1
|
Zuo Y, Zhang R, Li S. Reviewing advancement in Mycoplasma pneumoniae P30 adhesin protein provides insights for future diagnosis and treatment. Front Microbiol 2024; 15:1515291. [PMID: 39735188 PMCID: PMC11671514 DOI: 10.3389/fmicb.2024.1515291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Mycoplasma pneumoniae is a major pathogen that causes upper and lower respiratory tract infections in children, adolescents, and elderly individuals and can lead to pneumonia, intrapulmonary and extrapulmonary complications, and respiratory sequelae. M. pneumoniae must adhere to respiratory epithelial cells of a host for infection. The P1 and P30 proteins, as two adhesin proteins of M. pneumoniae, have attracted extensive attention from many researchers. In this paper, we present the latest research progress on the P30 protein in terms of structure and mutation typing, physiological function, clinical serological diagnosis and vaccine development in a literature review. This study deepens our knowledge on the pathogenesis of M. pneumoniae and is useful for diagnosing and preventing M. pneumoniae infection.
Collapse
Affiliation(s)
- Yingying Zuo
- Hengyang Medical School, University of South China, Hengyang, China
| | - Ru Zhang
- The Seventh Affiliated Hospital of University of South China, Changsha, China
| | - Shuihong Li
- Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Qiu Y, Mao S, Li X, Chen Y, Chen W, Wen Y, Liu P. Chinese advances in understanding and managing genitourinary tract infections caused by Mycoplasma genitalium, Mycoplasma hominis, and Ureaplasma urealyticum. Arch Microbiol 2024; 207:5. [PMID: 39607610 DOI: 10.1007/s00203-024-04204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
Mycoplasma genitalium, Ureaplasma urealyticum and Mycoplasma hominis are bacterial pathogens found in the genitourinary tract, implicated in a range of infections. In women, these infections including pelvic inflammatory disease, vaginitis, infertility, and cervical cancer, while in men, they can cause non-gonococcal urethritis, prostate cancer, among other conditions. These infections are a global health concern, with China identified as a country with a high prevalence. This review provides a comprehensive overview of the epidemiology, causative factors, and diagnostic methods for these three Mycoplasma species with in China. The rise of multi-drug resistance, driven by antibiotics overuse, poses a significant challenge to treatment, complicating patient management. These Mycoplasma species employ unique adhesion mechanisms that trigger a cascade of signal transduction, culminating to inflammatory responses, tissue damage, and the release of toxic metabolites. Here, we delineate the mechanisms of underlying Mycoplasma resistance and propose key therapeutic strategies for these three mycoplasmas in China. This includes a summary of effective antibiotic treatment strategies, and potential combinations of therapeutic to improve cure rates, and a discussion of potential therapeutic approaches using traditional Chinese medicine.
Collapse
Affiliation(s)
- Yanyan Qiu
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China
| | - Siyi Mao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China
| | - Xianqi Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China
| | - Yinan Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China
| | - Wenxin Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China.
| | - Yating Wen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China.
| | - Peng Liu
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China.
| |
Collapse
|
3
|
Yueyue W, Feichen X, Yixuan X, Lu L, Yiwen C, Xiaoxing Y. Pathogenicity and virulence of Mycoplasma genitalium: Unraveling Ariadne's Thread. Virulence 2022; 13:1161-1183. [PMID: 35791283 PMCID: PMC9262362 DOI: 10.1080/21505594.2022.2095741] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma genitalium, a pathogen from class Mollicutes, has been linked to sexually transmitted diseases and sparked widespread concern. To adapt to its environment, M. genitalium has evolved specific adhesins and motility mechanisms that allow it to adhere to and invade various eukaryotic cells, thereby causing severe damage to the cells. Even though traditional exotoxins have not been identified, secreted nucleases or membrane lipoproteins have been shown to cause cell death and inflammatory injury in M. genitalium infection. However, as both innate and adaptive immune responses are important for controlling infection, the immune responses that develop upon infection do not necessarily eliminate the organism completely. Antigenic variation, detoxifying enzymes, immunoglobulins, neutrophil extracellular trap-degrading enzymes, cell invasion, and biofilm formation are important factors that help the pathogen overcome the host defence and cause chronic infections in susceptible individuals. Furthermore, M. genitalium can increase the susceptibility to several sexually transmitted pathogens, which significantly complicates the persistence and chronicity of M. genitalium infection. This review aimed to discuss the virulence factors of M. genitalium to shed light on its complex pathogenicity and pathogenesis of the infection.
