1
|
Uchimiya M, Schroer W, Olofsson M, Edison AS, Moran MA. Diel investments in metabolite production and consumption in a model microbial system. THE ISME JOURNAL 2022; 16:1306-1317. [PMID: 34921302 PMCID: PMC9038784 DOI: 10.1038/s41396-021-01172-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 12/01/2022]
Abstract
Organic carbon transfer between surface ocean photosynthetic and heterotrophic microbes is a central but poorly understood process in the global carbon cycle. In a model community in which diatom extracellular release of organic molecules sustained growth of a co-cultured bacterium, we determined quantitative changes in the diatom endometabolome and the bacterial uptake transcriptome over two diel cycles. Of the nuclear magnetic resonance (NMR) peaks in the diatom endometabolites, 38% had diel patterns with noon or mid-afternoon maxima; the remaining either increased (36%) or decreased (26%) through time. Of the genes in the bacterial uptake transcriptome, 94% had a diel pattern with a noon maximum; the remaining decreased over time (6%). Eight diatom endometabolites identified with high confidence were matched to the bacterial genes mediating their utilization. Modeling of these coupled inventories with only diffusion-based phytoplankton extracellular release could not reproduce all the patterns. Addition of active release mechanisms for physiological balance and bacterial recognition significantly improved model performance. Estimates of phytoplankton extracellular release range from only a few percent to nearly half of annual net primary production. Improved understanding of the factors that influence metabolite release and consumption by surface ocean microbes will better constrain this globally significant carbon flux.
Collapse
Affiliation(s)
- Mario Uchimiya
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, US
| | - William Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US
| | - Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Uppsala, Sweden
| | - Arthur S Edison
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, US
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US.
| |
Collapse
|
2
|
Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol 2021; 6:524-532. [PMID: 33495621 DOI: 10.1038/s41564-020-00851-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Niche theory is a foundational ecological concept that explains the distribution of species in natural environments. Identifying the dimensions of any organism's niche is challenging because numerous environmental factors can affect organism viability. We used serial invasion experiments to introduce Ruegeria pomeroyi DSS-3, a heterotrophic marine bacterium, into a coastal phytoplankton bloom on 14 dates. RNA-sequencing analysis of R. pomeroyi was conducted after 90 min to assess its niche dimensions in this dynamic ecosystem. We identified ~100 external conditions eliciting transcriptional responses, which included substrates, nutrients, metals and biotic interactions such as antagonism, resistance and cofactor synthesis. The peak bloom was characterized by favourable states for most of the substrate dimensions, but low inferred growth rates of R. pomeroyi at this stage indicated that its niche was narrowed by factors other than substrate availability, most probably negative biotic interactions with the bloom dinoflagellate. Our findings indicate chemical and biological features of the ocean environment that can constrain where heterotrophic bacteria survive.
Collapse
|
3
|
New structural insights into bacterial sulfoacetaldehyde and taurine metabolism. Biochem J 2020; 477:1367-1371. [PMID: 32322897 DOI: 10.1042/bcj20200079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 01/17/2023]
Abstract
In last year's issue 4 of Biochemical Journal, Zhou et al. (Biochem J. 476, 733-746) kinetically and structurally characterized the reductase IsfD from Klebsiella oxytoca that catalyzes the reversible reduction in sulfoacetaldehyde to the corresponding alcohol isethionate. This is a key step in detoxification of the carbonyl intermediate formed in bacterial nitrogen assimilation from the α-aminoalkanesulfonic acid taurine. In 2019, the work on sulfoacetaldehyde reductase IsfD was the exciting start to a quite remarkable series of articles dealing with structural elucidation of proteins involved in taurine metabolism as well as the discovery of novel degradation pathways in bacteria.
