1
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
2
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Li GH, Zhang KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat Prod Rep 2023; 40:646-675. [PMID: 36597965 DOI: 10.1039/d2np00074a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: 2010 to 2021Natural nematicidal metabolites are important sources of nematode control. This review covers the isolation and structural determination of nematicidal metabolites from 2010 to 2021. We summarise chemical structures, bioactivity, metabolic regulation and biosynthesis of potential nematocides, and structure-activity relationship and application potentiality of natural metabolites in plant parasitic nematodes' biocontrol. In doing so, we aim to provide a comprehensive overview of the potential roles that natural metabolites can play in anti-nematode strategies.
Collapse
Affiliation(s)
- Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
4
|
The Streptomyces filipinensis Gamma-Butyrolactone System Reveals Novel Clues for Understanding the Control of Secondary Metabolism. Appl Environ Microbiol 2020; 86:AEM.00443-20. [PMID: 32631864 PMCID: PMC7480387 DOI: 10.1128/aem.00443-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
Streptomyces GBLs are important signaling molecules that trigger antibiotic production in a quorum sensing-dependent manner. We have characterized the GBL system from S. filipinensis, finding that two key players of this system, the GBL receptor and the pseudo-receptor, each counteracts the transcription of the other for the modulation of filipin production and that such control over antifungal production involves an indirect effect on the transcription of filipin biosynthetic genes. Additionally, the two regulators bind the same sites, are self-regulated, and repress the transcription of three other genes of the GBL cluster, including that encoding the GBL synthase. In contrast to all the GBL receptors known, SfbR activates its own synthesis. Moreover, the pseudo-receptor was identified as the receptor of antimycin A, thus extending the range of examples supporting the idea of signaling effects of antibiotics in Streptomyces. The intricate regulatory network depicted here should provide important clues for understanding the regulatory mechanism governing secondary metabolism. Streptomyces γ-butyrolactones (GBLs) are quorum sensing communication signals triggering antibiotic production. The GBL system of Streptomyces filipinensis, the producer of the antifungal agent filipin, has been investigated. Inactivation of sfbR (for S. filipinensis γ-butyrolactone receptor), a GBL receptor, resulted in a strong decrease in production of filipin, and deletion of sfbR2, a pseudo-receptor, boosted it, in agreement with lower and higher levels of transcription of filipin biosynthetic genes, respectively. It is noteworthy that none of the mutations affected growth or morphological development. While no ARE (autoregulatory element)-like sequences were found in the promoters of filipin genes, suggesting indirect control of production, five ARE sequences were found in five genes of the GBL cluster, whose transcription has been shown to be controlled by both S. filipinensis SfbR and SfbR2. In vitro binding of recombinant SfbR and SfbR2 to such sequences indicated that such control is direct. Transcription start points were identified by 5′ rapid amplification of cDNA ends, and precise binding regions were investigated by the use of DNase I protection studies. Binding of both regulators took place in the promoter of target genes and at the same sites. Information content analysis of protected sequences in target promoters yielded an 18-nucleotide consensus ARE sequence. Quantitative transcriptional analyses revealed that both regulators are self-regulated and that each represses the transcription of the other as well as that of the remaining target genes. Unlike other GBL receptor homologues, SfbR activates its own transcription whereas SfbR2 has a canonical autorepression profile. Additionally, SfbR2 was found here to bind the antifungal antimycin A as a way to modulate its DNA-binding activity. IMPORTANCEStreptomyces GBLs are important signaling molecules that trigger antibiotic production in a quorum sensing-dependent manner. We have characterized the GBL system from S. filipinensis, finding that two key players of this system, the GBL receptor and the pseudo-receptor, each counteracts the transcription of the other for the modulation of filipin production and that such control over antifungal production involves an indirect effect on the transcription of filipin biosynthetic genes. Additionally, the two regulators bind the same sites, are self-regulated, and repress the transcription of three other genes of the GBL cluster, including that encoding the GBL synthase. In contrast to all the GBL receptors known, SfbR activates its own synthesis. Moreover, the pseudo-receptor was identified as the receptor of antimycin A, thus extending the range of examples supporting the idea of signaling effects of antibiotics in Streptomyces. The intricate regulatory network depicted here should provide important clues for understanding the regulatory mechanism governing secondary metabolism.