Collapse
Affiliation(s)
- Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiu Feichen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xi Yixuan
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Liu Lu
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
4
|
Mizutani M, Sasajima Y, Miyata M. Force and Stepwise Movements of Gliding Motility in Human Pathogenic Bacterium Mycoplasma pneumoniae. Front Microbiol 2021; 12:747905. [PMID: 34630372 PMCID: PMC8498583 DOI: 10.3389/fmicb.2021.747905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma pneumoniae, a human pathogenic bacterium, binds to sialylated oligosaccharides and glides on host cell surfaces via a unique mechanism. Gliding motility is essential for initiating the infectious process. In the present study, we measured the stall force of an M. pneumoniae cell carrying a bead that was manipulated using optical tweezers on two strains. The stall forces of M129 and FH strains were averaged to be 23.7 and 19.7 pN, respectively, much weaker than those of other bacterial surface motilities. The binding activity and gliding speed of the M129 strain on sialylated oligosaccharides were eight and two times higher than those of the FH strain, respectively, showing that binding activity is not linked to gliding force. Gliding speed decreased when cell binding was reduced by addition of free sialylated oligosaccharides, indicating the existence of a drag force during gliding. We detected stepwise movements, likely caused by a single leg under 0.2-0.3 mM free sialylated oligosaccharides. A step size of 14-19 nm showed that 25-35 propulsion steps per second are required to achieve the usual gliding speed. The step size was reduced to less than half with the load applied using optical tweezers, showing that a 2.5 pN force from a cell is exerted on a leg. The work performed in this step was 16-30% of the free energy of the hydrolysis of ATP molecules, suggesting that this step is linked to the elementary process of M. pneumoniae gliding. We discuss a model to explain the gliding mechanism, based on the information currently available.
Collapse
Affiliation(s)
- Masaki Mizutani
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Yuya Sasajima
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| |
Collapse
|
5
|
Feng M, Burgess AC, Cuellar RR, Schwab NR, Balish MF. Modelling persistent Mycoplasma pneumoniae biofilm infections in a submerged BEAS-2B bronchial epithelial tissue culture model. J Med Microbiol 2021; 70. [PMID: 33170120 DOI: 10.1099/jmm.0.001266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction. Infections with the respiratory pathogen Mycoplasma pneumoniae are often chronic, recurrent and resistant, persisting after antibiotic treatment. M. pneumoniae grown on glass forms protective biofilms, consistent with a role for biofilms in persistence. These biofilms consist of towers of bacteria interspersed with individual adherent cells.Hypothesis/Gap Statement. A tissue culture model for M. pneumoniae biofilms has not been described or evaluated to address whether growth, development and resistance properties are consistent with persistence in the host. Moreover, it is unclear whether the M. pneumoniae cells in the biofilm towers and individual bacterial cells have distinct roles in disease.Aim. We evaluated the properties of biofilms of M. pneumoniae grown on the immortalized human bronchial epithelial cell line BEAS-2B in relation to persistence in the host. We observed nucleation of biofilm towers and the disposition of individual cells in culture, leading to a model of how tower and individual cells contribute to infection and disease.Methodology. With submerged BEAS-2B cells as a substrate, we evaluated growth and development of M. pneumoniae biofilms using scanning electron microscopy and confocal laser scanning microscopy. We characterized resistance to erythromycin and complement using minimum inhibitory concentration assays and quantification of colony forming units. We monitored biofilm tower formation using time-lapse microscopic analysis of host-cell-free M. pneumoniae cultures.Results. Bacteria grown on host cells underwent similar development to those grown without host cells, including tower formation, rounding and incidence of individual cells outside towers. Erythromycin and complement significantly reduced growth of M. pneumoniae. Towers formed exclusively from pre-existing aggregates of bacteria. We discuss a model of the M. pneumoniae biofilm life cycle in which protective towers derive from pre-existing aggregates, and generate individual cytotoxic cells.Conclusion . M. pneumoniae can form protective biofilms in a tissue culture model, implicating biofilms in chronic infections, with aggregates of M. pneumoniae cells being important for establishing infections.