Collapse
|
4
|
Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, Moran MA. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME JOURNAL 2020; 15:762-773. [PMID: 33097854 PMCID: PMC8027193 DOI: 10.1038/s41396-020-00811-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022]
Abstract
The communities of bacteria that assemble around marine microphytoplankton are predictably dominated by Rhodobacterales, Flavobacteriales, and families within the Gammaproteobacteria. Yet whether this consistent ecological pattern reflects the result of resource-based niche partitioning or resource competition requires better knowledge of the metabolites linking microbial autotrophs and heterotrophs in the surface ocean. We characterized molecules targeted for uptake by three heterotrophic bacteria individually co-cultured with a marine diatom using two strategies that vetted the exometabolite pool for biological relevance by means of bacterial activity assays: expression of diagnostic genes and net drawdown of exometabolites, the latter detected with mass spectrometry and nuclear magnetic resonance using novel sample preparation approaches. Of the more than 36 organic molecules with evidence of bacterial uptake, 53% contained nitrogen (including nucleosides and amino acids), 11% were organic sulfur compounds (including dihydroxypropanesulfonate and dimethysulfoniopropionate), and 28% were components of polysaccharides (including chrysolaminarin, chitin, and alginate). Overlap in phytoplankton-derived metabolite use by bacteria in the absence of competition was low, and only guanosine, proline, and N-acetyl-D-glucosamine were predicted to be used by all three. Exometabolite uptake pattern points to a key role for ecological resource partitioning in the assembly marine bacterial communities transforming recent photosynthate.
Collapse
Affiliation(s)
| | - Brittany Widner
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Nicole R Holderman
- Department of Biochemistry and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - John Glushka
- Department of Biochemistry and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Arthur S Edison
- Department of Biochemistry and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Abstract
Marine microorganisms play crucial roles in Earth's element cycles through the production and consumption of organic matter. One of the elements whose fate is governed by microbial activities is sulfur, an essential constituent of biomass and a crucial player in climate processes. With sulfur already being well studied in the ocean in its inorganic forms, organic sulfur compounds are emerging as important chemical links between marine phytoplankton and bacteria. The high concentration of inorganic sulfur in seawater, which can readily be reduced by phytoplankton, provides a freely available source of sulfur for biomolecule synthesis. Mechanisms such as exudation and cell lysis release these phytoplankton-derived sulfur metabolites into seawater, from which they are rapidly assimilated by marine bacteria and archaea. Energy-limited bacteria use scavenged sulfur metabolites as substrates or for the synthesis of vitamins, cofactors, signalling compounds and antibiotics. In this Review, we examine the current knowledge of sulfur metabolites released into and taken up from the marine dissolved organic matter pool by microorganisms, and the ecological links facilitated by their diversity in structures, oxidation states and chemistry.
Collapse
|
6
|
Sulfur metabolites that facilitate oceanic phytoplankton-bacteria carbon flux. ISME JOURNAL 2019; 13:2536-2550. [PMID: 31227817 DOI: 10.1038/s41396-019-0455-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/08/2019] [Accepted: 05/03/2019] [Indexed: 11/09/2022]
Abstract
Unlike biologically available nitrogen and phosphorus, which are often at limiting concentrations in surface seawater, sulfur in the form of sulfate is plentiful and not considered to constrain marine microbial activity. Nonetheless, in a model system in which a marine bacterium obtains all of its carbon from co-cultured phytoplankton, bacterial gene expression suggests that at least seven dissolved organic sulfur (DOS) metabolites support bacterial heterotrophy. These labile exometabolites of marine dinoflagellates and diatoms include taurine, N-acetyltaurine, isethionate, choline-O-sulfate, cysteate, 2,3-dihydroxypropane-1-sulfonate (DHPS), and dimethylsulfoniopropionate (DMSP). Leveraging from the compounds identified in this model system, we assessed the role of sulfur metabolites in the ocean carbon cycle by mining the Tara Oceans dataset for diagnostic genes. In the 1.4 million bacterial genome equivalents surveyed, estimates of the frequency of genomes harboring the capability for DOS metabolite utilization ranged broadly, from only 1 out of every 190 genomes (for the C2 sulfonate isethionate) to 1 out of every 5 (for the sulfonium compound DMSP). Bacteria able to participate in DOS transformations are dominated by Alphaproteobacteria in the surface ocean, but by SAR324, Acidimicrobiia, and Gammaproteobacteria at mesopelagic depths, where the capability for utilization occurs in higher frequency than in surface bacteria for more than half the sulfur metabolites. The discovery of an abundant and diverse suite of marine bacteria with the genetic capacity for DOS transformation argues for an important role for sulfur metabolites in the pelagic ocean carbon cycle.