Collapse
|
5
|
Kong D, Wang X, Nie J, Niu G. Regulation of Antibiotic Production by Signaling Molecules in Streptomyces. Front Microbiol 2019; 10:2927. [PMID: 31921086 PMCID: PMC6930871 DOI: 10.3389/fmicb.2019.02927] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022] Open
Abstract
The genus Streptomyces is a unique subgroup of actinomycetes bacteria that are well-known as prolific producers of antibiotics and many other bioactive secondary metabolites. Various environmental and physiological signals affect the onset and level of production of each antibiotic. Here we highlight recent findings on the regulation of antibiotic biosynthesis in Streptomyces by signaling molecules, with special focus on autoregulators such as hormone-like signaling molecules and antibiotics themselves. Hormone-like signaling molecules are a group of small diffusible signaling molecules that interact with specific receptor proteins to initiate complex regulatory cascades of antibiotic biosynthesis. Antibiotics and their biosynthetic intermediates can also serve as autoregulators to fine-tune their own biosynthesis or cross-regulators of disparate biosynthetic pathways. Advances in understanding of signaling molecules-mediated regulation of antibiotic production in Streptomyces may aid the discovery of new signaling molecules and their use in eliciting silent antibiotic biosynthetic pathways in a wide range of actinomycetes.
Collapse
Affiliation(s)
- Dekun Kong
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xia Wang
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ju Nie
- Biotechnology Research Center, Southwest University, Chongqing, China.,College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
6
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
7
|
Butenolides from Streptomyces albus J1074 Act as External Signals To Stimulate Avermectin Production in Streptomyces avermitilis. Appl Environ Microbiol 2018; 84:AEM.02791-17. [PMID: 29500256 DOI: 10.1128/aem.02791-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/20/2018] [Indexed: 11/20/2022] Open
Abstract
In streptomycetes, autoregulators are important signaling compounds that trigger secondary metabolism, and they are regarded as Streptomyces hormones based on their extremely low effective concentrations (nM) and the involvement of specific receptor proteins. Our previous distribution study revealed that butenolide-type Streptomyces hormones, including avenolide, are a general class of signaling molecules in streptomycetes and that Streptomyces albus strain J1074 may produce butenolide-type Streptomyces hormones. Here, we describe metabolite profiling of a disruptant of the S. albusaco gene, which encodes a key biosynthetic enzyme for butenolide-type Streptomyces hormones, and identify four butenolide compounds from S. albus J1074 that show avenolide activity. The compounds structurally resemble avenolide and show different levels of avenolide activity. A dual-culture assay with imaging mass spectrometry (IMS) analysis for in vivo metabolic profiling demonstrated that the butenolide compounds of S. albus J1074 stimulate avermectin production in another Streptomyces species, Streptomyces avermitilis, illustrating the complex chemical interactions through interspecies signals in streptomycetes.IMPORTANCE Microorganisms produce external and internal signaling molecules to control their complex physiological traits. In actinomycetes, Streptomyces hormones are low-molecular-weight signals that are key to our understanding of the regulatory mechanisms of Streptomyces secondary metabolism. This study reveals that acyl coenzyme A (acyl-CoA) oxidase is a common and essential biosynthetic enzyme for butenolide-type Streptomyces hormones. Moreover, the diffusible butenolide compounds from a donor Streptomyces strain were recognized by the recipient Streptomyces strain of a different species, resulting in the initiation of secondary metabolism in the recipient. This is an interesting report on the chemical interaction between two different streptomycetes via Streptomyces hormones. Information on the metabolite network may provide useful hints not only to clarification of the regulatory mechanism of secondary metabolism, but also to understanding of the chemical communication among streptomycetes to control their physiological traits.
