1
|
Extracellular Vesicles from Naegleria fowleri Induce IL-8 Response in THP-1 Macrophage. Pathogens 2022; 11:pathogens11060632. [PMID: 35745486 PMCID: PMC9231210 DOI: 10.3390/pathogens11060632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) released from pathogenic protozoans play crucial roles in host–parasite communication and disease pathogenesis. Naegleria fowleri is a free-living protozoan causing primary amoebic meningoencephalitis, a fatal disease in the central nervous system. This study aims to explore the roles of N. fowleri-derived EVs (Nf-EVs) in host–pathogen interactions using the THP-1 cell line as a model. The Nf-EVs were isolated from the N. fowleri trophozoite culture supernatant using sequential centrifugation and characterized by nanoparticle tracking analysis and transmission electron microscopy. The functional roles of Nf-EVs in the apoptosis and immune response induction of THP-1 monocytes and macrophages were examined by flow cytometry, quantitative PCR, and ELISA. Results showed that Nf-EVs displayed vesicles with bilayer membrane structure approximately 130–170 nm in diameter. The Nf-EVs can be internalized by macrophages and induce macrophage responses by induction of the expression of costimulatory molecules CD80, CD86, HLA-DR, and CD169 and the production of cytokine IL-8. However, Nf-EVs did not affect the apoptosis of macrophages. These findings illustrate the potential role of Nf-EVs in mediating the host immune cell activation and disease pathogenesis.
Collapse
|
2
|
Sutrave S, Richter MH. The Truman Show for protozoan parasites: A review of in vitro cultivation platforms. PLoS Negl Trop Dis 2021; 15:e0009668. [PMID: 34437538 PMCID: PMC8389406 DOI: 10.1371/journal.pntd.0009668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites are responsible for severe disease and suffering in humans worldwide. Apart from disease transmission via insect vectors and contaminated soil, food, or water, transmission may occur congenitally or by way of blood transfusion and organ transplantation. Several recent outbreaks associated with fresh produce and potable water emphasize the need for vigilance and monitoring of protozoan parasites that cause severe disease in humans globally. Apart from the tropical parasite Plasmodium spp., other protozoa causing debilitating and fatal diseases such as Trypanosoma spp. and Naegleria fowleri need to be studied in more detail. Climate change and socioeconomic issues such as migration continue to be major drivers for the spread of these neglected tropical diseases beyond endemic zones. Due to the complex life cycles of protozoa involving multiple hosts, vectors, and stringent growth conditions, studying these parasites has been challenging. While in vivo models may provide insights into host–parasite interaction, the ethical aspects of laboratory animal use and the challenge of ready availability of parasite life stages underline the need for in vitro models as valid alternatives for culturing and maintaining protozoan parasites. To our knowledge, this review is the first of its kind to highlight available in vitro models for protozoa causing highly infectious diseases. In recent years, several research efforts using new technologies such as 3D organoid and spheroid systems for protozoan parasites have been introduced that provide valuable tools to advance complex culturing models and offer new opportunities toward the advancement of parasite in vitro studies. In vitro models aid scientists and healthcare providers in gaining insights into parasite infection biology, ultimately enabling the use of novel strategies for preventing and treating these diseases. In light of the far-reaching social and economic repercussions of communicable, zoonotic parasitic diseases on human health, it is imperative to continue to strive toward developing in vitro models for in-depth scrutiny and understanding of pathogenicity, as well as for innovations toward combating these infections. This review, to our knowledge, is the first to offer a qualitative summary of the existing models for culturing protozoan parasites with major relevance to human health in vitro. The present work aims to provide a reference guide on the current state of in vitro culture of these protozoan parasites and offers a foundation to facilitate exchange of expertise among researchers, clinicians, and healthcare workers. This comprehensive review would aid in enabling discussions on new intervention approaches to fill in the knowledge gaps in the field of parasitic diseases affecting the global population.
