1
|
Ali F, Cai Q, Hu J, Zhang L, Hoare R, Monaghan SJ, Pang H. In silico analysis of AhyI protein and AI-1 inhibition using N-cis-octadec-9z-enoyl-l-homoserine lactone inhibitor in Aeromonas hydrophila. Microb Pathog 2021; 162:105356. [PMID: 34915138 DOI: 10.1016/j.micpath.2021.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
AhyI is homologous to the protein LuxI and is conserved throughout bacterial species including Aeromonas hydrophila. A. hydrophila causes opportunistic infections in fish and other aquatic organisms. Furthermore, this pathogennot only poses a great risk for the aquaculture industry, but also for human public health. AhyI (expressing acylhomoserine lactone) is responsible for the biosynthesis of autoinducer-1 (AI-1), commonly referred to as a quorum sensing (QS) signaling molecule, which plays an essential role in bacterial communication. Studying protein structure is essential for understanding molecular mechanisms of pathogenicity in microbes. Here, we have deduced a predicted structure of AhyI protein and characterized its function using in silico methods to aid the development of new treatments for controlling A.hydrophila infections. In addition to modeling AhyI, an appropriate inhibitor molecule was identified via high throughput virtual screening (HTVS) using mcule drug-like databases.The AhyI-inhibitor N-cis-octadec-9Z-enoyl-l-Homoserine lactone was selected withthe best drug score. In order to understand the pocket sites (ligand binding sites) and their interaction with the selected inhibitor, docking (predicted protein binding complex) servers were used and the selected ligand was docked with the predicted AhyI protein model. Remarkably, N-cis-octadec-9Z-enoyl-l-Homoserine lactone established interfaces with the protein via16 residues (V24, R27, F28, R31, W34, V36, D45, M77, F82, T101, R102, L103, 104, V143, S145, and V168), which are involved with regulating mechanisms of inhibition. These proposed predictions suggest that this inhibitor molecule may be used as a novel drug candidate for the inhibition of auto-inducer-1 (AI-1) activity.The N-cis-octadec-9Z-enoyl-l-Homoserine lactone inhibitor molecule was studied on cultured bacteria to validate its potency against AI-1 production. At a concentration of 40 μM, optimal inhibition efficiency of AI-1 was observedin bacterial culture media.These results suggest that the inhibitor molecule N-cis-octadec-9Z-enoyl-l-Homoserine lactone is a competitive inhibitor of AI-1 biosynthesis.
Collapse
Affiliation(s)
- Farman Ali
- Fujian Provincial Key Laboratory of Agro Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 35002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou, 35002, China
| | - Qilan Cai
- Fujian Provincial Key Laboratory of Agro Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 35002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou, 35002, China
| | - Jialing Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agro Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 35002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou, 35002, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Huanying Pang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| |
Collapse
|
2
|
Involvement of a Quorum Sensing Signal Molecule in the Extracellular Amylase Activity of the Thermophilic Anoxybacillus amylolyticus. Microorganisms 2021; 9:microorganisms9040819. [PMID: 33924442 PMCID: PMC8068869 DOI: 10.3390/microorganisms9040819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/24/2022] Open
Abstract
Anoxybacillus amylolyticus is a moderate thermophilic microorganism producing an exopolysaccharide and an extracellular α-amylase able to hydrolyze starch. The synthesis of several biomolecules is often regulated by a quorum sensing (QS) mechanism, a chemical cell-to-cell communication based on the production and diffusion of small molecules named “autoinducers”, most of which belonging to the N-acyl homoserine lactones’ (AHLs) family. There are few reports about this mechanism in extremophiles, in particular thermophiles. Here, we report the identification of a signal molecule, the N-butanoyl-homoserine lactone (C4-HSL), from the milieu of A. amylolyticus. Moreover, investigations performed by supplementing a known QS inhibitor, trans-cinnamaldehyde, or exogenous C4-HSL in the growth medium of A. amylolyticus suggested the involvement of QS signaling in the modulation of extracellular α-amylase activity. The data showed that the presence of the QS inhibitor trans-cinnamaldehyde in the medium decreased amylolytic activity, which, conversely, was increased by the effect of exogenous C4-HSL. Overall, these results represent the first evidence of the production of AHLs in thermophilic microorganisms, which could be responsible for a communication system regulating thermostable α-amylase activity.