Collapse
|
8
|
Characterization of the biosynthetic gene cluster for cryptic phthoxazolin A in Streptomyces avermitilis. PLoS One 2018; 13:e0190973. [PMID: 29324854 PMCID: PMC5764310 DOI: 10.1371/journal.pone.0190973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/23/2017] [Indexed: 11/19/2022] Open
Abstract
Phthoxazolin A, an oxazole-containing polyketide, has a broad spectrum of anti-oomycete activity and herbicidal activity. We recently identified phthoxazolin A as a cryptic metabolite of Streptomyces avermitilis that produces the important anthelmintic agent avermectin. Even though genome data of S. avermitilis is publicly available, no plausible biosynthetic gene cluster for phthoxazolin A is apparent in the sequence data. Here, we identified and characterized the phthoxazolin A (ptx) biosynthetic gene cluster through genome sequencing, comparative genomic analysis, and gene disruption. Sequence analysis uncovered that the putative ptx biosynthetic genes are laid on an extra genomic region that is not found in the public database, and 8 open reading frames in the extra genomic region could be assigned roles in the biosynthesis of the oxazole ring, triene polyketide and carbamoyl moieties. Disruption of the ptxA gene encoding a discrete acyltransferase resulted in a complete loss of phthoxazolin A production, confirming that the trans-AT type I PKS system is responsible for the phthoxazolin A biosynthesis. Based on the predicted functional domains in the ptx assembly line, we propose the biosynthetic pathway of phthoxazolin A.
Collapse
|
9
|
Zhu J, Chen Z, Li J, Wen Y. AvaR1, a Butenolide-Type Autoregulator Receptor in Streptomyces avermitilis, Directly Represses Avenolide and Avermectin Biosynthesis and Multiple Physiological Responses. Front Microbiol 2017; 8:2577. [PMID: 29312254 PMCID: PMC5744401 DOI: 10.3389/fmicb.2017.02577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Avermectins are commercially important anthelmintic antibiotics produced by Streptomyces avermitilis. The homologous TetR-family transcriptional regulators AvaR1 and AvaR2 in this species were identified previously as receptors of avenolide, a novel butenolide-type autoregulator signal required for triggering avermectin biosynthesis. AvaR2 was found to be an important pleiotropic regulator in repression of avermectin and avenolide production and cell growth, whereas the regulatory role of AvaR1 remains unclear. Investigation of AvaR1 function in the present study showed that it had no effect on cell growth or morphological differentiation, but inhibited avenolide and avermectin production mainly through direct repression of aco (the key enzyme gene for avenolide biosynthesis) and aveR (the cluster-situated activator gene). AvaR1 also directly repressed its own gene (avaR1) and two adjacent homologous genes (avaR2 and avaR3). Binding sites of AvaR1 on these five target promoter regions completely overlapped those of AvaR2, leading to the same consensus binding motif. However, AvaR1 and AvaR2 had both common and exclusive target genes, indicating that they cross-regulate diverse physiological processes. Ten novel identified AvaR1 targets are involved in primary metabolism, stress responses, ribosomal protein synthesis, and cyclic nucleotide degration, reflecting a pleiotropic role of AvaR1. Competitive EMSAs and GST pull-down assays showed that AvaR1 and AvaR2 competed for the same binding regions, and could form a heterodimer and homodimers, suggesting that AvaR1 and AvaR2 compete and cooperate to regulate their common target genes. These findings provide a more comprehensive picture of the cellular responses mediated by AvaR1 and AvaR2 regulatory networks in S. avermitilis.
Collapse
Affiliation(s)
- Jianya Zhu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, Beijing, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Learn from microbial intelligence for avermectins overproduction. Curr Opin Biotechnol 2017; 48:251-257. [DOI: 10.1016/j.copbio.2017.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022]
|
11
|
Lu F, Hou Y, Zhang H, Chu Y, Xia H, Tian Y. Regulatory genes and their roles for improvement of antibiotic biosynthesis in Streptomyces. 3 Biotech 2017; 7:250. [PMID: 28718097 DOI: 10.1007/s13205-017-0875-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/07/2017] [Indexed: 01/23/2023] Open
Abstract
The numerous secondary metabolites in Streptomyces spp. are crucial for various applications. For example, cephamycin C is used as an antibiotic, and avermectin is used as an insecticide. Specifically, antibiotic yield is closely related to many factors, such as the external environment, nutrition (including nitrogen and carbon sources), biosynthetic efficiency and the regulatory mechanisms in producing strains. There are various types of regulatory genes that work in different ways, such as pleiotropic (or global) regulatory genes, cluster-situated regulators, which are also called pathway-specific regulatory genes, and many other regulators. The study of regulatory genes that influence antibiotic biosynthesis in Streptomyces spp. not only provides a theoretical basis for antibiotic biosynthesis in Streptomyces but also helps to increase the yield of antibiotics via molecular manipulation of these regulatory genes. Currently, more and more emphasis is being placed on the regulatory genes of antibiotic biosynthetic gene clusters in Streptomyces spp., and many studies on these genes have been performed to improve the yield of antibiotics in Streptomyces. This paper lists many antibiotic biosynthesis regulatory genes in Streptomyces spp. and focuses on frequently investigated regulatory genes that are involved in pathway-specific regulation and pleiotropic regulation and their applications in genetic engineering.
