1
|
Pepperell CS. Evolution of Tuberculosis Pathogenesis. Annu Rev Microbiol 2022; 76:661-680. [PMID: 35709500 DOI: 10.1146/annurev-micro-121321-093031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis is a globally distributed, lethal pathogen of humans. The virulence armamentarium of M. tuberculosis appears to have been developed on a scaffold of antiphagocytic defenses found among diverse, mostly free-living species of Mycobacterium. Pathoadaptation was further aided by the modularity, flexibility, and interactivity characterizing mycobacterial effectors and their regulators. During emergence of M. tuberculosis, novel genetic material was acquired, created, and integrated with existing tools. The major mutational mechanisms underlying these adaptations are discussed in this review, with examples. During its evolution, M. tuberculosis lost the ability and/or opportunity to engage in lateral gene transfer, but despite this it has retained the adaptability that characterizes mycobacteria. M. tuberculosis exemplifies the evolutionary genomic mechanisms underlying adoption of the pathogenic niche, and studies of its evolution have uncovered a rich array of discoveries about how new pathogens are made. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Caitlin S Pepperell
- Division of Infectious Diseases, Department of Medicine, and Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
2
|
Rens C, Chao JD, Sexton DL, Tocheva EI, Av-Gay Y. Roles for phthiocerol dimycocerosate lipids in Mycobacterium tuberculosis pathogenesis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33629944 DOI: 10.1099/mic.0.001042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The success of Mycobacterium tuberculosis as a pathogen is well established: tuberculosis is the leading cause of death by a single infectious agent worldwide. The threat of multi- and extensively drug-resistant bacteria has renewed global concerns about this pathogen and understanding its virulence strategies will be essential in the fight against tuberculosis. The current review will focus on phthiocerol dimycocerosates (PDIMs), a long-known and well-studied group of complex lipids found in the M. tuberculosis cell envelope. Numerous studies show a role for PDIMs in several key steps of M. tuberculosis pathogenesis, with recent studies highlighting its involvement in bacterial virulence, in association with the ESX-1 secretion system. Yet, the mechanisms by which PDIMs help M. tuberculosis to control macrophage phagocytosis, inhibit phagosome acidification and modulate host innate immunity, remain to be fully elucidated.
Collapse
Affiliation(s)
- Céline Rens
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Joseph D Chao
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Danielle L Sexton
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada.,Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Independent genomic polymorphisms in the PknH serine threonine kinase locus during evolution of the Mycobacterium tuberculosis Complex affect virulence and host preference. PLoS Pathog 2020; 16:e1009061. [PMID: 33347499 PMCID: PMC7785237 DOI: 10.1371/journal.ppat.1009061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Species belonging to the Mycobacterium tuberculosis Complex (MTBC) show more than 99% genetic identity but exhibit distinct host preference and virulence. The molecular genetic changes that underly host specificity and infection phenotype within MTBC members have not been fully elucidated. Here, we analysed RD900 genomic region across MTBC members using whole genome sequences from 60 different MTBC strains so as to determine its role in the context of MTBC evolutionary history. The RD900 region comprises two homologous genes, pknH1 and pknH2, encoding a serine/threonine protein kinase PknH flanking the tbd2 gene. Our analysis revealed that RD900 has been independently lost in different MTBC lineages and different strains, resulting in the generation of a single pknH gene. Importantly, all the analysed M. bovis and M. caprae strains carry a conserved deletion within a proline rich-region of pknH, independent of the presence or absence of RD900. We hypothesized that deletion of pknH proline rich-region in M. bovis may affect PknH function, having a potential role in its virulence and evolutionary adaptation. To explore this hypothesis, we constructed two M. bovis ‘knock-in’ strains containing the M. tuberculosis pknH gene. Evaluation of their virulence phenotype in mice revealed a reduced virulence of both M. bovis knock-in strains compared to the wild type, suggesting that PknH plays an important role in the differential virulence phenotype of M. bovis vs M. tuberculosis. Tuberculosis is caused in humans and animals by organisms from the Mycobacterium tuberculosis Complex (MTBC), that share more than 99% genetic identity but exhibit distinct host preference and virulence. While Mycobacterium tuberculosis is the main causative agent of human TB, Mycobacterium bovis is responsible for bovine TB disease, that exacts a tremendous economic burden worldwide, as well as being a zoonotic threat. Unlike the human restriction of M. tuberculosis, M. bovis has a broader host range and it has been found to be more virulent than M. tuberculosis in different animal models. However, the molecular basis for host preference and virulence divergence between M. tuberculosis and M. bovis is not fully elucidated. Here we study the genetic variations of the genomic region RD900 in the context of MTBC phylogeny. RD900 contains two genes encoding orthologues of the serine/threonine kinase PknH, which is linked to the regulation of several bacterial processes including virulence. We found that M. bovis pknH genes show a conserved deletion that is not present in M. tuberculosis strains, and we evaluated the potential impact of these variations in the regulation of M. bovis vs M. tuberculosis virulence through the construction and in vivo characterization of M. bovis pknH mutant strains.
