1
|
Monteiro R, Alcantud BS, Piersma S, Hendrickx APA, Maaß S, Becher D, Azeredo J, Bathoorn E, van Dijl JM. Outer membrane vesicles of carbapenem-resistant clinical Acinetobacter baumannii isolates protect both the vesicle-producing bacteria and non-resistant bacteria against carbapenems. Microbiol Res 2025; 297:128175. [PMID: 40239429 DOI: 10.1016/j.micres.2025.128175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/23/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Infections caused by carbapenem-resistant Acinetobacter baumannii (A. baumannii; CRAb) are associated with high patient morbidity and mortality. The serious threat for human health imposed by CRAb was recently underscored by identification of close-to-untouchable carbapenem- and tetracycline-resistant isolates. Since outer membrane vesicles (OMVs) of Gram-negative bacteria may contribute to antimicrobial resistance, our present study was aimed at investigating OMVs produced by the first two carbapenem- and tetracycline-resistant A. baumannii isolates in Europe. These isolates, denoted CRAb1 and CRAb2, contain large, nearly identical plasmids that specify multiple resistances. Both isolates produce OMVs that were analyzed by differential light scattering, transmission electron microscopy and proteomics. By comparison with OMVs from the plasmid-free non-carbapenem-resistant A. baumannii isolate Ab1, which is an isogenic ancestor of the CRAb1 isolate, we show that plasmid carriage by the CRAb1 and CRAb2 isolates leads to an increased OMV size that is accompanied by increased diversity of the OMV proteome. Our analyses show that OMVs from CRAb1 and CRAb2 are major reservoirs of proteins involved in antimicrobial resistance, including the plasmid-encoded carbapenemases New Delhi metallo-β-lactamase-1 (NDM-1), and carbapenem-hydrolyzing oxacillinase OXA-97 (OXA-97). Here we report that these OMV-borne carbapenemases hydrolyze imipenem and protect otherwise carbapenem-sensitive A. baumannii and Escherichia coli (E. coli) isolates against this antibiotic. In conclusion, our findings demonstrate that OMVs from highly drug-resistant CRAb confer protection against last-resort antibiotics to non-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Rodrigo Monteiro
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands; Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Beatriz Santamarina Alcantud
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Sjouke Piersma
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sandra Maaß
- University of Greifswald, Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, Greifswald, Germany
| | - Dörte Becher
- University of Greifswald, Centre of Functional Genomics of Microbes, Department of Microbial Proteomics, Institute of Microbiology, Greifswald, Germany
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Erik Bathoorn
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands.
| |
Collapse
|
2
|
Klaysubun C, Chaichana N, Suwannasin S, Singkhamanan K, Yaikhan T, Kantachote D, Pomwised R, Wonglapsuwan M, Surachat K. Genomic Insights and Comparative Analysis of Novel Rhodopseudomonas Species: A Purple Non-Sulfur Bacterium Isolated from Latex Rubber Sheet Wastewater. Life (Basel) 2025; 15:754. [PMID: 40430182 DOI: 10.3390/life15050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Rhodopseudomonas is recognized for its versatile metabolic capabilities that enable it to effectively degrade pollutants and survive various environmental stresses. In this study, we conducted a genome analysis of Rhodopseudomonas sp. P1 to investigate its genetic potential for wastewater treatment processes. Phylogenetic and genome-relatedness analyses confirmed that strain P1 is genetically distinct from other species within the Rhodopseudomonas genus, establishing it as a novel species. The genome sequences obtained and analyzed focused on genes related to carbon and nutrient removal, photosynthetic capabilities, nitrate and nitrite reduction, and the biodegradation of common wastewater pollutants. The identification of wastewater treatment-related genes followed an extensive review of the existing literature that helped in selecting genes involved in various wastewater treatment mechanisms. The genome of Rhodopseudomonas sp. P1 contains a diverse array of genes involved in carbon and nutrient cycling, pollutant biodegradation, and metal resistance, all of which are crucial for its survival in the complex wastewater environment. Specifically, the strain contains genes responsible for the denitrification, nitrogen fixation, sulfur cycling, and detoxification of toxic metals such as copper and arsenic. These findings highlight the potential application of Rhodopseudomonas sp. P1 in wastewater treatment, particularly in environments contaminated with organic pollutants and heavy metals. However, while the genomic features indicate significant promise, the practical implementation of Rhodopseudomonas sp. P1 in real-world wastewater treatment systems will require further investigation, optimization, and validation to fully harness its potential for sustainable and efficient wastewater treatment.
Collapse
Affiliation(s)
- Chollachai Klaysubun
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nattarika Chaichana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
3
|
Acevedo-López J, González-Madrid G, Navarro CA, Jerez CA. Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in Saccharolobus solfataricus. Microorganisms 2024; 12:2627. [PMID: 39770829 PMCID: PMC11677633 DOI: 10.3390/microorganisms12122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Polyphosphates are biopolymers composed of phosphate monomers linked by high-energy phosphoanhydride bonds. They are present across all life domains, serving as a source of energy, metal chelators, and playing a crucial role in stress defense. In Escherichia coli, polyphosphates also function as inorganic molecular chaperones. The present study aims to investigate whether polyphosphate serves a similar chaperone function in archaea, using Saccharolobus solfataricus as a model organism. To this end, polyphosphate was extracted and quantified, the ADP/ATP ratio was determined, insoluble protein extracts were analyzed at different time points after copper exposure, and qPCR was performed to measure the expression of stress-related genes. PolyP was extracted after exposing the archaeon S. solfataricus to different copper concentrations. We determined that polyP degradation is directly correlated with metal concentration. At the minimum inhibitory concentration (MIC) of 2 mM Cu2+, polyP degradation stabilized 2 h after exposure and showed no recovery even after 24 h. The ADP/ATP ratio was measured and showed differences in the presence or absence of polyP. The analysis of proteins precipitated under copper stress showed a higher proportion of insoluble proteins at an elevated metal concentration. On the other hand, increased protein precipitation was detected in the absence of polyP. Gene expression analysis via qPCR was conducted to assess the expression of genes involved in chaperone and chaperonin production, copper resistance, oxidative stress response, and phosphate metabolism under prolonged copper exposure, both in the presence and absence of polyP. The results indicated an upregulation of all the chaperonins measured in the presence of polyP. Interestingly, just some of these genes were upregulated in polyP's absence. Despite copper stress, there was no upregulation of superoxide dismutase in our conditions. These results highlight the role of polyP in the copper stress response in S. solfataricus, particularly to prevent protein precipitation, likely due to its function as an inorganic chaperone. Additionally, the observed protein precipitation could be attributable to interactions between copper and some amino acids on the protein structures rather than oxidative stress induced by copper exposure, as previously described in E. coli. Our present findings provide new insights into the protective role of polyP as an inorganic chaperone in S. solfataricus and emphasize its importance in maintaining cellular homeostasis under metal stress conditions.