Collapse
|
12
|
Thao NB, Kitani S, Nitta H, Tomioka T, Nihira T. Discovering potential Streptomyces hormone producers by using disruptants of essential biosynthetic genes as indicator strains. J Antibiot (Tokyo) 2017; 70:1004-1008. [PMID: 28951606 DOI: 10.1038/ja.2017.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.
Collapse
Affiliation(s)
- Nguyen B Thao
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Hiroko Nitta
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Toshiya Tomioka
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, Osaka, Japan.,Faculty of Science, MU-OU Collaborative Research Center for Bioscience and Biotechnology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Suroto DA, Kitani S, Miyamoto KT, Sakihama Y, Arai M, Ikeda H, Nihira T. Activation of cryptic phthoxazolin A production in Streptomyces avermitilis by the disruption of autoregulator-receptor homologue AvaR3. J Biosci Bioeng 2017; 124:611-617. [PMID: 28728974 DOI: 10.1016/j.jbiosc.2017.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
The genomes of actinomycetes encode many cryptic novel/useful bioactive compounds, but access to these cryptic secondary metabolites remains limited. Streptomyces avermitilis predominantly produces three polyketide antibiotics (avermectin, filipin, and oligomycin) but has the potential to produce more secondary metabolites based on the number of cryptic biosynthetic gene clusters. Here, we extensively investigated the metabolite profiles of a gene disruptant of AvaR3 (an autoregulator receptor homologue), which is involved in the pleiotropic regulation of antibiotic production and cell morphology. Unlike the wild-type strain, the avaR3 mutant accumulated compound 3 in the culture. The chemical structure of compound 3 was elucidated on the basis of various spectroscopic analyses, and was identified as phthoxazolin A, a cellulose synthesis inhibitor. Bioassays demonstrated that compound 3 exerts growth inhibitory activity against a broad range of plant pathogenic oomycetes. Moreover, unlike avermectin production, phthoxazolin A (3) production was negatively controlled by avenolide, a new type of autoregulator in streptomycetes, through the function of AvaR3. These results suggest that the genetic manipulation of autoregulator receptor homologues would be a valuable tool for the discovery of cryptic bioactive compounds.
Collapse
Affiliation(s)
- Dian Anggraini Suroto
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyoko T Miyamoto
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuko Sakihama
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand.
| |
Collapse
|
14
|
Zhu J, Sun D, Liu W, Chen Z, Li J, Wen Y. AvaR2, a pseudo γ-butyrolactone receptor homologue from Streptomyces avermitilis, is a pleiotropic repressor of avermectin and avenolide biosynthesis and cell growth. Mol Microbiol 2016; 102:562-578. [PMID: 27502190 DOI: 10.1111/mmi.13479] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 11/27/2022]
Abstract
Avermectins produced by Streptomyces avermitilis are effective anthelmintic agents. The autoregulatory signalling molecule that triggers avermectin biosynthesis is a novel butenolide-type molecule, avenolide, rather than common γ-butyrolactones (GBLs). We identified AvaR2, a pseudo GBL receptor homologue, as an important repressor of avermectin and avenolide biosynthesis and cell growth. AvaR2 directly repressed transcription of aveR (the ave cluster-situated activator gene), aco (a key gene for avenolide biosynthesis), its own gene (avaR2) and two other GBL receptor homologous genes (avaR1 and avaR3) by binding to their promoter regions. The aveR promoter had the highest affinity for AvaR2. A consensus 18 bp ARE (autoregulatory element)-like sequence was found in the AvaR2-binding regions of these five target genes. Eleven novel AvaR2 targets were identified, including genes involved in primary metabolism, ribosomal protein synthesis, and stress responses. AvaR2 bound and responded to endogenous avenolide and exogenous antibiotics jadomycin B (JadB) and aminoglycosides to modulate its DNA-binding activity. Our findings help to clarify the roles of pseudo GBL receptors as pleiotropic regulators and as receptors for new type autoregulator and exogenous antibiotic signal. A pseudo GBL receptor-mediated antibiotic signalling transduction system may be a common strategy that facilitates Streptomyces interspecies communication and survival in complex environments.
