1
|
Ryback B, Vorholt JA. Coenzyme biosynthesis in response to precursor availability reveals incorporation of β-alanine from pantothenate in prototrophic bacteria. J Biol Chem 2023; 299:104919. [PMID: 37315792 PMCID: PMC10393543 DOI: 10.1016/j.jbc.2023.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and β-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for β-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.
Collapse
|
2
|
Song N, De Greve H, Wang Q, Hernalsteens JP, Li Z. Plasmid parB contributes to uropathogenic Escherichia coli colonization in vivo by acting on biofilm formation and global gene regulation. Front Mol Biosci 2022; 9:1053888. [PMID: 36589237 PMCID: PMC9800825 DOI: 10.3389/fmolb.2022.1053888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The endogenous plasmid pUTI89 harbored by the uropathogenic Escherichia coli (UPEC) strain UTI89 plays an important role in the acute stage of infection. The partitioning gene parB is important for stable inheritance of pUTI89. However, the function of partitioning genes located on the plasmid in pathogenesis of UPEC still needs to be further investigated. In the present study, we observed that disruption of the parB gene leads to a deficiency in biofilm formation in vitro. Moreover, in a mixed infection with the wild type strain and the parB mutant, in an ascending UTI mouse model, the mutant displayed a lower bacterial burden in the bladder and kidneys, not only at the acute infection stage but also extending to 72 hours post infection. However, in the single infection test, the reduced colonization ability of the parB mutant was only observed at six hpi in the bladder, but not in the kidneys. The colonization capacity in vivo of the parB-complemented strain was recovered. qRT-PCR assay suggested that ParB could be a global regulator, influencing the expression of genes located on both the endogenous plasmid and chromosome, while the gene parA or the operon parAB could not. Our study demonstrates that parB contributes to the virulence of UPEC by influencing biofilm formation and proposes that the parB gene of the endogenous plasmid could regulate gene expression globally.
Collapse
Affiliation(s)
- Ningning Song
- School of Life Science and Technology, Weifang Medical University, Weifang, China,Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henri De Greve
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quanjun Wang
- SAFE Pharmaceutical Technology Co, Ltd., Beijing, China
| | - Jean-Pierre Hernalsteens
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| | - Zhaoli Li
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,SAFE Pharmaceutical Technology Co, Ltd., Beijing, China,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| |
Collapse
|
3
|
Lopez LR, Barlogio CJ, Broberg CA, Wang J, Arthur JC. A nadA Mutation Confers Nicotinic Acid Auxotrophy in Pro-carcinogenic Intestinal Escherichia coli NC101. Front Microbiol 2021; 12:670005. [PMID: 34149655 PMCID: PMC8207962 DOI: 10.3389/fmicb.2021.670005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) and inflammation-associated colorectal cancer (CRC) are linked to blooms of adherent-invasive Escherichia coli (AIEC) in the intestinal microbiota. AIEC are functionally defined by their ability to adhere/invade epithelial cells and survive/replicate within macrophages. Changes in micronutrient availability can alter AIEC physiology and interactions with host cells. Thus, culturing AIEC for mechanistic investigations often involves precise nutrient formulation. We observed that the pro-inflammatory and pro-carcinogenic AIEC strain NC101 failed to grow in minimal media (MM). We hypothesized that NC101 was unable to synthesize a vital micronutrient normally found in the host gut. Through nutrient supplementation studies, we identified that NC101 is a nicotinic acid (NA) auxotroph. NA auxotrophy was not observed in the other non-toxigenic E. coli or AIEC strains we tested. Sequencing revealed NC101 has a missense mutation in nadA, a gene encoding quinolinate synthase A that is important for de novo nicotinamide adenine dinucleotide (NAD) biosynthesis. Correcting the identified nadA point mutation restored NC101 prototrophy without impacting AIEC function, including motility and AIEC-defining survival in macrophages. Our findings, along with the generation of a prototrophic NC101 strain, will greatly enhance the ability to perform in vitro functional studies that are needed for mechanistic investigations on the role of intestinal E. coli in digestive disease.