Collapse
Affiliation(s)
| | | | | | - Carlos A. Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile; (J.A.-L.); (G.G.-M.)
| |
Collapse
|
4
|
Aliyu GO, Ezugworie FN, Onwosi CO, Nnamchi CI, Ekwealor CC, Igbokwe VC, Sani RK. Multi-stress adaptive lifestyle of acidophiles enhances their robustness for biotechnological and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176190. [PMID: 39265677 DOI: 10.1016/j.scitotenv.2024.176190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Acidophiles are a group of organisms typically found in highly acidic environments such as acid mine drainage. These organisms have several physiological features that enable them to thrive in highly acidic environments (pH ≤3). Considering that both acid mine drainage and solfatara fields exhibit extreme and dynamic ecological conditions for acidophiles, it is crucial to gain deeper insights into the adaptive mechanisms employed by these unique organisms. The existing literature reveals a notable gap in understanding the multi-stress conditions confronting acidophiles and their corresponding coping mechanisms. Therefore, the current review aims to illuminate the intricacies of the metabolic lifestyles of acidophiles within these demanding habitats, exploring how their energy demands contribute to habitat acidification. In addition, the unique adaptive mechanisms employed by acidophiles were emphasized, especially the pivotal role of monolayer membrane-spanning lipids, and how these organisms effectively respond to a myriad of stresses. Beyond mere survival, understanding the adaptive mechanisms of these unique organisms could further enhance their use in some biotechnological and environmental applications. Lastly, this review explores the strategies used to engineer these organisms to promote their use in industrial applications.
Collapse
Affiliation(s)
- Godwin O Aliyu
- Department of Microbiology, Faculty of Natural Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Flora N Ezugworie
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Sciences, Federal College of Dental Technology and Therapy, Enugu, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
| | - Chukwudi I Nnamchi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chito C Ekwealor
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; INSERM UMR-S 1121 Biomaterial and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Rajesh K Sani
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, 57701, SD, United States; Data-Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States; Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States; BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
5
|
Li H, Xu H. Mechanisms of bacterial resistance to environmental silver and antimicrobial strategies for silver: A review. ENVIRONMENTAL RESEARCH 2024; 248:118313. [PMID: 38280527 DOI: 10.1016/j.envres.2024.118313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
The good antimicrobial properties of silver make it widely used in food, medicine, and environmental applications. However, the release and accumulation of silver-based antimicrobial agents in the environment is increasing with the extensive use of silver-based antimicrobials, and the prevalence of silver-resistant bacteria is increasing. To prevent the emergence of superbugs, it is necessary to exercise rational and strict control over drug use. The mechanism of bacterial resistance to silver has not been fully elucidated, and this article provides a review of the progress of research on the mechanism of bacterial resistance to silver. The results indicate that bacterial resistance to silver can occur through inducing silver particles aggregation and Ag+ reduction, inhibiting silver contact with and entry into cells, efflux of silver particles and Ag+ in cells, and activation of damage repair mechanisms. We propose that the bacterial mechanism of silver resistance involves a combination of interrelated systems. Finally, we discuss how this information can be used to develop the next generation of silver-based antimicrobials and antimicrobial therapies. And some antimicrobial strategies are proposed such as the "Trojan Horse" - camouflage, using efflux pump inhibitors to reduce silver efflux, working with "minesweeper", immobilization of silver particles.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
6
|
Buda DM, Szekeres E, Tudoran LB, Esclapez J, Banciu HL. Genome-wide transcriptional response to silver stress in extremely halophilic archaeon Haloferax alexandrinus DSM 27206 T. BMC Microbiol 2023; 23:381. [PMID: 38049746 PMCID: PMC10694973 DOI: 10.1186/s12866-023-03133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The extremely halophilic archaeon Haloferax (Hfx.) alexandrinus DSM 27206 T was previously documented for the ability to biosynthesize silver nanoparticles while mechanisms underlying its silver tolerance were overlooked. In the current study, we aimed to assess the transcriptional response of this haloarchaeon to varying concentrations of silver, seeking a comprehensive understanding of the molecular determinants underpinning its heavy metal tolerance. RESULTS The growth curves confirmed the capacity of Hfx. alexandrinus to surmount silver stress, while the SEM-EDS analysis illustrated the presence of silver nanoparticles in cultures exposed to 0.5 mM silver nitrate. The RNA-Seq based transcriptomic analysis of Hfx. alexandrinus cells exposed to 0.1, 0.25, and 0.5 mM silver nitrate revealed the differential expression of multiple sets of genes potentially employed in heavy-metal stress response, genes mostly related to metal transporters, basic metabolism, oxidative stress response and cellular motility. The RT-qPCR analysis of selected transcripts was conducted to verify and validate the generated RNA-Seq data. CONCLUSIONS Our results indicated that copA, encoding the copper ATPase, is essential for the survival of Hfx. alexandrinus cells in silver-containing saline media. The silver-exposed cultures underwent several metabolic adjustments that enabled the activation of enzymes involved in the oxidative stress response and impairment of the cellular movement capacity. To our knowledge, this study represents the first comprehensive analysis of gene expression in halophillic archaea facing increased levels of heavy metals.
Collapse
Grants
- PN-III-P4-ID-PCE-2020-1559 Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCD
- PN-III-P4-ID-PCE-2020-1559 Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCD
- PN-III-P4-ID-PCE-2020-1559 Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCD
- PN-III-P4-ID-PCE-2020-1559 Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCD
- VIGRO-016 Vicerrectorado de Investigación y Transferencia de Conocimiento of the University of Alicante
- Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCD
Collapse
Affiliation(s)
- Doriana Mădălina Buda
- Doctoral School of Integrative Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Edina Szekeres
- Institute of Biological Research Cluj, NIRDBS, Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Cluj-Napoca, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Julia Esclapez
- Biochemistry and Molecular Biology and Soil and Agricultural Chemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Alicante, Spain
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Cluj-Napoca, Romania.
- Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Recalde A, González-Madrid G, Acevedo-López J, Jerez CA. Sessile Lifestyle Offers Protection against Copper Stress in Saccharolobus solfataricus. Microorganisms 2023; 11:1421. [PMID: 37374923 DOI: 10.3390/microorganisms11061421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Some archaea from the genus Sulfolobus are important for bioleaching of copper, where metal resistant microorganisms are required. Biofilm generation is one of the ways microorganisms cope with some stimuli in nature, including heavy metals. The response to external factors, particularly in the biofilm form of life, is still underexplored in archaea. To explore how model thermoacidophilic archaeon Saccharolobus solfataricus faces copper stress during this lifestyle, changes in biofilms were studied using crystal violet staining, confocal fluorescence microscopy, and qPCR approaches. It was found that biofilm formation reached a maximum at 0.5 mM Cu, before starting to decrease at higher metal concentrations. The morphology of biofilms at 0.5 mM Cu was observed to be different, displaying lower thickness, different sugar patterns, and higher amounts of cells compared to standard growing conditions. Furthermore, copA, which is responsive to intracellular Cu concentration, was downregulated in biofilm cells when compared with planktonic cells exposed to the same metal concentration. The latest results suggests that cells in biofilms are less exposed to Cu than those in planktonic culture. In a PolyP-deficient strain, Cu was not able to induce biofilm formation at 0.5 mM. In summary, the findings reported here suggest that the biofilm form of life confers S. solfataricus advantages to face stress caused by Cu.Biofilm formation remains a relatively unexplored topic in archaeal research. Therefore, this knowledge in model organisms such as S. solfataricus, and how they use it to face stress, could be of great importance to engineer organisms with improved capabilities to be applied in biotechnological processes, such as bioleaching of metals.