Collapse
Affiliation(s)
- Jianya Zhu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Di Sun
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenshuai Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Sultan SP, Kitani S, Miyamoto KT, Iguchi H, Atago T, Ikeda H, Nihira T. Characterization of AvaR1, a butenolide-autoregulator receptor for biosynthesis of a Streptomyces hormone in Streptomyces avermitilis. Appl Microbiol Biotechnol 2016; 100:9581-9591. [DOI: 10.1007/s00253-016-7781-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
|
16
|
Abstract
The 2015 Nobel Prize in Physiology or Medicine has been awarded to avermectins and artemisinin, respectively. Avermectins produced by Streptomyces avermitilis are excellent anthelmintic and potential antibiotic agents. Because wild-type strains only produce low levels of avermectins, much research effort has focused on improvements in avermectin production to meet the ever increasing demand for such compounds. This review describes the strategies that have been widely employed and the future prospects of synthetic biology applications in avermectin yield improvement. With the help of genome sequencing of S. avermitilis and an understanding of the avermectin biosynthetic/regulatory pathways, synthetic and systems biotechnology approaches have been applied for precision engineering. We focus on the design and synthesis of biological chassis, parts, devices, and modules from diverse microbes to reconstruct and optimize their dynamic processes, as well as predict favorable effective overproduction of avermectins by a 4Ms strategy (Mine, Model, Manipulation, and Measurement).
Collapse
Key Words
- APGD, atmospheric pressure glow discharge
- Avermectins
- BCDH, branched-chain alpha-keto acid dehydrogenase
- ChIP, chromatin immunoprecipitation
- DO, dissolved oxygen
- EER, ethanol evolution rate
- GBL, gamma-butyrolactone
- HMGE, high-magnet gravitational environment
- IB-CoA, isobutyryl-CoA
- MB-CoA, 2-methybutyryl-CoA
- MDR-TB, multidrug-resistant tuberculosis
- MM-CoA, methylmalonyl- CoA
- MMS, methyl methanesulphonate
- MRSA, methicillin-resistant Staphylococcus aureus
- MTP, microtiter plates
- Metabolic engineering
- NA, nitrous acid
- NTG, N-methyl-N-nitro-N-nitrosoguanidine
- OUR, oxygen uptake rate
- PBD, Plackett–Burman design
- RF, radio frequency
- RRF, ribosome recycling factor
- SAM, S-adenosylmethionine
- STPK, serine-threonine protein kinases
- Streptomyces avermitilis
- Synthetic biology
- TAR, transformation-assisted recombination
- UV, ultraviolet rays
- XDR-TB, extensively drug-resistant tuberculosis
Collapse
|
17
|
Kurniawan YN, Kitani S, Iida A, Maeda A, Lycklama a Nijeholt J, Lee YJ, Nihira T. Regulation of production of the blue pigment indigoidine by the pseudo γ-butyrolactone receptor FarR2 in Streptomyces lavendulae FRI-5. J Biosci Bioeng 2016; 121:372-9. [DOI: 10.1016/j.jbiosc.2015.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/30/2015] [Accepted: 08/23/2015] [Indexed: 02/05/2023]
|
18
|
Yang R, Liu X, Wen Y, Song Y, Chen Z, Li J. The PhoP transcription factor negatively regulates avermectin biosynthesis in Streptomyces avermitilis. Appl Microbiol Biotechnol 2015; 99:10547-57. [PMID: 26298701 DOI: 10.1007/s00253-015-6921-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
Bacteria sense and respond to the stress of phosphate limitation, anticipating Pi deletion/starvation via the two-component PhoR-PhoP system. The role of the response regulator PhoP in primary metabolism and avermectin biosynthesis in Streptomyces avermitilis was investigated. In response to phosphate starvation, S. avermitilis PhoP, like Streptomyces coelicolor and Streptomyces lividans PhoP, activates the expression of phoRP, phoU, and pstS by binding to the PHO boxes in their promoter regions. Avermectin biosynthesis was significantly increased in ΔphoP deletion mutants. Electrophoretic mobility gel shift assay (EMSA) and DNase I footprinting assays showed that PhoP can bind to a PHO box formed by two direct repeat units of 11 nucleotides located downstream of the transcriptional start site of aveR. By negatively regulating the transcription of aveR, PhoP directly affects avermectin biosynthesis in S. avermitilis. PhoP indirectly affects melanogenesis on Casaminoacids Minimal Medium (MMC) lacking supplemental phosphate. Nitrogen metabolism and some key genes involved in morphological differentiation and antibiotic production in S. avermitilis are also under the control of PhoP.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingchao Liu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Song