Collapse
Affiliation(s)
- Lacey R Lopez
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cassandra J Barlogio
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Christopher A Broberg
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy Wang
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Janelle C Arthur
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Center for Gastrointestinal Biology and Disease, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Compound Sophorae Decoction: treating ulcerative colitis by affecting multiple metabolic pathways. Chin J Nat Med 2021; 19:267-283. [PMID: 33875167 DOI: 10.1016/s1875-5364(21)60029-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/21/2022]
Abstract
Ulcerative colitis (UC) is a chronic refractory non-specific intestinal inflammatory disease that is difficult to be cured. The discovery of new ulcerative colitis-related metabolite biomarkers may help further understand UC and facilitate early diagnosis. It may also provide a basis for explaining the mechanism of drug action in the treatment of UC. Compound Sophorae Decoction (CSD) is an empirical formula used in the clinical treatment of UC. Although it is known to be efficacious, its mechanism of action in the treatment of UC is unclear. The purpose of this study was to investigate the changes in endogenous substances in UC rats and the effects of CSD on metabolic pathways using the metabonomics approach. Metabolomics studies in rats with UC and normal rats were performed using LC-MS/MS. Rats with UC induced using TNBS enema were used as the study models. Metabolic profiling and pathway analysis of biomarkers was performed using statistical and pathway enrichment analyses. 36 screened potential biomarkers were found to be significantly different between the UC and the normal groups; it was also found that CSD could modulate the levels of these potential biomarkers. CSD was found to be efficacious in UC by regulating multiple metabolic pathways.
Collapse
|
5
|
Hiyama Y, Sato T, Takahashi S, Yamamoto S, Fukushima Y, Nakajima C, Suzuki Y, Yokota SI, Masumori N. Sitafloxacin has a potent activity for eradication of extended spectrum β-lactamase-producing fluoroquinolone-resistant Escherichia coli forming intracellular bacterial communities in uroepithelial cells. J Infect Chemother 2020; 26:1272-1277. [PMID: 32768340 DOI: 10.1016/j.jiac.2020.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/04/2020] [Accepted: 07/19/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Eradication of asymptomatic bacteriuria (ASB) before urological procedures is important to reduce the risk for infectious complications after surgery. However, the appropriate regimen for antimicrobial treatment has not been fully determined. We experienced continuous (over 10 months) isolation of extended spectrum β-lactamase (ESBL)-producing fluoroquinolone-resistant Escherichia coli from urine of an asymptomatic patient. The four isolates obtained (SMESC1 to 4) were international high-risk clones of O25b:H4-ST131-H30R, and originated from one strain, as revealed by the whole genome sequences. Although the patient received meropenem (MEPM) and fosfomycin (FOM), to which the strains were susceptible before the urological procedures, they could not be eradicated. METHODS To explore the reason for the continuous isolation even after MEPM and FOM administration, antimicrobial killing of adherent and/or intracellular bacterial communities (IBC) formed by coculture of the E. coli cells and T24 bladder epithelial cells were examined. RESULTS FOM and levofloxacin did not decrease viable E. coli cells compared with gentamicin. MEPM partly decreased them, and sitafloxacin (STFX) decreased them most potently. These observations indicate that E. coli can survive in the urinary tract under antimicrobial administration, and some antimicrobials such as FOM and MEPM cannot eradicate E. coli in uroepithelial cells. Adhesion on urinary epithelial cells and/or IBC formation might result in continuous isolation from the urinary tract and recurrence of ASB and urinary tract infections. CONCLUSIONS The present study suggests that STFX is a promising optional agent for the eradication of ESBL-producing fluoroquinolone-resistant E. coli in the urinary tract before urological procedures.
Collapse
Affiliation(s)
- Yoshiki Hiyama
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Bessaiah H, Pokharel P, Habouria H, Houle S, Dozois CM. yqhG Contributes to Oxidative Stress Resistance and Virulence of Uropathogenic Escherichia coli and Identification of Other Genes Altering Expression of Type 1 Fimbriae. Front Cell Infect Microbiol 2019; 9:312. [PMID: 31555608 PMCID: PMC6727828 DOI: 10.3389/fcimb.2019.00312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections and the vast majority of UTIs are caused by extraintestinal pathogenic Escherichia coli (ExPEC) strains referred to as uropathogenic E. coli (UPEC). Successful colonization of the human urinary tract by UPEC is mediated by secreted or surface exposed virulence factors-toxins, iron transport systems, and adhesins, such as type 1 fimbriae (pili). To identify factors involved in the expression of type 1 fimbriae, we constructed a chromosomal transcriptional reporter consisting of lux under the control of the fimbrial promoter region, fimS and this construct was inserted into the reference UPEC strain CFT073 genome at the attTn7 site. This fimS reporter strain was used to generate a Tn10 transposon mutant library, coupled with high-throughput sequencing to identify genes that affect the expression of type 1 fimbriae. Transposon insertion sites were linked to genes involved in protein fate and synthesis, energy metabolism, adherence, transcriptional regulation, and transport. We showed that YqhG, a predicted periplasmic protein, is one of the important mediators that contribute to the decreased expression of type 1 fimbriae in UPEC strain CFT073. The ΔyqhG mutant had reduced expression of type 1 fimbriae and a decreased capacity to colonize the murine urinary tract. Reduced expression of type 1 fimbriae correlated with an increased bias for orientation of the fim switch in the OFF position. Interestingly, the ΔyqhG mutant was more motile than the WT strain and was also significantly more sensitive to hydrogen peroxide. Taken together, loss of yqhG may decrease virulence in the urinary tract due to a decrease in production of type 1 fimbriae and a greater sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Hicham Bessaiah