Collapse
Affiliation(s)
- Alejandra Recalde
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, 8330111 Santiago, Chile
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | - Gabriela González-Madrid
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, 8330111 Santiago, Chile
| | - José Acevedo-López
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, 8330111 Santiago, Chile
| | - Carlos A Jerez
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, 8330111 Santiago, Chile
| |
Collapse
|
8
|
Microbial silver resistance mechanisms: recent developments. World J Microbiol Biotechnol 2022; 38:158. [PMID: 35821348 DOI: 10.1007/s11274-022-03341-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/19/2022] [Indexed: 01/12/2023]
Abstract
In this mini-review, after a brief introduction into the widespread antimicrobial use of silver ions and nanoparticles against bacteria, fungi and viruses, the toxicity of silver compounds and the molecular mechanisms of microbial silver resistance are discussed, including recent studies on bacteria and fungi. The similarities and differences between silver ions and silver nanoparticles as antimicrobial agents are also mentioned. Regarding bacterial ionic silver resistance, the roles of the sil operon, silver cation efflux proteins, and copper-silver efflux systems are explained. The importance of bacterially produced exopolysaccharides as a physiological (biofilm) defense mechanism against silver nanoparticles is also emphasized. Regarding fungal silver resistance, the roles of metallothioneins, copper-transporting P-type ATPases and cell wall are discussed. Recent evolutionary engineering (adaptive laboratory evolution) studies are also discussed which revealed that silver resistance can evolve rapidly in bacteria and fungi. The cross-resistance observed between silver resistance and resistance to other heavy metals and antibiotics in bacteria and fungi is also explained as a clinically and environmentally important issue. The use of silver against bacterial and fungal biofilm formation is also discussed. Finally, the antiviral effects of silver and the use of silver nanoparticles against SARS-CoV-2 and other viruses are mentioned. To conclude, silver compounds are becoming increasingly important as antimicrobial agents, and their widespread use necessitates detailed understanding of microbial silver response and resistance mechanisms, as well as the ecological effects of silver compounds. Figure created with BioRender.com.
Collapse
|
9
|
Irawati W, Djojo ES, Kusumawati L, Yuwono T, Pinontoan R. Optimizing Bioremediation: Elucidating Copper Accumulation Mechanisms of Acinetobacter sp. IrC2 Isolated From an Industrial Waste Treatment Center. Front Microbiol 2021; 12:713812. [PMID: 34795645 PMCID: PMC8595058 DOI: 10.3389/fmicb.2021.713812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/20/2021] [Indexed: 01/31/2023] Open
Abstract
Acinetobacter sp. IrC2 is a copper-resistant bacterium isolated from an industrial waste treatment center in Rungkut, Surabaya. Copper-resistant bacteria are known to accumulate copper inside the cells as a mechanism to adapt to a copper-contaminated environment. Periplasmic and membrane proteins CopA and CopB have been known to incorporate copper as a mechanism of copper resistance. In the present study, protein profile changes in Acinetobacter sp. IrC2 following exposure to copper stress were analyzed to elucidate the copper resistance mechanism. Bacteria were grown in a Luria Bertani agar medium with and without CuSO4 supplementation. Intracellular copper ion accumulation was quantified using atomic absorption spectrophotometry. Changes in protein profile were assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results showed that 6 mM CuSO4 was toxic for Acinetobacter sp. IrC2, and as a response to this copper-stress condition, the lag phase was prolonged to 18 h. It was also found that the bacteria accumulated copper to a level of 508.01 mg/g of cells' dry weight, marked by a change in colony color to green. The protein profile under copper stress was altered as evidenced by the appearance of five specific protein bands with molecular weights of 68.0, 60.5, 38.5, 24.0, and 20.5 kDa, suggesting the presence of CopA, multicopper oxidase (MCO), CopB, universal stress protein (Usp), and superoxide dismutase (SOD) and/or DNA-binding protein from starved cells, respectively. We proposed that the mechanism of bacterial resistance to copper involves CopA and CopB membrane proteins in binding Cu ions in the periplasm and excreting excess Cu ions as well as involving enzymes that play a role in the detoxification process, namely, SOD, MCO, and Usp to avoid cell damage under copper stress.
