_1 precursor, but not to the 24B_1 mature form. Moreover, 24B_1 plays a significant role in maintaining the prophage state and reprogramming the host's energy metabolism. We proved that overproduction of this molecule causes the opposite physiological effects to the mutant devoid of the 24B_1 gene, and thus, favors the lysogenic pathway. Furthermore, the 24B_1 overrepresentation significantly increases the efficiency of expression of phage genes coding for proteins CI, CII, and CIII which are engaged in the maintenance of the prophage. It seems that through binding to mRNA of the sdhB gene, coding for the succinate dehydrogenase subunit, the 24B_1 alters the central carbon metabolism and causes a drop in the ATP intracellular level. Interestingly, a similar effect, called the Warburg switch, is caused by herpesviral microRNAs and it is observed in cancer cells. The advantage of the Warburg effect is still unclear, however, it was proposed that the metabolism of cancer cells, and all rapidly dividing cells, is adopted to convert nutrients such as glucose and glutamine faster and more efficiently into biomass. The availability of essential building blocks, such as nucleotides, amino acids, and lipids, is crucial for effective cell proliferation which in turn is essential for the prophage and its host to stay in the lysogenic state.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Joanna Zwolenkiewicz
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Paulina Mach
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
3
|
Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 2021; 10:404. [PMID: 33805526 PMCID: PMC8065619 DOI: 10.3390/pathogens10040404] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Shiga toxins (Stx) of Shiga toxin-producing Escherichia coli (STEC) are generally encoded in the genome of lambdoid bacteriophages, which spend the most time of their life cycle integrated as prophages in specific sites of the bacterial chromosome. Upon spontaneous induction or induction by chemical or physical stimuli, the stx genes are co-transcribed together with the late phase genes of the prophages. After being assembled in the cytoplasm, and after host cell lysis, mature bacteriophage particles are released into the environment, together with Stx. As members of the group of lambdoid phages, Stx phages share many genetic features with the archetypical temperate phage Lambda, but are heterogeneous in their DNA sequences due to frequent recombination events. In addition to Stx phages, the genome of pathogenic STEC bacteria may contain numerous prophages, which are either cryptic or functional. These prophages may carry foreign genes, some of them related to virulence, besides those necessary for the phage life cycle. Since the production of one or more Stx is considered the major pathogenicity factor of STEC, we aim to highlight the new insights on the contribution of Stx phages and other STEC phages to pathogenicity.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Nadja Haarmann
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maike Schwidder
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; (L.R.-R.); (M.M.)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; (N.H.); (M.S.)
| |
Collapse
|
4
|
Mohaisen MR, McCarthy AJ, Adriaenssens EM, Allison HE. The Site-Specific Recombination System of the Escherichia coli Bacteriophage Φ24 B. Front Microbiol 2020; 11:578056. [PMID: 33162958 PMCID: PMC7581858 DOI: 10.3389/fmicb.2020.578056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Stx bacteriophages are members of the lambdoid group of phages and are responsible for Shiga toxin (Stx) production and the dissemination of Shiga toxin genes (stx) across shigatoxigenic Escherichia coli (STEC). These toxigenic bacteriophage hosts can cause life-threatening illnesses, and Stx is the virulence determinant responsible for the severe nature of infection with enterohemorrhagic E. coli, a subset of pathogenic STEC. Stx phages are temperate, and in the present study, the identification of what is actually required for Stx phage Φ24B and bacterial DNA recombination was tested using both in vitro and in situ recombination assays. It is well established that phage λ, which underpins most of what we understand about lambdoid phage biology, requires its own encoded phage attachment site (attP) of 250 bp, a host-encoded attachment site (attB) of 21 bp, and a host-encoded DNA binding protein known as integration host factor (IHF). The assays applied in this study enabled the manipulation of the phage attachment site (attP) and the bacterial attachment site (attB) sequences and the inclusion or exclusion of a host-encoded accessory element known as integration host factor. We were able to demonstrate that the minimal attP sequence required by Φ24B phage is between 350 and 427 bp. Unlike phage λ, the minimal necessary flanking sequences for the attB site do not appear to be equal in size, with a total length between 62 and 93 bp. Furthermore, we identified that the Φ24B integrase does not require IHF to drive the integration and the recombination process. Understanding how this unusual Stx phage integrase works may enable exploitation of its promiscuous nature in the context of genetic engineering.