Collapse
|
3
|
Azuama OC, Ortiz S, Quirós-Guerrero L, Bouffartigues E, Tortuel D, Maillot O, Feuilloley M, Cornelis P, Lesouhaitier O, Grougnet R, Boutefnouchet S, Wolfender JL, Chevalier S, Tahrioui A. Tackling Pseudomonas aeruginosa Virulence by Mulinane-Like Diterpenoids from Azorella atacamensis. Biomolecules 2020; 10:E1626. [PMID: 33276611 PMCID: PMC7761567 DOI: 10.3390/biom10121626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is an important multidrug-resistant human pathogen by dint of its high intrinsic, acquired, and adaptive resistance mechanisms, causing great concern for immune-compromised individuals and public health. Additionally, P. aeruginosa resilience lies in the production of a myriad of virulence factors, which are known to be tightly regulated by the quorum sensing (QS) system. Anti-virulence therapy has been adopted as an innovative alternative approach to circumvent bacterial antibiotic resistance. Since plants are known repositories of natural phytochemicals, herein, we explored the anti-virulence potential of Azorella atacamensis, a medicinal plant from the Taira Atacama community (Calama, Chile), against P. aeruginosa. Interestingly, A. atacamensis extract (AaE) conferred a significant protection for human lung cells and Caenorhabditis elegans nematodes towards P. aeruginosa pathogenicity. The production of key virulence factors was decreased upon AaE exposure without affecting P. aeruginosa growth. In addition, AaE was able to decrease QS-molecules production. Furthermore, metabolite profiling of AaE and its derived fractions achieved by combination of a molecular network and in silico annotation allowed the putative identification of fourteen diterpenoids bearing a mulinane-like skeleton. Remarkably, this unique interesting group of diterpenoids seems to be responsible for the interference with virulence factors as well as on the perturbation of membrane homeostasis of P. aeruginosa. Hence, there was a significant increase in membrane stiffness, which appears to be modulated by the cell wall stress response ECFσ SigX, an extracytoplasmic function sigma factor involved in membrane homeostasis as well as P. aeruginosa virulence.
Collapse
Affiliation(s)
- Onyedikachi Cecil Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
- Department of Biological Sciences, Alex-Ekwueme Federal University, Ndufu Alike Ikwo PMB1010, Nigeria
| | - Sergio Ortiz
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Luis Quirós-Guerrero
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Science, University of Geneva, 1211 Geneva, Switzerland; (L.Q.-G.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Raphaël Grougnet
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Sabrina Boutefnouchet
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Jean-Luc Wolfender
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Science, University of Geneva, 1211 Geneva, Switzerland; (L.Q.-G.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| |
Collapse
|
4
|
Reen FJ, Gutiérrez-Barranquero JA, McCarthy RR, Woods DF, Scarciglia S, Adams C, Fog Nielsen K, Gram L, O'Gara F. Quorum Sensing Signaling Alters Virulence Potential and Population Dynamics in Complex Microbiome-Host Interactomes. Front Microbiol 2019; 10:2131. [PMID: 31572336 PMCID: PMC6749037 DOI: 10.3389/fmicb.2019.02131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022] Open
Abstract
Despite the discovery of the first N-acyl homoserine lactone (AHL) based quorum sensing (QS) in the marine environment, relatively little is known about the abundance, nature and diversity of AHL QS systems in this diverse ecosystem. Establishing the prevalence and diversity of AHL QS systems and how they may influence population dynamics within the marine ecosystem, may give a greater insight into the evolution of AHLs as signaling molecules in this important and largely unexplored niche. Microbiome profiling of Stelletta normani and BD1268 sponge samples identified several potential QS active genera. Subsequent biosensor-based screening of a library of 650 marine sponge bacterial isolates identified 10 isolates that could activate at least one of three AHL biosensor strains. Each was further validated and profiled by Ultra-High Performance Liquid Chromatography Mass Spectrometry, with AHLs being detected in 8 out of 10 isolate extracts. Co-culture of QS active isolates with S. normani marine sponge samples led to the isolation of genera such as Pseudomonas and Paenibacillus, both of which were low abundance in the S. normani microbiome. Surprisingly however, addition of AHLs to isolates harvested following co-culture did not measurably affect either growth or biofilm of these strains. Addition of supernatants from QS active strains did however impact significantly on biofilm formation of the marine Bacillus sp. CH8a sporeforming strain suggesting a role for QS systems in moderating the microbe-microbe interaction in marine sponges. Genome sequencing and phylogenetic analysis of a QS positive Psychrobacter isolate identified several QS associated systems, although no classical QS synthase gene was identified. The stark contrast between the biodiverse sponge microbiome and the relatively limited diversity that was observed on standard culture media, even in the presence of QS active compounds, serves to underscore the extent of diversity that remains to be brought into culture.