Collapse
|
7
|
Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, Armbrust EV, Moran MA. Recognition cascade and metabolite transfer in a marine bacteria‐phytoplankton model system. Environ Microbiol 2017. [DOI: 10.1111/1462-2920.13834] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Shalabh Sharma
- Department of Marine SciencesUniversity of GeorgiaAthens GA USA
| | - Shady A. Amin
- School of OceanographyUniversity of WashingtonSeattle WA USA
| | | | | | | | - Mary Ann Moran
- Department of Marine SciencesUniversity of GeorgiaAthens GA USA
| |
Collapse
|
8
|
Holt S, Kankipati H, De Graeve S, Van Zeebroeck G, Foulquié-Moreno MR, Lindgreen S, Thevelein JM. Major sulfonate transporter Soa1 in Saccharomyces cerevisiae and considerable substrate diversity in its fungal family. Nat Commun 2017; 8:14247. [PMID: 28165463 PMCID: PMC5303821 DOI: 10.1038/ncomms14247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022] Open
Abstract
Sulfate is a well-established sulfur source for fungi; however, in soils sulfonates and sulfate esters, especially choline sulfate, are often much more prominent. Here we show that Saccharomyces cerevisiae YIL166C(SOA1) encodes an inorganic sulfur (sulfate, sulfite and thiosulfate) transporter that also catalyses sulfonate and choline sulfate uptake. Phylogenetic analysis of fungal SOA1 orthologues and expression of 20 members in the sul1Δ sul2Δ soa1Δ strain, which is deficient in inorganic and organic sulfur compound uptake, reveals that these transporters have diverse substrate preferences for sulfur compounds. We further show that SOA2, a S. cerevisiae SOA1 paralogue found in S. uvarum, S. eubayanus and S. arboricola is likely to be an evolutionary remnant of the uncharacterized open reading frames YOL163W and YOL162W. Our work highlights the importance of sulfonates and choline sulfate as sulfur sources in the natural environment of S. cerevisiae and other fungi by identifying fungal transporters for these compounds. Sulfonates are a major source of sulphur for soil microbes but their cellular uptake is still not fully understood. Here the authors show that Saccharomyces cerevisiae YIL166C(SOA1) encodes for an inorganic sulphur transporter that can also function as a sulfonate and choline sulphate transporter.
Collapse
Affiliation(s)
- Sylvester Holt
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Harish Kankipati
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Stijn De Graeve
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Stinus Lindgreen
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 4, 1799 Copenhagen V, Denmark
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| |
Collapse
|
9
|
Rivers AR, Burns AS, Chan LK, Moran MA. Experimental Identification of Small Non-Coding RNAs in the Model Marine Bacterium Ruegeria pomeroyi DSS-3. Front Microbiol 2016; 7:380. [PMID: 27065955 PMCID: PMC4809877 DOI: 10.3389/fmicb.2016.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/09/2016] [Indexed: 12/31/2022] Open
Abstract
In oligotrophic ocean waters where bacteria are often subjected to chronic nutrient limitation, community transcriptome sequencing has pointed to the presence of highly abundant small RNAs (sRNAs). The role of sRNAs in regulating response to nutrient stress was investigated in a model heterotrophic marine bacterium Ruegeria pomeroyi grown in continuous culture under carbon (C) and nitrogen (N) limitation. RNAseq analysis identified 99 putative sRNAs. Sixty-nine were cis-encoded and located antisense to a presumed target gene. Thirty were trans-encoded and initial target prediction was performed computationally. The most prevalent functional roles of genes anti-sense to the cis-sRNAs were transport, cell-cell interactions, signal transduction, and transcriptional regulation. Most sRNAs were transcribed equally under both C and N limitation, and may be involved in a general stress response. However, 14 were regulated differentially between the C and N treatments and may respond to specific nutrient limitations. A network analysis of the predicted target genes of the R. pomeroyi cis-sRNAs indicated that they average fewer connections than typical protein-encoding genes, and appear to be more important in peripheral or niche-defining functions encoded in the pan genome.