Collapse
Affiliation(s)
- Mohammed Radhi Mohaisen
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,College of Dentistry, University of Anbar, Ramadi, Iraq
| | - Alan John McCarthy
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Heather Elizabeth Allison
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Kozłowska K, Glinkowska M, Boss L, Gaffke L, Deptuła J, Węgrzyn G. Formation of Complexes Between O Proteins and Replication Origin Regions of Shiga Toxin-Converting Bacteriophages. Front Mol Biosci 2020; 7:207. [PMID: 32974386 PMCID: PMC7466680 DOI: 10.3389/fmolb.2020.00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin-converting bacteriophages (or Stx phages) are responsible for virulence of enterohemorrhagic Escherichia coli strains. Although they belong to the group of lambdoid phages, which have served as models in studies on DNA replication mechanisms, details of regulation of replication of Stx phage genomes are poorly understood. Despite high similarity of their replication regions to that of phage lambda, considerable differences occur between them. Here, we present a comparison of origins of replication and O proteins of lambda and selected Stx phages (phages P27 and 933W). Stx initiator proteins, similarly to the lambda O protein, exist in the form of dimers. Only 4 iteron sequences are strongly bound in vitro by the O proteins, despite the presence of 6 such fragments in the Stx ori, while the function of the other two iterons is still crucial for transformation of E. coli wild-type strain by the P27-derived lambdoid plasmid. As these sequences are found in the gene coding for Stx O proteins, the sequences of these proteins themselves are also extended compared to lambda phage. Therefore, proteins O of Stx phages P27 and 933W have 13 additional amino acids. They can act as a space barrier, thus affecting the lesser packing of the O-some Stx complex compared to the structure found in lambda. Such structure of the DNA replication initiation complex may determine its lesser dependence on the processes occurring in the host cell, including transcriptional activation of the origin. Differences between molecular processes occurring during formation of replication complexes in lambda and Stx phages may indicate the specialization of the latter phages and their adaptation to specific environmental conditions where quick genetic switches are crucial.
Collapse
Affiliation(s)
- Katarzyna Kozłowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Monika Glinkowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Lidia Boss
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jakub Deptuła
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
6
|
Kozłowska KI, Tymecka-Mulik J, Węgrzyn G. Purified Stx and λ phage initiator O proteins bind specifically to two different origins of replication in vitro. Protein Expr Purif 2016; 131:16-26. [PMID: 27826079 DOI: 10.1016/j.pep.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/24/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022]
Abstract
The O protein is a crucial factor initiating the DNA replication of lambdoid bacteriophage. Efficient DNA replication of Shiga toxin-converting phage is necessary for effective production of Shiga toxin - main virulence factor of STEC strains. We developed an improved protocol for overproduction, bacterial cell lysis and purification of λO protein. With use of this method we have also isolated O proteins of Stx-phage P27 and 933W that were never purified before. Purified proteins were tested for their DNA binding activity and revealed a sequence specific interactions.
Collapse
Affiliation(s)
- Katarzyna I Kozłowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Joanna Tymecka-Mulik
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
7
|
|
8
|
ppGpp-dependent negative control of DNA replication of Shiga toxin-converting bacteriophages in Escherichia coli. J Bacteriol 2013; 195:5007-15. [PMID: 23995636 DOI: 10.1128/jb.00592-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The pathogenicity of enterohemorrhagic Escherichia coli (EHEC) strains depends on the production of Shiga toxins that are encoded on lambdoid prophages. Effective production of these toxins requires prophage induction and subsequent phage replication. Previous reports indicated that lytic development of Shiga toxin-converting bacteriophages is inhibited in amino acid-starved bacteria. However, those studies demonstrated that inhibition of both phage-derived plasmid replication and production of progeny virions occurred during the stringent as well as the relaxed response to amino acid starvation, i.e., in the presence as well as the absence of high levels of ppGpp, an alarmone of the stringent response. Therefore, we asked whether ppGpp influences DNA replication and lytic development of Shiga toxin-converting bacteriophages. Lytic development of 5 such bacteriophages was tested in an E. coli wild-type strain and an isogenic mutant that does not produce ppGpp (ppGpp(0)). In the absence of ppGpp, production of progeny phages was significantly (in the range of an order of magnitude) more efficient than in wild-type cells. Such effects were observed in infected bacteria as well as after prophage induction. All tested bacteriophages formed considerably larger plaques on lawns formed by ppGpp(0) bacteria than on those formed by wild-type E. coli. The efficiency of synthesis of phage DNA and relative amount of lambdoid plasmid DNA were increased in cells devoid of ppGpp relative to bacteria containing a basal level of this nucleotide. We conclude that ppGpp negatively influences the lytic development of Shiga toxin-converting bacteriophages and that phage DNA replication efficiency is limited by the stringent control alarmone.