Collapse
Affiliation(s)
- Smita Sutrave
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany
| | - Martin Heinrich Richter
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, Berlin, Germany
- * E-mail:
| |
Collapse
|
3
|
Rodriguez-Anaya LZ, Félix-Sastré ÁJ, Lares-Villa F, Lares-Jiménez LF, Gonzalez-Galaviz JR. Application of the omics sciences to the study of Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris: current status and future projections. Parasite 2021; 28:36. [PMID: 33843581 PMCID: PMC8040595 DOI: 10.1051/parasite/2021033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
In this review, we focus on the sequenced genomes of the pathogens Naegleria fowleri, Acanthamoeba spp. and Balamuthia mandrillaris, and the remarkable discoveries regarding the pathogenicity and genetic information of these organisms, using techniques related to the various omics branches like genomics, transcriptomics, and proteomics. Currently, novel data produced through comparative genomics analyses and both differential gene and protein expression in these free-living amoebas have allowed for breakthroughs to identify genes unique to N. fowleri, genes with active transcriptional activity, and their differential expression in conditions of modified virulence. Furthermore, orthologous genes of the various nuclear genomes within the Naegleria and Acanthamoeba genera have been clustered. The proteome of B. mandrillaris has been reconstructed through transcriptome data, and its mitochondrial genome structure has been thoroughly described with a unique characteristic that has come to light: a type I intron with the capacity of interrupting genes through its self-splicing ribozymes activity. With the integration of data derived from the diverse omic sciences, there is a potential approximation that reflects the molecular complexity required for the identification of virulence factors, as well as crucial information regarding the comprehension of the molecular mechanisms with which these interact. Altogether, these breakthroughs could contribute to radical advances in both the fields of therapy design and medical diagnosis in the foreseeable future.
Collapse
Affiliation(s)
| | - Ángel Josué Félix-Sastré
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora Ciudad Obregón 85000 Sonora México
| | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora Ciudad Obregón 85000 Sonora México
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora Ciudad Obregón 85000 Sonora México
| | | |
Collapse
|
4
|
Comparative proteomic profiling of newly acquired, virulent and attenuated Neoparamoeba perurans proteins associated with amoebic gill disease. Sci Rep 2021; 11:6830. [PMID: 33767232 PMCID: PMC7994405 DOI: 10.1038/s41598-021-85988-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
The causative agent of amoebic gill disease, Neoparamoeba perurans is reported to lose virulence during prolonged in vitro maintenance. In this study, the impact of prolonged culture on N. perurans virulence and its proteome was investigated. Two isolates, attenuated and virulent, had their virulence assessed in an experimental trial using Atlantic salmon smolts and their bacterial community composition was evaluated by 16S rRNA Illumina MiSeq sequencing. Soluble proteins were isolated from three isolates: a newly acquired, virulent and attenuated N. perurans culture. Proteins were analysed using two-dimensional electrophoresis coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). The challenge trial using naïve smolts confirmed a loss in virulence in the attenuated N. perurans culture. A greater diversity of bacterial communities was found in the microbiome of the virulent isolate in contrast to a reduction in microbial community richness in the attenuated microbiome. A collated proteome database of N. perurans, Amoebozoa and four bacterial genera resulted in 24 proteins differentially expressed between the three cultures. The present LC-MS/MS results indicate protein synthesis, oxidative stress and immunomodulation are upregulated in a newly acquired N. perurans culture and future studies may exploit these protein identifications for therapeutic purposes in infected farmed fish.