Collapse
Affiliation(s)
- Adam R Rivers
- United States Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | - Andrew S Burns
- Department of Marine Sciences, University of Georgia Athens, GA, USA
| | | | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia Athens, GA, USA
| |
Collapse
|
10
|
Abstract
About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly up-regulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when cocultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3-dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a previously unidentified and likely sizeable link in both the marine carbon and sulfur cycles.
Collapse
|
11
|
Rivers AR, Smith CB, Moran MA. An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3. Stand Genomic Sci 2014; 9:11. [PMID: 25780504 PMCID: PMC4334477 DOI: 10.1186/1944-3277-9-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 12/02/2022] Open
Abstract
When the genome of Ruegeria pomeroyi DSS-3 was published in 2004, it represented the first sequence from a heterotrophic marine bacterium. Over the last ten years, the strain has become a valuable model for understanding the cycling of sulfur and carbon in the ocean. To ensure that this genome remains useful, we have updated 69 genes to incorporate functional annotations based on new experimental data, and improved the identification of 120 protein-coding regions based on proteomic and transcriptomic data. We review the progress made in understanding the biology of R. pomeroyi DSS-3 and list the changes made to the genome.
Collapse
Affiliation(s)
- Adam R Rivers
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Mayer J, Denger K, Hollemeyer K, Schleheck D, Cook AM. (R)-Cysteate-nitrogen assimilation by Cupriavidus necator H16 with excretion of 3-sulfolactate: a patchwork pathway. Arch Microbiol 2012; 194:949-57. [PMID: 22797525 DOI: 10.1007/s00203-012-0825-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 05/07/2012] [Accepted: 06/06/2012] [Indexed: 11/27/2022]
Abstract
Cupriavidus necator H16 grew exponentially with (R)-cysteate, a structural analogue of aspartate, as sole source of nitrogen in succinate-salts medium. Utilization of cysteate was quantitative and concomitant with growth and with the excretion of the deaminated product (R)-sulfolactate, which was identified thoroughly. The deaminative pathway started with transport of (R)-cysteate into the cell, which we attributed to an aspartate transporter. Transamination to sulfopyruvate involved an aspartate/(R)-cysteate:2-oxoglutarate aminotransferase (Aoa/Coa) and regeneration of the amino group acceptor by NADP⁺-coupled glutamate dehydrogenase. Reduction of sulfopyruvate to (R)-sulfolactate was catalyzed by a (S)-malate/(R)-sulfolactate dehydrogenase (Mdh/Sdh). Excretion of the sulfolactate could be attributed to the sulfite/organosulfonate exporter TauE, which was co-encoded and co-expressed, with sulfoacetaldehyde acetyltransferase (Xsc), though Xsc was irrelevant to the current pathway. The metabolic enzymes could be assayed biochemically. Aoa/Coa and Mdh/Sdh were highly enriched by protein separation, partly characterized, and the relevant locus-tags identified by peptide-mass fingerprinting. Finally, RT-PCR was used to confirm the transcription of all appropriate genes. We thus demonstrated that Cupriavidus necator H16 uses a patchwork pathway by recruitment of 'housekeeping' genes and sulfoacetaldehyde-degradative genes to scavenge for (R)-cysteate-nitrogen.
Collapse
Affiliation(s)
- Jutta Mayer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|