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi Chen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jilun Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
19
|
Increasing Avermectin Production in Streptomyces avermitilis by Manipulating the Expression of a Novel TetR-Family Regulator and Its Target Gene Product. Appl Environ Microbiol 2015; 81:5157-73. [PMID: 26002902 DOI: 10.1128/aem.00868-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Avermectins produced by Streptomyces avermitilis are commercially important anthelmintic agents. The detailed regulatory mechanisms of avermectin biosynthesis remain unclear. Here, we identified SAV3619, a TetR-family transcriptional regulator designated AveT, to be an activator for both avermectin production and morphological differentiation in S. avermitilis. AveT was shown to indirectly stimulate avermectin production by affecting transcription of the cluster-situated activator gene aveR. AveT directly repressed transcription of its own gene (aveT), adjacent gene pepD2 (sav_3620), sav_7490 (designated aveM), and sav_7491 by binding to an 18-bp perfect palindromic sequence (CGAAACGKTKYCGTTTCG, where K is T or G and Y is T or C and where the underlining indicates inverted repeats) within their promoter regions. aveM (which encodes a putative transmembrane efflux protein belonging to the major facilitator superfamily [MFS]), the important target gene of AveT, had a striking negative effect on avermectin production and morphological differentiation. Overexpression of aveT and deletion of aveM in wild-type and industrial strains of S. avermitilis led to clear increases in the levels of avermectin production. In vitro gel-shift assays suggested that C-5-O-B1, the late pathway precursor of avermectin B1, acts as an AveT ligand. Taken together, our findings indicate positive-feedback regulation of aveT expression and avermectin production by a late pathway intermediate and provide the basis for an efficient strategy to increase avermectin production in S. avermitilis by manipulation of AveT and its target gene product, AveM.
Collapse
|
20
|
Recent advances in biochemistry and biotechnological synthesis of avermectins and their derivatives. Appl Microbiol Biotechnol 2014; 98:7747-59. [DOI: 10.1007/s00253-014-5926-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 10/24/2022]
|
21
|
Two adjacent and similar TetR family transcriptional regulator genes, SAV577 and SAV576, co-regulate avermectin production in Streptomyces avermitilis. PLoS One 2014; 9:e99224. [PMID: 24915523 PMCID: PMC4051647 DOI: 10.1371/journal.pone.0099224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/13/2014] [Indexed: 12/02/2022] Open
Abstract
Streptomyces avermitilis is an important bacterial species used for industrial production of avermectins, a family of broad-spectrum anthelmintic agents. We previously identified the protein SAV576, a TetR family transcriptional regulator (TFR), as a downregulator of avermectin biosynthesis that acts by controlling transcription of its major target gene SAV575 (which encodes cytochrome P450/NADPH-ferrihemoprotein reductase) and ave genes. SAV577, another TFR gene, encodes a SAV577 protein that displays high amino acid homology with SAV576. In this study, we examined the effect of SAV577 on avermectin production and the relationships between SAV576 and SAV577. SAV577 downregulated avermectin biosynthesis indirectly, similarly to SAV576. SAV576 and SAV577 both directly repressed SAV575 transcription, and reciprocally repressed each other's expression. SAV575 transcription levels in various S. avermitilis strains were correlated with avermectin production levels. DNase I footprinting and electrophoretic mobility shift assays indicated that SAV576 and SAV577 compete for the same binding regions, and that DNA-binding affinity of SAV576 is much stronger than that of SAV577. GST pull-down assays revealed no direct interaction between the two proteins. Taken together, these findings suggest that SAV577 regulates avermectin production in S. avermitilis by a mechanism similar to that of SAV576, and that the role of SAV576 is dominant over that of SAV577. This is the first report of two adjacent and similar TFR genes that co-regulate antibiotic production in Streptomyces.