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Pravil Pokharel
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Hajer Habouria
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Sébastien Houle
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Charles M. Dozois
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
7
|
Escherichia coli NGF-1, a Genetically Tractable, Efficiently Colonizing Murine Gut Isolate. Microbiol Resour Announc 2018; 7:MRA01416-18. [PMID: 30533859 PMCID: PMC6284091 DOI: 10.1128/mra.01416-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 01/21/2023] Open
Abstract
The genome of the murine commensal strain Escherichia coli NGF-1 contains a 5.03-Mbp chromosome and plasmids of 40.2 kbp and 8.56 kbp. NGF-1 efficiently colonizes the mouse gut and is genetically tractable. The genome of the murine commensal strain Escherichia coli NGF-1 contains a 5.03-Mbp chromosome and plasmids of 40.2 kbp and 8.56 kbp. NGF-1 efficiently colonizes the mouse gut and is genetically tractable. The genome sequence reported here facilitates genetic engineering and research in mouse models of healthy and diseased intestine.
Collapse
|
8
|
Bouvet O, Bourdelier E, Glodt J, Clermont O, Denamur E. Diversity of the auxotrophic requirements in natural isolates of Escherichia coli. MICROBIOLOGY-SGM 2017; 163:891-899. [PMID: 28651684 DOI: 10.1099/mic.0.000482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isolates of Escherichia coli, except Shigella, are generally prototrophic; they do not require any growth factors to grow in mineral medium. However, a nicotinic acid requirement is common among B2 phylogroup STc95 O18 E. coli clone strains. Nicotinic acid is a precursor of nicotinamide adenine dinucleotide (NAD), an essential molecule that plays central role in cellular metabolism. The defect in NAD synthesis of these strains is due to alterations in de novo biosynthesis pathway nadB gene. Here, by studying growth on minimal medium with glycolytic (glucose) or gluconeogenic (pyruvate or succinate) substrates as the carbon supply in a large panel of E. coli natural isolates representative of the species diversity, we identify an absolute nicotinic acid requirement in non-STc95 strains due in one case to a nadA inactivation. The growth on glucose medium of some extraintestinal pathogenic E. coli strains belonging to various non-O18 B2 phylogroup STc95 clones is restored either by aspartate or nicotinate, demonstrating that the nicotinic acid requirement can also be due to an intracellular aspartate depletion. The auxotrophic requirements depend on the carbon source available in the environment. Moreover, some strains prototrophic in glucose medium become auxotrophic in succinate medium, and conversely, some strainsauxotrophic in glucose medium become prototrophic in succinate medium. Finally, a partial depletion of intracellular aspartate can be observed in some prototrophic strains belonging to various phylogroups. The observed more or less significant depletion according to isolates may be due to differences in tricarboxylic acid cycle enzyme activities. These metabolic defects could be involved in the adaptation of E. coli to its various niches.
Collapse
Affiliation(s)
- Odile Bouvet
- IAME, UMR 1137, INSERM, Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| | - Emmanuelle Bourdelier
- IAME, UMR 1137, INSERM, Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| | - Jeremy Glodt
- IAME, UMR 1137, INSERM, Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| | - Olivier Clermont
- IAME, UMR 1137, INSERM, Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| | - Erick Denamur
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, F-75018, Paris, France.,IAME, UMR 1137, INSERM, Univ Paris Diderot, Sorbonne Paris Cité, F-75018, Paris, France
| |
Collapse
|
9
|
Song N, Xu J, Li Z, Hernalsteens JP. Curing a large endogenous plasmid by single substitution of a partitioning gene. Plasmid 2015; 82:10-6. [PMID: 26123974 DOI: 10.1016/j.plasmid.2015.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/30/2022]
Abstract
To investigate whether plasmid-free cells of pathogenic Escherichia coli can be isolated by disrupting a single gene in an endogenous plasmid without further treatment, the effect of the disruption of partitioning genes on the inheritance of the endogenous plasmid pUTI89 of the uropathogenic E. coli strain UTI89 was studied. We found that mutation of parB, which encodes a type Ib partitioning protein, could cause loss of the endogenous plasmid at a ratio of about 1%. Clones derived from parB mutants, identified by antibiotic sensitivity, were all plasmid free. Plasmid instability caused by the parB mutation was found to correlate with a negative effect on host cell growth. Thus, in this pathogenic E. coli, an endogenous plasmid as large as 114 kbp could be cured effectively by targeting a single type Ib partitioning gene followed by passaging, which may facilitate further investigations on the function of endogenous plasmids in their natural hosts.