Collapse
Affiliation(s)
- Monica Feng
- Present address: Department of Medicine, Albert Einstein Medical College, Bronx, NY 10461, USA.,Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Amanda C Burgess
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Rachel R Cuellar
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Nathan R Schwab
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
6
|
Daubenspeck JM, Totten AH, Needham J, Feng M, Balish MF, Atkinson TP, Dybvig K. Mycoplasma genitalium Biofilms Contain Poly-GlcNAc and Contribute to Antibiotic Resistance. Front Microbiol 2020; 11:585524. [PMID: 33193233 PMCID: PMC7652822 DOI: 10.3389/fmicb.2020.585524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Mycoplasma genitalium is an important etiologic agent of non-gonococcal urethritis (NGU), known for chronicity and multidrug resistance, in which biofilms may play an integral role. In some bacterial species capable of forming biofilms, extracellular polymeric substances (EPS) composed of poly-N-acetylglucosamine (PNAG) are a crucial component of the matrix. Monosaccharide analysis of M. genitalium strains revealed high abundance of GlcNAc, suggesting a biofilm-specific EPS. Chromatograms also showed high concentrations of galactose and glucose as observed in other mycoplasma species. Fluorescence microscopy of M. genitalium biofilms utilizing fluor-coupled lectins revealed differential staining of biofilm structures. Scanning electron microscopy (SEM) showed increasing maturation over time of bacterial “towers” seen in biofilm development. As seen with Mycoplasma pneumoniae, organisms within fully mature M. genitalium biofilms exhibited loss of cell polarization. Bacteria associated with disrupted biofilms exhibited decreased dose-dependent viability after treatment with antibiotics compared to bacteria with intact biofilms. In addition, growth index analysis demonstrated decreases in metabolism in cultures with disrupted biofilms with antibiotic treatment. Taken together, these data suggest that M. genitalium biofilms are a contributing factor in antibiotic resistance.
Collapse
Affiliation(s)
- James M Daubenspeck
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Arthur H Totten
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jason Needham
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Monica Feng
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Mitchell F Balish
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kevin Dybvig
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Feng M, Schaff AC, Cuadra Aruguete SA, Riggs HE, Distelhorst SL, Balish MF. Development of Mycoplasma pneumoniae biofilms in vitro and the limited role of motility. Int J Med Microbiol 2018; 308:324-334. [PMID: 29426802 DOI: 10.1016/j.ijmm.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/19/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022] Open
Abstract
Mycoplasma pneumoniae is a bacterial pathogen of humans that is a major causative agent of chronic respiratory disease. M. pneumoniae infections often recur even after successful treatment of symptoms with antibiotics, and resistance to antibiotics is increasing worldwide, with nearly complete resistance in some places. Although biofilms often contribute to chronicity and resistance, M. pneumoniae biofilms remain poorly characterized. Scanning electron microscopy revealed that cells of wild-type (WT) M. pneumoniae strain M129 biofilms, as well as mutants II-3 and II-3R, in vitro became increasingly rounded as the biofilm towers matured over 5 days. The role of gliding motility in biofilm formation was addressed by analyzing differences in biofilm architecture in non-motile mutant II-3R and hypermotile mutant prpC-and by using time-lapse microcinematography to measure flux of cells around biofilm towers. There were no major differences in biofilm architecture between WT and motility mutants, with perhaps a slight tendency for the prpC- cells to spread outside towers during early stages of biofilm formation. Consistent with an insignificant role of motility in biofilm development, flux of cells near towers, which was low, was dominated by exit of cells. Immunofluorescence microscopy revealed that motility-associated attachment organelle (AO) proteins exhibited no discernable changes in localization to foci over time, but immunoblotting identified a decrease in steady-state levels of protein P200, which is required for normal gliding speed, as the WT culture aged. Non-adherent strain II-3 and non-motile strain II-3R also exhibited a steady decrease in P200 steady-state levels, suggesting that the decrease in P200 levels was not a response to changes in gliding behavior during maturation. We conclude that M. pneumoniae cells undergo morphological changes as biofilms mature, motility plays no major role in biofilm development, and P200 loss might be related to maturation of cells. This study helps to characterize potential therapeutic targets for M. pneumoniae infections.