Collapse
Affiliation(s)
- F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Ronan R McCarthy
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Sara Scarciglia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Claire Adams
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Kristian Fog Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
5
|
Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation. NPJ Biofilms Microbiomes 2019; 5:15. [PMID: 31149345 PMCID: PMC6533273 DOI: 10.1038/s41522-019-0088-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Biofilms are structured microbial communities that are the leading cause of numerous chronic infections which are difficult to eradicate. Within the lungs of individuals with cystic fibrosis (CF), Pseudomonas aeruginosa causes persistent biofilm infection that is commonly treated with aminoglycoside antibiotics such as tobramycin. However, sublethal concentrations of this aminoglycoside were previously shown to increase biofilm formation by P. aeruginosa, but the underlying adaptive mechanisms still remain elusive. Herein, we combined confocal laser scanning microscope analyses, proteomics profiling, gene expression assays and phenotypic studies to unravel P. aeruginosa potential adaptive mechanisms in response to tobramycin exposure during biofilm growth. Under this condition, we show that the modified biofilm architecture is related at least in part to increased extracellular DNA (eDNA) release, most likely as a result of biofilm cell death. Furthermore, the activity of quorum sensing (QS) systems was increased, leading to higher production of QS signaling molecules. We also demonstrate upon tobramycin exposure an increase in expression of the PrrF small regulatory RNAs, as well as expression of iron uptake systems. Remarkably, biofilm biovolumes and eDNA relative abundances in pqs and prrF mutant strains decrease in the presence of tobramycin. Overall, our findings offer experimental evidences for a potential adaptive mechanism linking PrrF sRNAs, QS signaling, biofilm cell death, eDNA release, and tobramycin-enhanced biofilm formation in P. aeruginosa. These specific adaptive mechanisms should be considered to improve treatment strategies against P. aeruginosa biofilm establishment in CF patients’ lungs.
Collapse
|
6
|
Kaur A, Capalash N, Sharma P. Communication mechanisms in extremophiles: Exploring their existence and industrial applications. Microbiol Res 2019; 221:15-27. [DOI: 10.1016/j.micres.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
7
|
Vadakkan K, Choudhury AA, Gunasekaran R, Hemapriya J, Vijayanand S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J Genet Eng Biotechnol 2018; 16:239-252. [PMID: 30733731 PMCID: PMC6353778 DOI: 10.1016/j.jgeb.2018.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023]
Abstract
Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Abbas Alam Choudhury
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | - Ramya Gunasekaran
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| | | | - Selvaraj Vijayanand
- Bioresource Technology Lab, Department of Biotechnology, Thiruvalluvar University, Vellore, TN 632115, India
| |
Collapse
|
8
|
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 2018; 37:68-90. [PMID: 30471318 DOI: 10.1016/j.biotechadv.2018.11.006] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/19/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Mangwani N, Kumari S, Das S. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnol Genet Eng Rev 2016; 32:43-73. [DOI: 10.1080/02648725.2016.1196554] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Neelam Mangwani
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769 008, India
| | - Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769 008, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769 008, India
| |
Collapse
|
10
|
Koul S, Prakash J, Mishra A, Kalia VC. Potential Emergence of Multi-quorum Sensing Inhibitor Resistant (MQSIR) Bacteria. Indian J Microbiol 2015; 56:1-18. [PMID: 26843692 DOI: 10.1007/s12088-015-0558-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
Expression of certain bacterial genes only at a high bacterial cell density is termed as quorum-sensing (QS). Here bacteria use signaling molecules to communicate among themselves. QS mediated genes are generally involved in the expression of phenotypes such as bioluminescence, biofilm formation, competence, nodulation, and virulence. QS systems (QSS) vary from a single in Vibrio spp. to multiple in Pseudomonas and Sinorhizobium species. The complexity of QSS is further enhanced by the multiplicity of signals: (1) peptides, (2) acyl-homoserine lactones, (3) diketopiperazines. To counteract this pathogenic behaviour, a wide range of bioactive molecules acting as QS inhibitors (QSIs) have been elucidated. Unlike antibiotics, QSIs don't kill bacteria and act at much lower concentration than those of antibiotics. Bacterial ability to evolve resistance against multiple drugs has cautioned researchers to develop QSIs which may not generate undue pressure on bacteria to develop resistance against them. In this paper, we have discussed the implications of the diversity and multiplicity of QSS, in acting as an arsenal to withstand attack from QSIs and may use these as reservoirs to develop multi-QSI resistance.