Collapse
|
22
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
23
|
Salehi-Najafabadi Z, Barreiro C, Rodríguez-García A, Cruz A, López GE, Martín JF. The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Appl Microbiol Biotechnol 2014; 98:4919-36. [PMID: 24562179 DOI: 10.1007/s00253-014-5595-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022]
Abstract
Streptomyces tsukubaensis is a well-established industrial tacrolimus producer strain, but its molecular genetics is very poorly known. This information shortage prevents the development of tailored mutants in the regulatory pathways. A region (named bul) contains several genes involved in the synthesis and control of the gamma-butyrolactone autoregulator molecules. This region contains ten genes (bulA, bulZ, bulY, bulR2, bulS2, bulR1, bulW, bluB, bulS1, bulC) including two γ-butyrolactone receptor homologues (bulR1, bulR2), two putative gamma-butyrolactone synthetase homologues (bulS1, bulS2) and two SARP regulatory genes (bulY, bulZ). Analysis of the autoregulatory element (ARE)-like sequences by electrophoretic mobility shift assays and footprinting using the purified BulR1 and BulR2 recombinant proteins revealed six ARE regulatory sequences distributed along the bul cluster. These sequences showed specific binding of both BulR1 (the gamma-butyrolactone receptor) and BulR2, a possible pseudo γ-butyrolactone receptor. The protected region in all cases covered a 28-nt sequence with a palindromic structure. Optimal docking area analysis of BulR1 proved that this protein can be presented as either monomer or dimer but not oligomers and that it binds to the conserved ARE sequence in both strands. The effect on tacrolimus production was analysed by deletion of the bulR1 gene, which resulted in a strong decrease of tacrolimus production. Meanwhile, the ΔbulR2 mutation did not affect the biosynthesis of this immunosuppressant.
Collapse
Affiliation(s)
- Zahra Salehi-Najafabadi
- Área de Microbiología, Departamento de Biología Molecular, Fac. CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Characterization of AvaR1, an autoregulator receptor that negatively controls avermectins production in a high avermectin-producing strain. Biotechnol Lett 2013; 36:813-9. [DOI: 10.1007/s10529-013-1416-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/14/2013] [Indexed: 10/25/2022]
|
25
|
Engineering of the TetR family transcriptional regulator SAV151 and its target genes increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol 2013; 98:399-409. [PMID: 24220792 DOI: 10.1007/s00253-013-5348-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
Abstract
Avermectins produced by Streptomyces avermitilis are used commercially for broad-spectrum parasite control in medical, veterinary, and agricultural fields. Our previous comparative transcriptome analysis of wild-type strain ATCC31267 vs. avermectin-overproducing strain 76-02-e revealed that the gene SAV151, which encodes a TetR family transcriptional regulator, was downregulated in 76-02-e. In the present study, we investigated the role of SAV151 in avermectin production. Deletion of SAV151 increased avermectin yield ~1-fold in ATCC31267, and this phenotype was complemented by a single copy of SAV151. Overexpression of SAV151 in ATCC31267 reduced avermectin yield by ~70%. RT-PCR analysis showed that the promoting effect of SAV151 deletion on avermectin production was not due to alteration of ave genes at the transcriptional level. SAV151 negatively regulated the transcription of itself and of the adjacent transcriptional unit SAV152-SAV153-SAV154. In chromatin immunoprecipitation and gel shift assays, purified His6-tagged SAV151 protein bound to the bidirectional SAV151-SAV152 promoter region. SAV151 bound to two palindromic sequences in this region and thereby repressed transcription from both directions. Two of the SAV151 target genes, SAV152 (which encodes a putative dehydrogenase) and SAV154 (which encodes a putative hydrolase), had promoting effects on avermectin production. Our findings provide the basis for a strategy to increase avermectin production by controlling SAV151 and its target genes.
Collapse
|
26
|
SdrA, a new DeoR family regulator involved in Streptomyces avermitilis morphological development and antibiotic production. Appl Environ Microbiol 2013; 79:7916-21. [PMID: 24123736 DOI: 10.1128/aem.02843-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The SAV3339 (SdrA) protein of Streptomyces avermitilis, a member of the DeoR family of regulators, was assessed to determine its in vivo function by gene knockdown through the use of cis-encoded noncoding RNA and knockout of the sdrA gene. These analyses revealed that SdrA represents another class of Streptomyces regulator that controls morphological development and antibiotic production.