Collapse
Affiliation(s)
- Ningning Song
- State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150001 Harbin, China; Microbiology Research Group, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, 200127 Shanghai, China
| | - Zhaoli Li
- State Key Lab of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150001 Harbin, China; Viral Genetics Research Group, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Jean-Pierre Hernalsteens
- Viral Genetics Research Group, Faculty of Science and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
10
|
Yan X, Sivignon A, Yamakawa N, Crepet A, Travelet C, Borsali R, Dumych T, Li Z, Bilyy R, Deniaud D, Fleury E, Barnich N, Darfeuille-Michaud A, Gouin SG, Bouckaert J, Bernard J. Glycopolymers as Antiadhesives of E. coli Strains Inducing Inflammatory Bowel Diseases. Biomacromolecules 2015; 16:1827-36. [PMID: 25961760 DOI: 10.1021/acs.biomac.5b00413] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
n-Heptyl α-d-mannose (HM) is a nanomolar antagonist of FimH, a virulence factor of E. coli. Herein we report on the construction of multivalent HM-based glycopolymers as potent antiadhesives of type 1 piliated E. coli. We investigate glycopolymer/FimH and glycopolymer/bacteria interactions and show that HM-based glycopolymers efficiently inhibit bacterial adhesion and disrupt established cell-bacteria interactions in vitro at very low concentration (0.1 μM on a mannose unit basis). On a valency-corrected basis, HM-based glycopolymers are, respectively, 10(2) and 10(6) times more potent than HM and d-mannose for their capacity to disrupt the binding of adherent-invasive E. coli to T84 intestinal epithelial cells. Finally, we demonstrate that the antiadhesive capacities of HM-based glycopolymers are preserved ex vivo in the colonic loop of a transgenic mouse model of Crohn's disease. All together, these results underline the promising scope of HM-based macromolecular ligands for the antiadhesive treatment of E. coli induced inflammatory bowel diseases.
Collapse
Affiliation(s)
- Xibo Yan
- §Université de Lyon, Lyon, F-69003 France.,◆INSA-Lyon, IMP, Villeurbanne, F-69621 France.,¶CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - Adeline Sivignon
- ∥Clermont Université, UMR 1071, Inserm/Université d'Auvergne, 63000 Clermont-Ferrand, France.,⊥INRA, Unité Sous Contrat 2018, 63000, Clermont-Ferrand, France
| | - Nao Yamakawa
- #Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576, Université Lille 1, F-59655 Villeneuve d'Ascq Cedex, France
| | - Agnes Crepet
- §Université de Lyon, Lyon, F-69003 France.,◆INSA-Lyon, IMP, Villeurbanne, F-69621 France.,¶CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - Christophe Travelet
- ○Centre de Recherches sur les Macromolécules Végétales (CERMAV - CNRS UPR 5301), Université de Grenoble-Alpes, ICMG - CNRS FR 2607, PolyNat Carnot Institute, Arcane LabEx, 601 rue de la Chimie, 38041 Grenoble, France
| | - Redouane Borsali
- ○Centre de Recherches sur les Macromolécules Végétales (CERMAV - CNRS UPR 5301), Université de Grenoble-Alpes, ICMG - CNRS FR 2607, PolyNat Carnot Institute, Arcane LabEx, 601 rue de la Chimie, 38041 Grenoble, France
| | - Tetiana Dumych
- □Institute of Cell Biology, NASU, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Zhaoli Li
- △Division of Bacterial Diseases, State key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Maduan St. 427#, Nangang Dis, Harbin, China
| | - Rostyslav Bilyy
- □Institute of Cell Biology, NASU, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - David Deniaud
- ▽LUNAM Université, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Etienne Fleury
- §Université de Lyon, Lyon, F-69003 France.,◆INSA-Lyon, IMP, Villeurbanne, F-69621 France.,¶CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| | - Nicolas Barnich
- ∥Clermont Université, UMR 1071, Inserm/Université d'Auvergne, 63000 Clermont-Ferrand, France.,⊥INRA, Unité Sous Contrat 2018, 63000, Clermont-Ferrand, France
| | - Arlette Darfeuille-Michaud
- ∥Clermont Université, UMR 1071, Inserm/Université d'Auvergne, 63000 Clermont-Ferrand, France.,⊥INRA, Unité Sous Contrat 2018, 63000, Clermont-Ferrand, France
| | - Sébastien G Gouin
- ▽LUNAM Université, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Julie Bouckaert
- #Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576, Université Lille 1, F-59655 Villeneuve d'Ascq Cedex, France