Collapse
Affiliation(s)
- Wahyu Irawati
- Department of Biology Education, Universitas Pelita Harapan, Tangerang, Indonesia
| | | | - Lucia Kusumawati
- Department of Food Technology, International University Liaison Indonesia, Tangerang, Indonesia
| | - Triwibowo Yuwono
- Department of Agricultural Microbiology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | |
Collapse
|
10
|
Andrei A, Di Renzo MA, Öztürk Y, Meisner A, Daum N, Frank F, Rauch J, Daldal F, Andrade SLA, Koch HG. The CopA2-Type P 1B-Type ATPase CcoI Serves as Central Hub for cbb 3-Type Cytochrome Oxidase Biogenesis. Front Microbiol 2021; 12:712465. [PMID: 34589071 PMCID: PMC8475189 DOI: 10.3389/fmicb.2021.712465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Copper (Cu)-transporting P1B-type ATPases are ubiquitous metal transporters and crucial for maintaining Cu homeostasis in all domains of life. In bacteria, the P1B-type ATPase CopA is required for Cu-detoxification and exports excess Cu(I) in an ATP-dependent reaction from the cytosol into the periplasm. CopA is a member of the CopA1-type ATPase family and has been biochemically and structurally characterized in detail. In contrast, less is known about members of the CopA2-type ATPase family, which are predicted to transport Cu(I) into the periplasm for cuproprotein maturation. One example is CcoI, which is required for the maturation of cbb 3-type cytochrome oxidase (cbb 3-Cox) in different species. Here, we reconstituted purified CcoI of Rhodobacter capsulatus into liposomes and determined Cu transport using solid-supported membrane electrophysiology. The data demonstrate ATP-dependent Cu(I) translocation by CcoI, while no transport is observed in the presence of a non-hydrolysable ATP analog. CcoI contains two cytosolically exposed N-terminal metal binding sites (N-MBSs), which are both important, but not essential for Cu delivery to cbb 3-Cox. CcoI and cbb 3-Cox activity assays in the presence of different Cu concentrations suggest that the glutaredoxin-like N-MBS1 is primarily involved in regulating the ATPase activity of CcoI, while the CopZ-like N-MBS2 is involved in Cu(I) acquisition. The interaction of CcoI with periplasmic Cu chaperones was analyzed by genetically fusing CcoI to the chaperone SenC. The CcoI-SenC fusion protein was fully functional in vivo and sufficient to provide Cu for cbb 3-Cox maturation. In summary, our data demonstrate that CcoI provides the link between the cytosolic and periplasmic Cu chaperone networks during cbb 3-Cox assembly.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Maria Agostina Di Renzo
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Alexandra Meisner
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fabian Frank
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Susana L A Andrade
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Abstract
Although heavy metals are naturally found in the environment as components of the earth’s crust, environmental pollution by these toxic elements has increased since the industrial revolution. Some of them can be considered essential, since they play regulatory roles in different biological processes; but the role of other heavy metals in living tissues is not clear, and once ingested they can accumulate in the organism for long periods of time causing adverse health effects. To mitigate this problem, different methods have been used to remove heavy metals from water and soil, such as chelation-based processes. However, techniques like bioremediation are leaving these conventional methodologies in the background for being more effective and eco-friendlier. Recently, different research lines have been promoted, in which several organisms have been used for bioremediation approaches. Within this context, the extremophilic microorganisms represent one of the best tools for the treatment of contaminated sites due to the biochemical and molecular properties they show. Furthermore, since it is estimated that 5% of industrial effluents are saline and hypersaline, halophilic microorganisms have been suggested as good candidates for bioremediation and treatment of this kind of samples. These microorganisms, and specifically the haloarchaea group, are of interest to design strategies aiming the removal of polluting compounds due to the efficiency of their metabolism under extreme conditions and their significant tolerance to highly toxic compounds such as heavy metals, bromate, nitrite, chlorate, or perchlorate ions. However, there are still few trials that have proven the bioremediation of environments contaminated with heavy metals using these microorganisms. This review analyses scientific literature focused on metabolic capabilities of haloarchaea that may allow these microbes to tolerate and eliminate heavy metals from the media, paying special attention to cadmium. Thus, this work will shed light on potential uses of haloarchaea in bioremediation of soils and waters negatively affected by heavy metals, and more specifically by cadmium.
Collapse
|
12
|
Unlocking Survival Mechanisms for Metal and Oxidative Stress in the Extremely Acidophilic, Halotolerant Acidihalobacter Genus. Genes (Basel) 2020; 11:genes11121392. [PMID: 33255299 PMCID: PMC7760498 DOI: 10.3390/genes11121392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022] Open
Abstract
Microorganisms used for the biohydrometallurgical extraction of metals from minerals must be able to survive high levels of metal and oxidative stress found in bioleaching environments. The Acidihalobacter genus consists of four species of halotolerant, iron–sulfur-oxidizing acidophiles that are unique in their ability to tolerate chloride and acid stress while simultaneously bioleaching minerals. This paper uses bioinformatic tools to predict the genes and mechanisms used by Acidihalobacter members in their defense against a wide range of metals and oxidative stress. Analysis revealed the presence of multiple conserved mechanisms of metal tolerance. Ac. yilgarnensis F5T, the only member of this genus that oxidizes the mineral chalcopyrite, contained a 39.9 Kb gene cluster consisting of 40 genes encoding mobile elements and an array of proteins with direct functions in copper resistance. The analysis also revealed multiple strategies that the Acidihalobacter members can use to tolerate high levels of oxidative stress. Three of the Acidihalobacter genomes were found to contain genes encoding catalases, which are not common to acidophilic microorganisms. Of particular interest was a rubrerythrin genomic cluster containing genes that have a polyphyletic origin of stress-related functions.
Collapse
|
13
|
The Effect of Spring Water Geochemistry on Copper Proteins in Tengchong Hot Springs, China. Appl Environ Microbiol 2020; 86:AEM.00581-20. [PMID: 32358007 DOI: 10.1128/aem.00581-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/26/2020] [Indexed: 12/28/2022] Open
Abstract
Copper (Cu) is an essential trace metal cofactor for a variety of proteins; however, excess Cu is toxic to most organisms. Cu homeostasis is maintained by a complex machinery of Cu binding proteins that control the uptake, transport, sequestration, and efflux of Cu ions. Despite the importance of Cu binding proteins in electron transfer, substrate oxidation, superoxide dismutation, and denitrification, little information exists about microbial Cu utilization in extreme environments, where the geochemical conditions may affect Cu bioavailability. Using metagenomic data from 9 hot springs in Tengchong, China, which range in temperature from 42°C to 96°C and in pH from 2.3 to 9, the effects of pH, temperature, and spring geochemistry on the distribution of Cu binding domains of proteins and oxidoreductases were studied. Dissolved Cu and Cu binding domains were detected across all temperature and pH gradients. Cu binding domains of cytochrome c oxidase subunits, heavy-metal-associated domains, and nitrous oxide reductase were detected at all sites. DoxB, a quinol oxidase, and other quinol oxidase subunits were the dominant Cu binding oxidoreductase subunits present at low-pH and high-temperature sites, whereas cbb 3-type cytochrome c oxidase subunits were dominant at high-pH and high-temperature sites. Additionally, aa 3-type cytochrome c oxidase was more prominent than cbb 3-type cytochrome c oxidase under circumneutral-pH conditions. This suggests that the type of cytochrome c oxidase pathway and the Cu proteins employed by microbes to carry out important functions such as energy acquisition and efflux of excess Cu are affected by the physicochemical conditions of the springs.IMPORTANCE Copper is present in a variety of proteins and is required to carry out essential functions by all organisms. However, in hot spring environments, copper availability may be limited due to the high temperatures and the wide range in pH. The significance of our research is in relating the physicochemical environment to the distribution of copper proteins across hot spring environments, which provides increased understanding of primary functions and adaptions in these environments.