Collapse
|
5
|
Liechti N, Schürch N, Bruggmann R, Wittwer M. The genome of Naegleria lovaniensis, the basis for a comparative approach to unravel pathogenicity factors of the human pathogenic amoeba N. fowleri. BMC Genomics 2018; 19:654. [PMID: 30185166 PMCID: PMC6125883 DOI: 10.1186/s12864-018-4994-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Background Members of the genus Naegleria are free-living eukaryotes with the capability to transform from the amoeboid form into resting cysts or moving flagellates in response to environmental conditions. More than 40 species have been characterized, but only Naegleria fowleri (N. fowleri) is known as a human pathogen causing primary amoebic meningoencephalitis (PAM), a fast progressing and mostly fatal disease of the central nervous system. Several studies report an involvement of phospholipases and other molecular factors, but the mechanisms involved in pathogenesis are still poorly understood. To gain a better understanding of the relationships within the genus of Naegleria and to investigate pathogenicity factors of N. fowleri, we characterized the genome of its closest non-pathogenic relative N. lovaniensis. Results To gain insights into the taxonomy of Naegleria, we sequenced the genome of N. lovaniensis using long read sequencing technology. The assembly of the data resulted in a 30 Mb genome including the circular mitochondrial sequence. Unravelling the phylogenetic relationship using OrthoMCL protein clustering and maximum likelihood methods confirms the close relationship of N. lovaniensis and N. fowleri. To achieve an overview of the diversity of Naegleria proteins and to assess characteristics of the human pathogen N. fowleri, OrthoMCL protein clustering including data of N. fowleri, N. lovaniensis and N. gruberi was performed. GO enrichment analysis shows an association of N. fowleri specific proteins to the GO terms “Membrane” and “Protein Secretion.” Conclusion In this study, we characterize the hitherto unknown genome of N. lovaniensis. With the description of the 30 Mb genome, a further piece is added to reveal the complex taxonomic relationship of Naegleria. Further, the whole genome sequencing data confirms the hypothesis of the close relationship between N. fowleri and N. lovaniensis. Therefore, the genome of N. lovaniensis provides the basis for further comparative approaches on the molecular and genomic level to unravel pathogenicity factors of its closest human pathogenic relative N. fowleri and possible treatment options for the rare but mostly fatal primary meningoencephalitis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4994-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Liechti
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nadia Schürch
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Matthias Wittwer
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.
| |
Collapse
|
6
|
Zaongo SD, Shaio MF, Ji DD. Effects of Culture Media On Naegleria fowleri Growth At Different Temperatures. J Parasitol 2018; 104:451-456. [PMID: 29869929 DOI: 10.1645/18-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nelson medium and modified PYNFH medium were used for the axenic culture of the Naegleria fowleri clinical strain LDL to compare the effects of different temperatures on the organism's growth. In addition, Nelson medium supplemented with 1% peptone (N + pep) and modified PYNFH medium without peptone (PYNFH - pep), without yeast extract (PYNFH - yext), without folic acid (PYNFH - folac), and without yeast nucleic acid (PYNFH - yna) were used in order to compare the various effects of these medium components. In general, N. fowleri grew best at 37 C. The highest trophozoite densities per 10,000 μm2 were observed when N + pep and PYNFH - yext were used. At 25, 37, and 43 C, the growth density profile values were 50.5 ± 6.36 vs. 58 ± 1.41; 2,550 ± 494.97 vs. 2,100 ± 141.42; and 1,735 ± 21.21 vs. 1,800 ± 14.14, respectively. On the other hand, PYNFH - pep gave the lowest growth with its highest cell densities being 9 ± 1.41 at 25 C, 108 ± 7.07 at 37 C, and 169 ± 15.55 at 43 C. When the various medium components were compared, supplementation with peptone promoted parasite growth. Besides, yeast extract had an inhibitory effect and was able to swamp the growth promoting effect of peptone. Thus N + pep and PYNFH - yext are recommended as the best media for in vitro culture of N. fowleri.