Collapse
|
9
|
Genes from the exo-xis region of λ and Shiga toxin-converting bacteriophages influence lysogenization and prophage induction. Arch Microbiol 2013; 195:693-703. [PMID: 23979561 PMCID: PMC3824215 DOI: 10.1007/s00203-013-0920-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 01/17/2023]
Abstract
The exo–xis region, present in genomes of lambdoid bacteriophages, contains highly conserved genes of largely unknown functions. In this report, using bacteriophage λ and Shiga toxin-converting bacteriophage ϕ24Β, we demonstrate that the presence of this region on a multicopy plasmid results in impaired lysogenization of Escherichia coli and delayed, while more effective, induction of prophages following stimulation by various agents (mitomycin C, hydrogen peroxide, UV irradiation). Spontaneous induction of λ and ϕ24Β prophages was also more efficient in bacteria carrying additional copies of the corresponding exo–xis region on plasmids. No significant effects of an increased copy number of genes located between exo and xis on both efficiency of adsorption on the host cells and lytic development inside the host cell of these bacteriophages were found. We conclude that genes from the exo–xis region of lambdoid bacteriophages participate in the regulation of lysogenization and prophage maintenance.
Collapse
|
10
|
Barańska S, Glinkowska M, Herman-Antosiewicz A, Maciąg-Dorszyńska M, Nowicki D, Szalewska-Pałasz A, Węgrzyn A, Węgrzyn G. Replicating DNA by cell factories: roles of central carbon metabolism and transcription in the control of DNA replication in microbes, and implications for understanding this process in human cells. Microb Cell Fact 2013; 12:55. [PMID: 23714207 PMCID: PMC3698200 DOI: 10.1186/1475-2859-12-55] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/26/2013] [Indexed: 12/29/2022] Open
Abstract
Precise regulation of DNA replication is necessary to ensure the inheritance of genetic features by daughter cells after each cell division. Therefore, determining how the regulatory processes operate to control DNA replication is crucial to our understanding and application to biotechnological processes. Contrary to early concepts of DNA replication, it appears that this process is operated by large, stationary nucleoprotein complexes, called replication factories, rather than by single enzymes trafficking along template molecules. Recent discoveries indicated that in bacterial cells two processes, central carbon metabolism (CCM) and transcription, significantly and specifically influence the control of DNA replication of various replicons. The impact of these discoveries on our understanding of the regulation of DNA synthesis is discussed in this review. It appears that CCM may influence DNA replication by either action of specific metabolites or moonlighting activities of some enzymes involved in this metabolic pathway. The role of transcription in the control of DNA replication may arise from either topological changes in nucleic acids which accompany RNA synthesis or direct interactions between replication and transcription machineries. Due to intriguing similarities between some prokaryotic and eukaryotic regulatory systems, possible implications of studies on regulation of microbial DNA replication on understanding such a process occurring in human cells are discussed.
Collapse
Affiliation(s)
- Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Loś JM, Loś M, Węgrzyn A, Węgrzyn G. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol 2013; 2:166. [PMID: 23316482 PMCID: PMC3539655 DOI: 10.3389/fcimb.2012.00166] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/11/2012] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) may cause bloody diarrhea and hemorrhagic colitis (HC), with subsequent systemic disease. Since genes coding for Shiga toxins (stx genes) are located on lambdoid prophages, their effective production occurs only after prophage induction. Such induction and subsequent lytic development of Shiga toxin-converting bacteriophages results not only in production of toxic proteins, but also in the lysis (and thus, the death) of the host cell. Therefore, one may ask the question: what is the benefit for bacteria to produce the toxin if they die due to phage production and subsequent cell lysis? Recently, a hypothesis was proposed (simultaneously but independently by two research groups) that STEC may benefit from Shiga toxin production as a result of toxin-dependent killing of eukaryotic cells such as unicellular predators or human leukocytes. This hypothesis could make sense only if we assume that prophage induction (and production of the toxin) occurs only in a small fraction of bacterial cells, thus, a few members of the population are sacrificed for the benefit of the rest, providing an example of “bacterial altruism.” However, various reports indicating that the frequency of spontaneous induction of Shiga toxin-converting prophages is higher than that of other lambdoid prophages might seem to contradict the for-mentioned model. On the other hand, analysis of recently published results, discussed here, indicated that the efficiency of prophage excision under conditions that may likely occur in the natural habitat of STEC is sufficiently low to ensure survival of a large fraction of the bacterial host. A molecular mechanism by which partial prophage induction may occur is proposed. We conclude that the published data supports the proposed model of bacterial “altruism” where prophage induction occurs at a low enough frequency to render toxin production a positive selective force on the general STEC population.