| | - Julien Bernard
- §Université de Lyon, Lyon, F-69003 France.,◆INSA-Lyon, IMP, Villeurbanne, F-69621 France.,¶CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, F-69621, France
| |
Collapse
|
11
|
Buckles EL, Luterbach CL, Wang X, Lockatell CV, Johnson DE, Mobley HLT, Donnenberg MS. Signature-tagged mutagenesis and co-infection studies demonstrate the importance of P fimbriae in a murine model of urinary tract infection. Pathog Dis 2015; 73:ftv014. [PMID: 25673667 DOI: 10.1093/femspd/ftv014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2015] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli is the leading cause of urinary tract infections (UTIs), one of the most common infections in humans. P fimbria was arguably the first proposed virulence factor for uropathogenic E. coli, based on the capacity of E. coli isolated from UTIs to adhere to exfoliated epithelial cells in higher numbers than fecal strains of E. coli. Overwhelming epidemiologic evidence has been presented for involvement of P fimbriae in colonization. It has been difficult, however, to demonstrate this requirement for uropathogenic strains in animal models of infections or in humans. In this study, a signature-tagged mutagenesis screen identified a P-fimbrial gene (papC) and 18 other genes as being among those required for full fitness of cystitis isolate E. coli F11. A P-fimbrial mutant was outcompeted by the wild-type strain in cochallenge in the murine model of ascending UTI, and this colonization defect could be complemented with the cloned pap operon. To our knowledge, this study is the first to fulfill molecular Koch's postulates in which a pathogenic strain was attenuated by mutation of pap genes and then complemented to restore fitness, confirming P fimbria as a virulence factor in a pathogenic clinical isolate.
Collapse
Affiliation(s)
- Eric L Buckles
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201, USA
| | - Courtney L Luterbach
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xiaolin Wang
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201, USA
| | - C Virginia Lockatell
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201, USA
| | - David E Johnson
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201, USA Department of Veterans Affairs, Baltimore, MD 21201, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael S Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, HSF II, 20 Penn Street, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Turcheniuk K, Hage CH, Spadavecchia J, Serrano AY, Larroulet I, Pesquera A, Zurutuza A, Pisfil MG, Héliot L, Boukaert J, Boukherroub R, Szunerits S. Plasmonic photothermal destruction of uropathogenic E. coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide. J Mater Chem B 2015; 3:375-386. [PMID: 32262041 DOI: 10.1039/c4tb01760a] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
The development of non-antibiotic based treatments against bacterial infections by Gram-negative uropathogenic E. coli is a complex task. New strategies to treat such infections are thus urgently needed. This report illustrates the development of pegylated reduced graphene oxide nanoparticles (rGO-PEG) and gold nanorods (Au NRs) coated with rGO-PEG (rGO-PEG-Au NRs) for the selective killing of uropathogenic E. coli UTI89. We took advantage of the excellent light absorption properties of rGO-PEG and Au NR particles in the near-infrared (NIR) region to photothermally kill Gram-negative pathogens up to 99% in 10 min by illumination of solutions containing the bacteria. The rGO-PEG-Au NRs demonstrated better photothermal efficiency towards E. coli than rGO-PEG. Targeted killing of E. coli UTI89 could be achieved with rGO-PEG-Au NRs functionalized with multimeric heptyl α-d-mannoside probes. This currently offers a unique biocompatible method for the ablation of pathogens with the opening of probably a new possibility for clinical treatments of patients with urinary infections.
Collapse
Affiliation(s)
- Kostiantyn Turcheniuk
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
de Lorenzo V. From theselfish genetoselfish metabolism: Revisiting the central dogma. Bioessays 2014; 36:226-35. [DOI: 10.1002/bies.201300153] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Víctor de Lorenzo
- Systems & Synthetic Biology Program; Centro Nacional de Biotecnología CSIC Cantoblanco; Madrid Spain
| |
Collapse
|