Collapse
|
14
|
Zhang WP, Zhao YJ, Zhao ZW, Cheng X, Li KT. Structural characterization and induced copper stress resistance in rice of exopolysaccharides from Lactobacillus plantarum LPC-1. Int J Biol Macromol 2020; 152:1077-1088. [DOI: 10.1016/j.ijbiomac.2019.10.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022]
|
15
|
Rules of Expansion: an Updated Consensus Operator Site for the CopR-CopY Family of Bacterial Copper Exporter System Repressors. mSphere 2020; 5:5/3/e00411-20. [PMID: 32461276 PMCID: PMC7253601 DOI: 10.1128/msphere.00411-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many Gram-positive bacteria respond to copper stress by upregulating a copper export system controlled by a copper-sensitive repressor, CopR-CopY. The previous operator sequence for this family of proteins had been identified as TACANNTGTA. Here, using several recombinant proteins and mutations in various DNA fragments, we define those 10 bases as necessary but not sufficient for binding and in doing so, refine the cop operon operator to the 16-base sequence RNYKACANNTGTMRNY. Due to the sheer number of repressors that have been said to bind to the original 10 bases, including many antibiotic resistance repressors such as BlaI and MecI, we feel that this study highlights the need to reexamine many of these sites of the past and use added stringency for verifying operators in the future. Copper is broadly toxic to bacteria. As such, bacteria have evolved specialized copper export systems (cop operons) often consisting of a DNA-binding/copper-responsive regulator (which can be a repressor or activator), a copper chaperone, and a copper exporter. For those bacteria using DNA-binding copper repressors, few studies have examined the regulation of this operon regarding the operator DNA sequence needed for repressor binding. In Streptococcus pneumoniae (the pneumococcus), CopY is the copper repressor for the cop operon. Previously, homologs of pneumococcal CopY have been characterized to bind a 10-base consensus sequence T/GACANNTGTA known as the cop box. Using this motif, we sought to determine whether genes outside the cop operon are also regulated by the CopY repressor, which was previously shown in Lactococcus lactis. We found that S. pneumoniae CopY did not bind to cop operators upstream of these candidate genes in vitro. During this process, we found that the cop box sequence is necessary but not sufficient for CopY binding. Here, we propose an updated operator sequence for the S. pneumoniaecop operon to be ATTGACAAATGTAGAT binding CopY with a dissociation constant (Kd) of ∼28 nM. We demonstrate strong cross-species interaction between some CopY proteins and CopY operators, suggesting strong evolutionary conservation. Taken together with our binding studies and bioinformatics data, we propose the consensus operator RNYKACANNYGTMRNY for the bacterial CopR-CopY copper repressor homologs. IMPORTANCE Many Gram-positive bacteria respond to copper stress by upregulating a copper export system controlled by a copper-sensitive repressor, CopR-CopY. The previous operator sequence for this family of proteins had been identified as TACANNTGTA. Here, using several recombinant proteins and mutations in various DNA fragments, we define those 10 bases as necessary but not sufficient for binding and in doing so, refine the cop operon operator to the 16-base sequence RNYKACANNTGTMRNY. Due to the sheer number of repressors that have been said to bind to the original 10 bases, including many antibiotic resistance repressors such as BlaI and MecI, we feel that this study highlights the need to reexamine many of these sites of the past and use added stringency for verifying operators in the future.
Collapse
|
16
|
Tyson GH, Li C, Hsu CH, Bodeis-Jones S, McDermott PF. Diverse Fluoroquinolone Resistance Plasmids From Retail Meat E. coli in the United States. Front Microbiol 2019; 10:2826. [PMID: 31866986 PMCID: PMC6906146 DOI: 10.3389/fmicb.2019.02826] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/21/2019] [Indexed: 01/28/2023] Open
Abstract
Fluoroquinolones are used to treat serious bacterial infections, including those caused by Escherichia coli and Salmonella enterica. The emergence of plasmid-mediated quinolone resistance (PMQR) represent a new challenge to the successful treatment of Gram-negative infections. As part of a long-term strategy to generate a reference database of closed plasmids from antimicrobial resistant foodborne bacteria, we performed long-read sequencing of 11 E. coli isolates from retail meats that were non-susceptible to ciprofloxacin. Each of the isolates had PMQR genes, including qnrA1, qnrS1, and qnrB19. The four qnrB19 genes were carried on two distinct ColE-type plasmids among isolates from pork chop and ground turkey and were identical to plasmids previously identified in Salmonella. Seven other plasmids differed from any other sequences in GenBank and comprised IncF and IncR plasmids that ranged in size from 48 to 180 kb. These plasmids also contained different combinations of resistance genes, including those conferring resistance to beta-lactams, macrolides, sulfonamides, tetracycline, and heavy metals. Although relatively few isolates have PMQR genes, the identification of diverse plasmids in multiple retail meat sources suggests the potential for further spread of fluoroquinolone resistance, including through co-selection. These results highlight the value of long-read sequencing in characterizing antimicrobial resistance genes of public health concern.
Collapse
Affiliation(s)
- Gregory H. Tyson
- Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | | | | | | |
Collapse
|
17
|
Kim SY, Jeong HJ, Kim M, Choi AR, Kim MS, Kang SG, Lee SJ. Characterization of the copper-sensing transcriptional regulator CopR from the hyperthermophilic archeaon Thermococcus onnurineus NA1. Biometals 2019; 32:923-937. [PMID: 31676935 DOI: 10.1007/s10534-019-00223-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022]
Abstract
A putative copper ion-sensing transcriptional regulator CopR (TON_0836) from Thermococcus onnurineus NA1 was characterized. The CopR protein consists of a winged helix-turn-helix DNA-binding domain in the amino-terminal region and a TRASH domain that is assumed to be involved in metal ion-sensing in the carboxyl-terminal region. The CopR protein was most strongly bound to a region between its own gene promoter and a counter directional promoter region for copper efflux system CopA. When the divalent metals such as nickel, cobalt, copper, and iron were present, the CopR protein was dissociated from the target promoters on electrophoretic mobility shift assay (EMSA). The highest sensible ion is copper which affected protein releasing under 10 µM concentrations. CopR recognizes a significant upstream region of TATA box on CopR own promoter and acts as a transcriptional repressor in an in vitro transcription assay. Through site-directed mutagenesis of the DNA-binding domain, R34M mutant protein completely lost the DNA-binding activity on target promoter. When the conserved cysteine residues in C144XXC147 motif 1 of the TRASH domain were mutated into glycine, the double cysteine residue mutant protein alone lost the copper-binding activity. Therefore, CopR is a copper-sensing transcriptional regulator and acts as a repressor for autoregulation and for a putative copper efflux system CopA of T. onnurineus NA1.
Collapse
Affiliation(s)
- Seo-Yeon Kim
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.,Educational Administration of Gyonggido, Euijungbu, 11759, South Korea
| | - Hong Joo Jeong
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.,ImmuneMed, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Minwook Kim
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.,Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ae Ran Choi
- Marine Biotechnology Research Center, Marine Resources Research Division, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Min-Sik Kim
- Marine Biotechnology Research Center, Marine Resources Research Division, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea.,Korea Institute of Energy Research, Daejon, 34129, South Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Center, Marine Resources Research Division, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Sung-Jae Lee
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| |
Collapse
|
18
|
Complete Genome Sequence of Cycloclasticus sp. Strain PY97N, Which Includes Two Heavy Metal Resistance Genomic Islands. Microbiol Resour Announc 2019; 8:8/40/e00771-19. [PMID: 31582435 PMCID: PMC6776764 DOI: 10.1128/mra.00771-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the complete genome sequence of fluoranthene-consuming Cycloclasticus sp. strain PY97N. This strain has one circular chromosome with a G+C content of 42.06%. Moreover, two genomic islands were identified as putative conjugative elements. These genomic details are expected to inform our understanding of the remarkable catabolic capacities of organisms of the Cycloclasticus lineage. We present the complete genome sequence of fluoranthene-consuming Cycloclasticus sp. strain PY97N. This strain has one circular chromosome with a G+C content of 42.06%. Moreover, two genomic islands were identified as putative conjugative elements. These genomic details are expected to inform our understanding of the remarkable catabolic capacities of organisms of the Cycloclasticus lineage.