Collapse
Affiliation(s)
- Silvere D Zaongo
- 1 International Health Program, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Beitou District, Taipei (112), Taiwan
| | - Men-Fang Shaio
- 2 Department of Tropical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Beitou District, Taipei (112), Taiwan
| | - Dar-Der Ji
- 2 Department of Tropical Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong St., Beitou District, Taipei (112), Taiwan
| |
Collapse
|
7
|
Jamerson M, Schmoyer JA, Park J, Marciano-Cabral F, Cabral GA. Identification of Naegleria fowleri proteins linked to primary amoebic meningoencephalitis. MICROBIOLOGY-SGM 2017; 163:322-332. [PMID: 28086072 DOI: 10.1099/mic.0.000428] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis, a rapidly fatal disease of the central nervous system. N. fowleri can exist in cyst, flagellate or amoebic forms, depending on environmental conditions. The amoebic form can invade the brain following introduction into the nasal passages. When applied intranasally to a mouse model, cultured N. fowleri amoebae exhibit low virulence. However, upon serial passage in mouse brain, the amoebae acquire a highly virulent state. In the present study, a proteomics approach was applied to the identification of N. fowleri amoeba proteins whose expression was associated with the highly virulent state in mice. Mice were inoculated intranasally with axenically cultured amoebae or with mouse-passaged amoebae. Examination by light and electron microscopy revealed no morphological differences. However, mouse-passaged amoebae were more virulent in mice as indicated by exhibiting a two log10 titre decrease in median infective dose 50 (ID50). Scatter plot analysis of amoebic lysates revealed a subset of proteins, the expression of which was associated with highly virulent amoebae. MS-MS indicated that this subset contained proteins that shared homology with those linked to cytoskeletal rearrangement and the invasion process. Invasion assays were performed in the presence of a select inhibitor to expand on the findings. The collective results suggest that N. fowleri gene products linked to cytoskeletal rearrangement and invasion may be candidate targets in the management of primary amoebic meningoencephalitis.
Collapse
Affiliation(s)
- Melissa Jamerson
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University School of Allied Health Professions, Richmond, VA 23298-0583, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA
| | - Jacqueline A Schmoyer
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University School of Allied Health Professions, Richmond, VA 23298-0583, USA
| | - Jay Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA
| | - Francine Marciano-Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA
| | - Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA
| |
Collapse
|
8
|
Padmashree D, Swamy NR. Computational identification of putative miRNAs and their target genes in pathogenic amoeba Naegleria fowleri. Bioinformation 2015; 11:550-7. [PMID: 26770029 PMCID: PMC4702033 DOI: 10.6026/97320630011550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/12/2015] [Indexed: 02/08/2023] Open
Abstract
Naegleria fowleri is a parasitic unicellular free living eukaryotic amoeba. The parasite spreads through contaminated water and causes primary amoebic meningoencephalitis (PAM). Therefore, it is of interest to understand its molecular pathogenesis. Hence, we analyzed the parasite genome for miRNAs (microRNAs) that are non-coding, single stranded RNA molecules. We identified 245 miRNAs using computational methods in N. fowleri, of which five miRNAs are conserved. The predicted miRNA targets were analyzed by using miRanda (software) and further studied the functions by subsequently annotating using AmiGo (a gene ontology web tool).
Collapse
Affiliation(s)
- Dyavegowda Padmashree
- Department of Biochemistry, Central College Campus, Bangalore University, Bangalore, Karnataka, India
| | | |
Collapse
|
9
|
Zysset-Burri DC, Müller N, Beuret C, Heller M, Schürch N, Gottstein B, Wittwer M. Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics 2014; 15:496. [PMID: 24950717 PMCID: PMC4082629 DOI: 10.1186/1471-2164-15-496] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/11/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The free-living amoeba Naegleria fowleri is the causative agent of the rapidly progressing and typically fatal primary amoebic meningoencephalitis (PAM) in humans. Despite the devastating nature of this disease, which results in > 97% mortality, knowledge of the pathogenic mechanisms of the amoeba is incomplete. This work presents a comparative proteomic approach based on an experimental model in which the pathogenic potential of N. fowleri trophozoites is influenced by the compositions of different media. RESULTS As a scaffold for proteomic analysis, we sequenced the genome and transcriptome of N. fowleri. Since the sequence similarity of the recently published genome of Naegleria gruberi was far lower than the close taxonomic relationship of these species would suggest, a de novo sequencing approach was chosen. After excluding cell regulatory mechanisms originating from different media compositions, we identified 22 proteins with a potential role in the pathogenesis of PAM. Functional annotation of these proteins revealed, that the membrane is the major location where the amoeba exerts its pathogenic potential, possibly involving actin-dependent processes such as intracellular trafficking via vesicles. CONCLUSION This study describes for the first time the 30 Mb-genome and the transcriptome sequence of N. fowleri and provides the basis for the further definition of effective intervention strategies against the rare but highly fatal form of amoebic meningoencephalitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthias Wittwer
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Austrasse, CH-3700 Spiez, Switzerland.
| |
Collapse
|