Collapse
Affiliation(s)
- Joanna M Loś
- Laboratory of Molecular Genetics, Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| | | | | | | |
Collapse
|
12
|
Abstract
Bacteriophage λ, rediscovered in the early 1950s, has served as a model in molecular biology studies for decades. Although currently more complex organisms and more complicated biological systems can be studied, this phage is still an excellent model to investigate principles of biological processes occurring at the molecular level. In fact, very few other biological models provide possibilities to examine regulations of biological mechanisms as detailed as performed with λ. In this chapter, recent advances in our understanding of mechanisms of bacteriophage λ development are summarized and discussed. Particularly, studies on (i) phage DNA injection, (ii) molecular bases of the lysis-versus-lysogenization decision and the lysogenization process itself, (iii) prophage maintenance and induction, (iv), λ DNA replication, (v) phage-encoded recombination systems, (vi) transcription antitermination, (vii) formation of the virion structure, and (viii) lysis of the host cell, as published during several past years, will be presented.
Collapse
|
13
|
Nejman-Faleńczyk B, Golec P, Maciąg M, Wegrzyn A, Węgrzyn G. Inhibition of development of Shiga toxin-converting bacteriophages by either treatment with citrate or amino acid starvation. Foodborne Pathog Dis 2011; 9:13-9. [PMID: 22047055 DOI: 10.1089/fpd.2011.0980] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Shiga toxin-producing Escherichia coli (STEC) are pathogenic strains, whose virulence depends on induction of Shiga toxin-converting prophages and their subsequent lytic development. We explored which factors or conditions could inhibit development of these phages, potentially decreasing virulence of STEC. MATERIALS AND METHODS Lytic development of Shiga toxin-converting bacteriophages was monitored after mitomycin C-provoked prophage induction under various conditions. Phage DNA replication efficiency was assessed by measurement of DNA amount in cells using quantitative polymerase chain reaction. RESULTS We demonstrated that the use of citrate delayed Shiga toxin-converting phage development after prophage induction. This effect was independent on efficiency of prophage induction and phage DNA replication. However, an excess of glucose reversed the effect of citrate. Amino acid starvation prevented the phage development in bacteria both able and unable to induce the stringent response. CONCLUSIONS Lytic development of Shiga toxin-converting bacteriophages can be inhibited by either the presence of citrate or amino acid starvation. We suggest that the inhibition caused by the latter condition may be due to a block in prophage induction or phage DNA replication or both. APPLICATIONS Our findings may facilitate development of procedures for treatment of STEC-infected patients.
Collapse
|
14
|
Łoś JM, Łoś M, Węgrzyn G. Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. Future Microbiol 2011; 6:909-24. [DOI: 10.2217/fmb.11.70] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although most Escherichia coli strains occur in the mammalian intestine as commensals, some of them, including enterohemorrhagic E. coli (EHEC), are capable of causing disease in humans. The most notorious virulence factors of EHEC are Shiga toxins, encoded by genes located on genomes of lambdoid prophages. Production and release of these toxins is strongly stimulated after the induction of these prophages. Many antibiotics used to treat bacterial infections stimulate induction of Shiga toxin-converting prophages, enhancing severity of the disease symptoms. Hence, treatment with antibiotics is not recommended if infection with EHEC is confirmed or even suspected. In this light, rapid detection of EHEC is crucial, and understanding the mechanisms of prophage induction and phage development in the human intestine is important to facilitate development of procedures preventing or alleviating Shiga toxin-caused diseases.
Collapse
Affiliation(s)
- Joanna M Łoś
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80–822 Gdansk, Poland
| | - Marcin Łoś
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80–822 Gdansk, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warsaw, Poland
| | | |
Collapse
|