Collapse
|
19
|
CopA Protects Streptococcus suis against Copper Toxicity. Int J Mol Sci 2019; 20:ijms20122969. [PMID: 31216645 PMCID: PMC6628060 DOI: 10.3390/ijms20122969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes great economic losses to the swine industry and severe threats to public health. A better understanding of its physiology would contribute to the control of its infections. Although copper is an essential micronutrient for life, it is toxic to cells when present in excessive amounts. Herein, we provide evidence that CopA is required for S. suis resistance to copper toxicity. Quantitative PCR analysis showed that copA expression was specifically induced by copper. Growth curve analyses and spot dilution assays showed that the ΔcopA mutant was defective in media supplemented with elevated concentrations of copper. Spot dilution assays also revealed that CopA protected S. suis against the copper-induced bactericidal effect. Using inductively coupled plasma-optical emission spectroscopy, we demonstrated that the role of CopA in copper resistance was mediated by copper efflux. Collectively, our data indicated that CopA protects S. suis against the copper-induced bactericidal effect via copper efflux.
Collapse
|
20
|
Gracioso LH, Baltazar MPG, Avanzi IR, Karolski B, Oller Nascimento CA, Perpetuo EA. Analysis of copper response inAcinetobactersp. by comparative proteomics. Metallomics 2019; 11:949-958. [DOI: 10.1039/c8mt00365c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal contamination exerts environmental pressure on several lifeforms.
Collapse
Affiliation(s)
- Louise Hase Gracioso
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- The Interunits Graduate Program in Biotechnology
| | - Marcela Passos Galluzzi Baltazar
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- Chemical Engineering Department
| | - Ingrid Regina Avanzi
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
| | - Bruno Karolski
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- Chemical Engineering Department
| | | | - Elen Aquino Perpetuo
- Environmental Research and Education Center
- University of São Paulo, CEPEMA-POLI-USP
- Cubatão-SP
- Brazil
- Department of Marine Sciences
| |
Collapse
|
21
|
McCarthy S, Ai C, Blum P. Enhancement of Metallosphaera sedula Bioleaching by Targeted Recombination and Adaptive Laboratory Evolution. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:135-165. [PMID: 30143251 DOI: 10.1016/bs.aambs.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thermophilic and lithoautotrophic archaea such as Metallosphaera sedula occupy acidic, metal-rich environments and are used in biomining processes. Biotechnological approaches could accelerate these processes and improve metal recovery by biomining organisms, but systems for genetic manipulation in these organisms are currently lacking. To gain a better understanding of the interplay between metal resistance, autotrophy, and lithotrophic metabolism, a genetic system was developed for M. sedula and used to evaluate parameters governing the efficiency of copper bioleaching. Additionally, adaptive laboratory evolution was used to select for naturally evolved M. sedula cell lines with desirable phenotypes for biomining, and these adapted cell lines were shown to have increased bioleaching capacity and efficiency. Genomic methods were used to analyze mutations that led to resistance in the experimentally evolved cell lines, while transcriptomics was used to examine changes in stress-inducible gene expression specific to the environmental conditions.
Collapse
Affiliation(s)
- Samuel McCarthy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chenbing Ai
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Paul Blum
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
22
|
Costa MI, Cerletti M, Paggi RA, Trötschel C, De Castro RE, Poetsch A, Giménez MI. Haloferax volcanii Proteome Response to Deletion of a Rhomboid Protease Gene. J Proteome Res 2018; 17:961-977. [PMID: 29301397 DOI: 10.1021/acs.jproteome.7b00530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhomboids are conserved intramembrane serine proteases involved in cell signaling processes. Their role in prokaryotes is scarcely known and remains to be investigated in Archaea. We previously constructed a rhomboid homologue deletion mutant (ΔrhoII) in Haloferax volcanii, which showed reduced motility, increased novobiocin sensitivity, and an N- glycosylation defect. To address the impact of rhoII deletion on H. volcanii physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. A total of 1847 proteins were identified (45.8% of H. volcanii predicted proteome), from which 103 differed in amount. Additionally, the mutant strain evidenced 99 proteins with altered electrophoretic migration, which suggested differential post-translational processing/modification. Integral membrane proteins that evidenced variations in concentration, electrophoretic migration, or semitryptic cleavage in the mutant were considered as potential RhoII targets. These included a PrsW protease homologue (which was less stable in the mutant strain), a predicted halocyanin, and six integral membrane proteins potentially related to the mutant glycosylation (S-layer glycoprotein, Agl15) and cell adhesion/motility (flagellin1, HVO_1153, PilA1, and PibD) defects. This study investigated for the first time the impact of a rhomboid protease on the whole proteome of an organism.
Collapse
Affiliation(s)
- Mariana I Costa
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Christian Trötschel
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum , 44801 Bochum, Germany
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Ansgar Poetsch
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum , 44801 Bochum, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University , Plymouth PL4 8AA, United Kingdom
| | - María I Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| |
Collapse
|
23
|
Draft Genome Sequence of Halolamina pelagica CDK2 Isolated from Natural Salterns from Rann of Kutch, Gujarat, India. GENOME ANNOUNCEMENTS 2017; 5:5/6/e01593-16. [PMID: 28183764 PMCID: PMC5331504 DOI: 10.1128/genomea.01593-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Halolamina pelagica strain CDK2, a halophilic archaeon (growth range 1.36 to 5.12 M NaCl), was isolated from rhizosphere of wild grasses of hypersaline soil of the Rann of Kutch, Gujarat, India. Its draft genome contains 2,972,542 bp and 3,485 coding sequences, depicting genes for halophilic serine proteases and trehalose synthesis.