Collapse
|
27
|
A novel TetR family transcriptional regulator, SAV576, negatively controls avermectin biosynthesis in Streptomyces avermitilis. PLoS One 2013; 8:e71330. [PMID: 23967193 PMCID: PMC3742746 DOI: 10.1371/journal.pone.0071330] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
Avermectins produced by Streptomyces avermitilis are potent anti-parasitic agents that are useful in animal health care, agriculture, and the treatment of human infections. In a search for novel regulators that affect avermectin biosynthesis, comparative transcriptome analysis was performed between wild-type strain ATCC31267 and avermectin overproducing strain 76-02-e, revealing some differentially expressed genes. SAV576, which is downregulated in 76-02-e and encodes a TetR family transcriptional regulator (TFR), was shown to inhibit avermectin production by indirectly affecting the expression of ave genes. SAV576 directly repressed the transcription of its gene SAV576 and of adjacent genes SAV575 (encodes cytochrome P450/NADPH-ferrihemoprotein reductase) and SAV574. The SAV576-binding sites within the bidirectional SAV575-SAV576 promoter region were determined by DNase I footprinting assays. A consensus 15-bp palindromic sequence CCRTACRVYGTATGS was found in these binding sites and shown to be important for SAV576-binding activity. SAV575, an important target gene of SAV576, was shown to exert a positive effect on avermectin production. The study findings extend our limited knowledge of the complex regulation of avermectin biosynthesis and provide a basis for rational genetic manipulation of S. avermitilis to improve avermectin production through control of SAV576 and its target gene.
Collapse
|
28
|
Pleiotropic control of secondary metabolism and morphological development by KsbC, a butyrolactone autoregulator receptor homologue in Kitasatospora setae. Appl Environ Microbiol 2012; 78:8015-24. [PMID: 22961899 DOI: 10.1128/aem.02355-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The γ-butyrolactone autoregulator signaling cascades have been shown to control secondary metabolism and/or morphological development among many Streptomyces species. However, the conservation and variation of the regulatory systems among actinomycetes remain to be clarified. The genome sequence of Kitasatospora setae, which also belongs to the family Streptomycetaceae containing the genus Streptomyces, has revealed the presence of three homologues of the autoregulator receptor: KsbA, which has previously been confirmed to be involved only in secondary metabolism; KsbB; and KsbC. We describe here the characterization of ksbC, whose regulatory cluster closely resembles the Streptomyces virginiae barA locus responsible for the autoregulator signaling cascade. Deletion of the gene ksbC resulted in lowered production of bafilomycin and a defect of aerial mycelium formation, together with the early and enhanced production of a novel β-carboline alkaloid named kitasetaline. A putative kitasetaline biosynthetic gene cluster was identified, and its expression in a heterologous host led to the production of kitasetaline together with JBIR-133, the production of which is also detected in the ksbC disruptant, and JBIR-134 as novel β-carboline alkaloids, indicating that these genes were biosynthetic genes for β-carboline alkaloid and thus are the first such genes to be discovered in bacteria.
Collapse
|
29
|
Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci U S A 2011; 108:16410-5. [PMID: 21930904 DOI: 10.1073/pnas.1113908108] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-positive bacteria of the genus Streptomyces are industrially important microorganisms, producing >70% of commercially important antibiotics. The production of these compounds is often regulated by low-molecular-weight bacterial hormones called autoregulators. Although 60% of Streptomyces strains may use γ-butyrolactone-type molecules as autoregulators and some use furan-type molecules, little is known about the signaling molecules used to regulate antibiotic production in many other members of this genus. Here, we purified a signaling molecule (avenolide) from Streptomyces avermitilis--the producer of the important anthelmintic agent avermectin with annual world sales of $850 million--and determined its structure, including stereochemistry, by spectroscopic analysis and chemical synthesis as (4S,10R)-10-hydroxy-10-methyl-9-oxo-dodec-2-en-1,4-olide, a class of Streptomyces autoregulator. Avenolide is essential for eliciting avermectin production and is effective at nanomolar concentrations with a minimum effective concentration of 4 nM. The aco gene of S. avermitilis, which encodes an acyl-CoA oxidase, is required for avenolide biosynthesis, and homologs are also present in Streptomyces fradiae, Streptomyces ghanaensis, and Streptomyces griseoauranticus, suggesting that butenolide-type autoregulators may represent a widespread and another class of Streptomyces autoregulator involved in regulating antibiotic production.
Collapse
|