Collapse
Affiliation(s)
- Shikha Koul
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| | - Anjali Mishra
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India ; Academy for Scientific and Innovative Research (AcSIR), 2 Rafi Marg, New Delhi, 110001 India
| |
Collapse
|
11
|
Liaqat I, Bachmann RT, Edyvean RGJ. Type 2 quorum sensing monitoring, inhibition and biofilm formation in marine microrganisms. Curr Microbiol 2013; 68:342-51. [PMID: 24166155 DOI: 10.1007/s00284-013-0484-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/11/2013] [Indexed: 12/11/2022]
Abstract
The quorum sensing (QS) dependent behaviour of micro-organisms, in particular expression of virulence genes, biofilm formation and dispersal, have provided impetus for investigating practical approaches to interfere with microbial QS. This study tests Halomonas pacifica and Marinobacter hydrocarbonoclasticus, two halophilic marine micro-organism, for their AI-2 dependent QS signalling and the effect of two well-known quorum-sensing inhibitors (QSIs), patulin and penicillic acid, on biofilm formation. We report, for the first time, the successful amplification of a putative luxS gene in H. pacifica using degenerated primers and AI-2 dependent QS as well as inhibition using QSIs. Penicillic acid had a strong inhibitory effect on AI-2 induction of H. pacifica at non-growth inhibitory concentrations, while patulin has an adverse effect only at the highest concentration (25 μM). QSIs effect on biofilm forming capability was isolate specific, with maximum inhibition at 25 μM of patulin in H. pacifica. In M. hydrocarbonoclasticus, no adverse effects were noted at any tested concentration of either QSIs. Detection of bioluminescence and the presence of a putative luxS gene provide biochemical and genetic evidence for the production of a signalling molecule(s) which is the essential first step in characterizing H. pacifica QS. This study highlights the importance of AI-2 dependent QS in a marine setting, not previously reported. It further suggests that QSI compounds must be selected in the specific system in which they are to function, and they cannot easily be transferred from one QS system to another.
Collapse
Affiliation(s)
- Iram Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan,
| | | | | |
Collapse
|
12
|
Draft Genome Sequence of the Moderately Halophilic Gammaproteobacterium Halomonas anticariensis FP35T. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00497-13. [PMID: 23868129 PMCID: PMC3715671 DOI: 10.1128/genomea.00497-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Halomonas anticariensis strain FP35T is a moderately halophilic bacterium isolated from a soil sample taken from Fuente de Piedra, a saline wetland in the province of Málaga (Spain), which produces an exopolysaccharide and quorum-sensing signaling molecules of the type N-acylhomoserine lactone. We report here the draft genome sequence of this gammaproteobacterium.
Collapse
|
13
|
Abed RMM, Dobretsov S, Al-Fori M, Gunasekera SP, Sudesh K, Paul VJ. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat. J Ind Microbiol Biotechnol 2013; 40:759-72. [PMID: 23645384 DOI: 10.1007/s10295-013-1276-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/15/2013] [Indexed: 12/12/2022]
Abstract
In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22-25 % and a maximum temperature of 45-60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), cyclo(L-Pro-L-isoLeu), and cyclo(L-Pro-D-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(L-Pro-L-Phe) and cyclo(L-Pro-L-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Al Khoud, Sultanate of Oman
| | | | | | | | | | | |
Collapse
|
14
|
Quorum sensing in some representative species of halomonadaceae. Life (Basel) 2013; 3:260-75. [PMID: 25371343 PMCID: PMC4187203 DOI: 10.3390/life3010260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/18/2013] [Accepted: 02/22/2013] [Indexed: 11/20/2022] Open
Abstract
Cell-to-cell communication, or quorum-sensing (QS), systems are employed by bacteria for promoting collective behaviour within a population. An analysis to detect QS signal molecules in 43 species of the Halomonadaceae family revealed that they produced N-acyl homoserine lactones (AHLs), which suggests that the QS system is widespread throughout this group of bacteria. Thin-layer chromatography (TLC) analysis of crude AHL extracts, using Agrobacterium tumefaciens NTL4 (pZLR4) as biosensor strain, resulted in different profiles, which were not related to the various habitats of the species in question. To confirm AHL production in the Halomonadaceae species, PCR and DNA sequencing approaches were used to study the distribution of the luxI-type synthase gene. Phylogenetic analysis using sequence data revealed that 29 of the species studied contained a LuxI homolog. Phylogenetic analysis showed that sequences from Halomonadaceae species grouped together and were distinct from other members of the Gammaproteobacteria and also from species belonging to the Alphaproteobacteria and Betaproteobacteria.
Collapse
|
15
|
Tahrioui A, Quesada E, Llamas I. Genetic and phenotypic analysis of the GacS/GacA system in the moderate halophile Halomonas anticariensis. Microbiology (Reading) 2013; 159:462-474. [DOI: 10.1099/mic.0.061721-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Ali Tahrioui
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Emilia Quesada
- Biotechnology Research Institute, Polígono Universitario de Fuentenueva, University of Granada, 18071 Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Inmaculada Llamas
- Biotechnology Research Institute, Polígono Universitario de Fuentenueva, University of Granada, 18071 Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| |
Collapse
|