Collapse
|
24
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
25
|
Kröber M, Verwaaijen B, Wibberg D, Winkler A, Pühler A, Schlüter A. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. J Biotechnol 2016; 231:212-223. [PMID: 27312701 DOI: 10.1016/j.jbiotec.2016.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/23/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
Abstract
The strain Bacillus amyloliquefaciens FZB42 is a plant growth promoting rhizobacterium (PGPR) and biocontrol agent known to keep infections of lettuce (Lactuca sativa) by the phytopathogen Rhizoctonia solani down. Several mechanisms, including the production of secondary metabolites possessing antimicrobial properties and induction of the host plant's systemic resistance (ISR), were proposed to explain the biocontrol effect of the strain. B. amyloliquefaciens FZB42 is able to form plaques (biofilm-like structures) on plant roots and this feature was discussed to be associated with its biocontrol properties. For this reason, formation of B. amyloliquefaciens biofilms was studied at the transcriptional level using high-throughput sequencing of whole transcriptome cDNA libraries from cells grown under biofilm-forming conditions vs. planktonic growth. Comparison of the transcriptional profiles of B. amyloliquefaciens FZB42 under these growth conditions revealed a common set of highly transcribed genes mostly associated with basic cellular functions. The lci gene, encoding an antimicrobial peptide (AMP), was among the most highly transcribed genes of cells under both growth conditions suggesting that AMP production may contribute to biocontrol. In contrast, gene clusters coding for synthesis of secondary metabolites with antimicrobial properties were only moderately transcribed and not induced in biofilm-forming cells. Differential gene expression revealed that 331 genes were significantly up-regulated and 230 genes were down-regulated in the transcriptome of B. amyloliquefaciens FZB42 under biofilm-forming conditions in comparison to planktonic cells. Among the most highly up-regulated genes, the yvqHI operon, coding for products involved in nisin (class I bacteriocin) resistance, was identified. In addition, an operon whose products play a role in fructosamine metabolism was enhanced in its transcription. Moreover, genes involved in the production of the extracellular biofilm matrix including exopolysaccharide genes (eps) and the yqxM-tasA-sipW operon encoding amyloid fiber synthesis were up-regulated in the B. amyloliquefaciens FZB42 biofilm. On the other hand, highly down-regulated genes in biofilms are associated with synthesis, assembly and regulation of the flagellar apparatus, the degradation of aromatic compounds and the export of copper. The obtained transcriptional profile for B. amyloliquefaciens biofilm cells uncovered genes involved in its development and enabled the assessment that synthesis of secondary metabolites among other factors may contribute to the biocontrol properties of the strain.
Collapse
Affiliation(s)
- Magdalena Kröber
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Bart Verwaaijen
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Anika Winkler
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
26
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Drees SL, Beyer DF, Lenders-Lomscher C, Lübben M. Distinct functions of serial metal-binding domains in the Escherichia coli P1 B -ATPase CopA. Mol Microbiol 2015; 97:423-38. [PMID: 25899340 DOI: 10.1111/mmi.13038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2015] [Indexed: 12/17/2022]
Abstract
P1 B -ATPases are among the most common resistance factors to metal-induced stress. Belonging to the superfamily of P-type ATPases, they are capable of exporting transition metal ions at the expense of adenosine triphosphate (ATP) hydrolysis. P1 B -ATPases share a conserved structure of three cytoplasmic domains linked by a transmembrane domain. In addition, they possess a unique class of domains located at the N-terminus. In bacteria, these domains are primarily associated with metal binding and either occur individually or as serial copies of each other. Within this study, the roles of the two adjacent metal-binding domains (MBDs) of CopA, the copper export ATPase of Escherichia coli were investigated. From biochemical and physiological data, we deciphered the protein-internal pathway of copper and demonstrate the distal N-terminal MBD to possess a function analogous to the metallochaperones of related prokaryotic copper resistance systems, that is its involvement in the copper transfer to the membrane-integral ion-binding sites of CopA. In contrast, the proximal domain MBD2 has a regulatory role by suppressing the catalytic activity of CopA in absence of copper. Furthermore, we propose a general functional divergence of tandem MBDs in P1 B -ATPases, which is governed by the length of the inter-domain linker.
Collapse
Affiliation(s)
- Steffen L Drees
- Department of Biophysics, Ruhr University Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Dominik F Beyer
- Department of Biophysics, Ruhr University Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | | | - Mathias Lübben
- Department of Biophysics, Ruhr University Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| |
Collapse
|
28
|
Role of copper efflux in pneumococcal pathogenesis and resistance to macrophage-mediated immune clearance. Infect Immun 2015; 83:1684-94. [PMID: 25667262 DOI: 10.1128/iai.03015-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, the intracellular levels of metals are mediated by tightly controlled acquisition and efflux systems. This is particularly true of copper, a trace element that is universally toxic in excess. During infection, the toxic properties of copper are exploited by the mammalian host to facilitate bacterial clearance. To better understand the role of copper during infection, we characterized the contribution of the cop operon to copper homeostasis and virulence in Streptococcus pneumoniae. Deletion of either the exporter, encoded by copA, or the chaperone, encoded by cupA, led to hypersensitivity to copper stress. We further demonstrated that loss of the copper exporter encoded by copA led to decreased virulence in pulmonary, intraperitoneal, and intravenous models of infection. Deletion of copA resulted in enhanced macrophage-mediated bacterial clearance in vitro. The attenuation phenotype of the copA mutant in the lung was found to be dependent on pulmonary macrophages, underscoring the importance of copper efflux in evading immune defenses. Overall, these data provide insight into the role of the cop operon in pneumococcal pathogenesis.
Collapse
|
29
|
Metal resistance in acidophilic microorganisms and its significance for biotechnologies. Appl Microbiol Biotechnol 2014; 98:8133-44. [PMID: 25104030 DOI: 10.1007/s00253-014-5982-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.
Collapse
|
30
|
Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. J Bacteriol 2014; 196:3562-70. [PMID: 25092032 DOI: 10.1128/jb.01707-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Thermoacidophilic archaea, such as Metallosphaera sedula, are lithoautotrophs that occupy metal-rich environments. In previous studies, an M. sedula mutant lacking the primary copper efflux transporter, CopA, became copper sensitive. In contrast, the basis for supranormal copper resistance remained unclear in the spontaneous M. sedula mutant, CuR1. Here, transcriptomic analysis of copper-shocked cultures indicated that CuR1 had a unique regulatory response to metal challenge corresponding to the upregulation of 55 genes. Genome resequencing identified 17 confirmed mutations unique to CuR1 that were likely to change gene function. Of these, 12 mapped to genes with annotated function associated with transcription, metabolism, or transport. These mutations included 7 nonsynonymous substitutions, 4 insertions, and 1 deletion. One of the insertion mutations mapped to pseudogene Msed_1517 and extended its reading frame an additional 209 amino acids. The extended mutant allele was identified as a homolog of Pho4, a family of phosphate symporters that includes the bacterial PitA proteins. Orthologs of this allele were apparent in related extremely thermoacidophilic species, suggesting M. sedula naturally lacked this gene. Phosphate transport studies combined with physiologic analysis demonstrated M. sedula PitA was a low-affinity, high-velocity secondary transporter implicated in copper resistance and arsenate sensitivity. Genetic analysis demonstrated that spontaneous arsenate-resistant mutants derived from CuR1 all underwent mutation in pitA and nonselectively became copper sensitive. Taken together, these results point to archaeal PitA as a key requirement for the increased metal resistance of strain CuR1 and its accelerated capacity for copper bioleaching.