Collapse
Affiliation(s)
- Monica Feng
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Andrew C Schaff
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Sara A Cuadra Aruguete
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Hailey E Riggs
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Steven L Distelhorst
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Mitchell F Balish
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| |
Collapse
|
8
|
Miyata M, Hamaguchi T. Integrated Information and Prospects for Gliding Mechanism of the Pathogenic Bacterium Mycoplasma pneumoniae. Front Microbiol 2016; 7:960. [PMID: 27446003 PMCID: PMC4923136 DOI: 10.3389/fmicb.2016.00960] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/02/2016] [Indexed: 01/21/2023] Open
Abstract
Mycoplasma pneumoniae forms a membrane protrusion at a cell pole and is known to adhere to solid surfaces, including animal cells, and can glide on these surfaces with a speed up to 1 μm per second. Notably, gliding appears to be involved in the infectious process in addition to providing the bacteria with a means of escaping the host's immune systems. However, the genome of M. pneumoniae does not encode any of the known genes found in other bacterial motility systems or any conventional motor proteins that are responsible for eukaryotic motility. Thus, further analysis of the mechanism underlying M. pneumoniae gliding is warranted. The gliding machinery formed as the membrane protrusion can be divided into the surface and internal structures. On the surface, P1 adhesin, a 170 kDa transmembrane protein forms an adhesin complex with other two proteins. The internal structure features a terminal button, paired plates, and a bowl (wheel) complex. In total, the organelle is composed of more than 15 proteins. By integrating the currently available information by genetics, microscopy, and structural analyses, we have suggested a working model for the architecture of the organelle. Furthermore, in this article, we suggest and discuss a possible mechanism of gliding based on the structural model, in which the force generated around the bowl complex transmits through the paired plates, reaching the adhesin complex, resulting in the repeated catch of sialylated oligosaccharides on the host surface by the adhesin complex.
Collapse
Affiliation(s)
- Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City UniversityOsaka, Japan
| | - Tasuku Hamaguchi
- Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City UniversityOsaka, Japan
| |
Collapse
|
9
|
Indikova I, Vronka M, Szostak MP. First identification of proteins involved in motility of Mycoplasma gallisepticum. Vet Res 2014; 45:99. [PMID: 25323771 PMCID: PMC4207318 DOI: 10.1186/s13567-014-0099-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/23/2014] [Indexed: 01/23/2023] Open
Abstract
Mycoplasma gallisepticum, the most pathogenic mycoplasma in poultry, is able to glide over solid surfaces. Although this gliding motility was first observed in 1968, no specific protein has yet been shown to be involved in gliding. We examined M. gallisepticum strains and clonal variants for motility and found that the cytadherence proteins GapA and CrmA were required for gliding. Loss of GapA or CrmA resulted in the loss of motility and hemadsorption and led to drastic changes in the characteristic flask-shape of the cells. To identify further genes involved in motility, a transposon mutant library of M. gallisepticum was generated and screened for motility-deficient mutants, using a screening assay based on colony morphology. Motility-deficient mutants had transposon insertions in gapA and the neighbouring downstream gene crmA. In addition, insertions were seen in gene mgc2, immediately upstream of gapA, in two motility-deficient mutants. In contrast to the GapA/CrmA mutants, the mgc2 motility mutants still possessed the ability to hemadsorb. Complementation of these mutants with a mgc2-hexahistidine fusion gene restored the motile phenotype. This is the first report assigning specific M. gallisepticum proteins to involvement in gliding motility.
Collapse
Affiliation(s)
- Ivana Indikova
- Department of Pathobiology, Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210, Vienna, Austria.
| | - Martin Vronka
- Department of Pathobiology, Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210, Vienna, Austria.
| | - Michael P Szostak
- Department of Pathobiology, Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210, Vienna, Austria.
| |
Collapse
|
10
|
Abstract
In recent decades, bacterial cell biology has seen great advances, and numerous model systems have been developed to study a wide variety of cellular processes, including cell division, motility, assembly of macromolecular structures, and biogenesis of cell polarity. Considerable attention has been given to these model organisms, which include Escherichia coli, Bacillus subtilis, Caulobacter crescentus, and Myxococcus xanthus. Studies of these processes in the pathogenic bacterium Mycoplasma pneumoniae and its close relatives have also been carried out on a smaller scale, but this work is often overlooked, in part due to this organism's reputation as minimalistic and simple. In this minireview, I discuss recent work on the role of the M. pneumoniae attachment organelle (AO), a structure required for adherence to host cells, in these processes. The AO is constructed from proteins that generally lack homology to those found in other organisms, and this construction occurs in coordination with cell cycle events. The proteins of the M. pneumoniae AO share compositional features with proteins with related roles in model organisms. Once constructed, the AO becomes activated for its role in a form of gliding motility whose underlying mechanism appears to be distinct from that of other gliding bacteria, including Mycoplasma mobile. Together with the FtsZ cytoskeletal protein, motility participates in the cell division process. My intention is to bring this deceptively complex organism into alignment with the better-known model systems.
Collapse
|