Collapse
|
31
|
Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic archaeon Sulfolobus metallicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:289236. [PMID: 23509422 PMCID: PMC3595675 DOI: 10.1155/2013/289236] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022]
Abstract
Sulfolobus metallicus is a thermoacidophilic crenarchaeon used in high-temperature bioleaching processes that is able to grow under stressing conditions such as high concentrations of heavy metals. Nevertheless, the genetic and biochemical mechanisms responsible for heavy metal resistance in S. metallicus remain uncharacterized. Proteomic analysis of S. metallicus cells exposed to 100 mM Cu revealed that 18 out of 30 upregulated proteins are related to the production and conversion of energy, amino acids biosynthesis, and stress responses. Ten of these last proteins were also up-regulated in S. metallicus treated in the presence of 1 mM Cd suggesting that at least in part, a common general response to these two heavy metals. The S. metallicus genome contained two complete cop gene clusters, each encoding a metallochaperone (CopM), a Cu-exporting ATPase (CopA), and a transcriptional regulator (CopT). Transcriptional expression analysis revealed that copM and copA from each cop gene cluster were cotranscribed and their transcript levels increased when S. metallicus was grown either in the presence of Cu or using chalcopyrite (CuFeS2) as oxidizable substrate. This study shows for the first time the presence of a duplicated version of the cop gene cluster in Archaea and characterizes some of the Cu and Cd resistance determinants in a thermophilic archaeon employed for industrial biomining.
Collapse
|
32
|
Abstract
Extremely thermophilic microorganisms have been sources of thermostable and thermoactive enzymes for over 30 years. However, information and insights gained from genome sequences, in conjunction with new tools for molecular genetics, have opened up exciting new possibilities for biotechnological opportunities based on extreme thermophiles that go beyond single-step biotransformations. Although the pace for discovering novel microorganisms has slowed over the past two decades, genome sequence data have provided clues to novel biomolecules and metabolic pathways, which can be mined for a range of new applications. Furthermore, recent advances in molecular genetics for extreme thermophiles have made metabolic engineering for high temperature applications a reality.
Collapse
Affiliation(s)
- Andrew D Frock
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905
| | | |
Collapse
|
33
|
Metal resistance and lithoautotrophy in the extreme thermoacidophile Metallosphaera sedula. J Bacteriol 2012; 194:6856-63. [PMID: 23065978 DOI: 10.1128/jb.01413-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaea such as Metallosphaera sedula are thermophilic lithoautotrophs that occupy unusually acidic and metal-rich environments. These traits are thought to underlie their industrial importance for bioleaching of base and precious metals. In this study, a genetic approach was taken to investigate the specific relationship between metal resistance and lithoautotrophy during biotransformation of the primary copper ore, chalcopyrite (CuFeS(2)). In this study, a genetic system was developed for M. sedula to investigate parameters that limit bioleaching of chalcopyrite. The functional role of the M. sedula copRTA operon was demonstrated by cross-species complementation of a copper-sensitive Sulfolobus solfataricus copR mutant. Inactivation of the gene encoding the M. sedula copper efflux protein, copA, using targeted recombination compromised metal resistance and eliminated chalcopyrite bioleaching. In contrast, a spontaneous M. sedula mutant (CuR1) with elevated metal resistance transformed chalcopyrite at an accelerated rate without affecting chemoheterotrophic growth. Proteomic analysis of CuR1 identified pleiotropic changes, including altered abundance of transport proteins having AAA-ATPase motifs. Addition of the insoluble carbonate mineral witherite (BaCO(3)) further stimulated chalcopyrite lithotrophy, indicating that carbon was a limiting factor. Since both mineral types were actively colonized, enhanced metal leaching may arise from the cooperative exchange of energy and carbon between surface-adhered populations. Genetic approaches provide a new means of improving the efficiency of metal bioleaching by enhancing the mechanistic understanding of thermophilic lithoautotrophy.
Collapse
|
34
|
Abstract
P(IB)-type ATPases transport heavy metals (Cu(2+), Cu(+), Ag(+), Zn(2+), Cd(2+), Co(2+)) across biomembranes, playing a key role in homeostasis and in the mechanisms of biotolerance of these metals. Three genes coding for putative P(IB)-type ATPases are present in the genome of Thermus thermophilus (HB8 and HB27): the TTC1358, TTC1371, and TTC0354 genes; these genes are annotated, respectively, as two copper transporter (CopA and CopB) genes and a zinc-cadmium transporter (Zn(2+)/Cd(2+)-ATPase) gene. We cloned and expressed the three proteins with 8His tags using a T. thermophilus expression system. After purification, each of the proteins was shown to have phosphodiesterase activity at 65°C with ATP and p-nitrophenyl phosphate (pNPP) as substrates. CopA was found to have greater activity in the presence of Cu(+), while CopB was found to have greater activity in the presence of Cu(2+). The putative Zn(2+)/Cd(2+)-ATPase was truncated at the N terminus and was, surprisingly, activated in vitro by copper but not by zinc or cadmium. When expressed in Escherichia coli, however, the putative Zn(2+)/Cd(2+)-ATPase could be isolated as a full-length protein and the ATPase activity was increased by the addition of Zn(2+) and Cd(2+) as well as by Cu(+). Mutant strains in which each of the three P-type ATPases was deleted singly were constructed. In each case, the deletion increased the sensitivity of the strain to growth in the presence of copper in the medium, indicating that each of the three can pump copper out of the cells and play a role in copper detoxification.
Collapse
|
35
|
Rosenzweig AC, Argüello JM. Toward a molecular understanding of metal transport by P(1B)-type ATPases. CURRENT TOPICS IN MEMBRANES 2012; 69:113-36. [PMID: 23046649 DOI: 10.1016/b978-0-12-394390-3.00005-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The P(1B) family of P-type ATPases couples the transport of cytoplasmic transition metals across biological membranes to the hydrolysis of ATP. These ubiquitous transporters function in maintaining cytoplasmic metal quotas and in the assembly of metalloproteins, and have been classified into subfamilies (P(1B-1)-P(1B-5)) on the basis of their transported substrates (Cu(+), Zn(2+), Cu(2+), and Co(2+)) and signature sequences in their transmembrane segments. In addition, each subgroup presents a characteristic membrane topology and specific regulatory cytoplasmic metal-binding domains. In recent years, significant major aspects of their transport mechanism have been described, including the stoichiometry of transport and the delivery of substrates to transport sites by metallochaperones. Toward understanding their structure, the metal coordination by transport sites has been characterized for Cu(+) and Zn(2+)-ATPases. In addition, atomic resolution structures have been determined, providing key insight into the elements that enable transition metal transport. Because the Cu(+)-transporting ATPases are found in humans and are linked to disease, this subfamily has been the focus of intense study. As a result, significant progress has been made toward understanding Cu(+)-ATPase function on the molecular level, using both the human proteins and the bacterial homologs, most notably the CopA proteins from Archaeoglobus fulgidus, Bacillus subtilis, and Thermotoga maritima. This chapter thus focuses on the mechanistic and structural information obtained by studying these latter Cu(+)-ATPases, with some consideration of how these aspects might differ for the other subfamilies of P(1B)-ATPases.
Collapse
Affiliation(s)
- Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| | | |
Collapse
|