Collapse
|
4
|
Mori M, Sammartino JC, Costantino L, Gelain A, Meneghetti F, Villa S, Chiarelli LR. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Curr Top Med Chem 2019; 19:646-661. [PMID: 30827246 DOI: 10.2174/1568026619666190227182701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), still remains an urgent global health issue, mainly due to the emergence of multi-drug resistant strains. Therefore, there is a pressing need to develop novel and more efficient drugs to control the disease. In this context, targeting the pathogen virulence factors, and particularly signal mechanisms, seems to be a promising approach. An important transmembrane signaling system in Mtb is represented by receptor-type Serine/ Threonine protein kinases (STPKs). Mtb has 11 different STPKs, two of them, PknA and PknB, are essential. By contrast PknG and PknH are involved in Mtb virulence and adaptation, and are fundamental for the pathogen growth in infection models. Therefore, STPKs represent a very interesting group of pharmacological targets in M. tuberculosis. In this work, the principal inhibitors of the mycobacterial STPKs will be presented and discussed. In particular, medicinal chemistry efforts have been focused on discovering new antimycobacterial compounds, targeting three of these kinases, namely PknA, PknB and PknG. Generally, the inhibitory effect on these enzymes do not correlate with a significant antimycobacterial action in whole-cell assays. However, compounds with activity in the low micromolar range have been obtained, demonstrating that targeting Mtb STPKs could be a new promising strategy for the development of drugs to treat TB infections.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - José Camilla Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Luca Costantino
- Dipartimento Scienze della Vita, Universita degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
5
|
Caballero J, Morales-Bayuelo A, Navarro-Retamal C. Mycobacterium tuberculosis serine/threonine protein kinases: structural information for the design of their specific ATP-competitive inhibitors. J Comput Aided Mol Des 2018; 32:1315-1336. [PMID: 30367309 DOI: 10.1007/s10822-018-0173-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/20/2018] [Indexed: 12/17/2022]
Abstract
In the last decades, human protein kinases (PKs) have been relevant as targets in the development of novel therapies against many diseases, but the study of Mycobacterium tuberculosis PKs (MTPKs) involved in tuberculosis pathogenesis began much later and has not yet reached an advanced stage of development. To increase knowledge of these enzymes, in this work we studied the structural features of MTPKs, with focus on their ATP-binding sites and their interactions with inhibitors. PknA, PknB, and PknG are the most studied MTPKs, which were previously crystallized; ATP-competitive inhibitors have been designed against them in the last decade. In the current work, reported PknA, PknB, and PknG inhibitors were extracted from literature and their orientations inside the ATP-binding site were proposed by using docking method. With this information, interaction fingerprints were elaborated, which reveal the more relevant residues for establishing chemical interactions with inhibitors. The non-crystallized MTPKs PknD, PknF, PknH, PknJ, PknK, and PknL were also studied; their three-dimensional structural models were developed by using homology modeling. The main characteristics of MTPK ATP-binding sites (the non-crystallized and crystallized MTPKs, including PknE and PknI) were accounted; schemes of the main polar and nonpolar groups inside their ATP-binding sites were constructed, which are suitable for a major understanding of these proteins as antituberculotic targets. These schemes could be used for establishing comparisons between MTPKs and human PKs in order to increase selectivity of MTPK inhibitors. As a key tool for guiding medicinal chemists interested in the design of novel MTPK inhibitors, our work provides a map of the structural elements relevant for the design of more selective ATP-competitive MTPK inhibitors.
Collapse
Affiliation(s)
- Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile.
| | - Alejandro Morales-Bayuelo
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Carlos Navarro-Retamal
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| |
Collapse
|
6
|
Mycobacterium tuberculosis Complex Members Adapted to Wild and Domestic Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1019:135-154. [PMID: 29116633 DOI: 10.1007/978-3-319-64371-7_7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Mycobacterium tuberculosis complex (MTBC) is composed of several highly genetically related species that can be broadly classified into those that are human-host adapted and those that possess the ability to propagate and transmit in a variety of wild and domesticated animals. Since the initial description of the bovine tubercle bacillus, now known as Mycobacterium bovis, by Theobald Smith in the late 1800's, isolates originating from a wide range of animal hosts have been identified and characterized as M. microti, M. pinnipedii, the Dassie bacillus, M. mungi, M. caprae, M. orygis and M. suricattae. This chapter outlines the events resulting in the identification of each of these animal-adapted species, their close genetic relationships, and how genome-based phylogenetic analyses of species-specific variation amongst MTBC members is beginning to unravel the events that resulted in the evolution of the MTBC and the observed host tropism between the human- and animal-adapted member species.
Collapse
|
7
|
Nakedi KC, Calder B, Banerjee M, Giddey A, Nel AJM, Garnett S, Blackburn JM, Soares NC. Identification of Novel Physiological Substrates of Mycobacterium bovis BCG Protein Kinase G (PknG) by Label-free Quantitative Phosphoproteomics. Mol Cell Proteomics 2018; 17:1365-1377. [PMID: 29549130 PMCID: PMC6030727 DOI: 10.1074/mcp.ra118.000705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 01/09/2023] Open
Abstract
Mycobacterial Ser/Thr kinases play a critical role in bacterial physiology and pathogenesis. Linking kinases to the substrates they phosphorylate in vivo, thereby elucidating their exact functions, is still a challenge. The aim of this work was to associate protein phosphorylation in mycobacteria with important subsequent macro cellular events by identifying the physiological substrates of PknG in Mycobacterium bovis BCG. The study compared the phosphoproteome dynamics during the batch growth of M. bovis BCG versus the respective PknG knock-out mutant (ΔPknG-BCG) strains. We employed TiO2 phosphopeptide enrichment techniques combined with label-free quantitative phosphoproteomics workflow on LC-MS/MS. The comprehensive analysis of label-free data identified 603 phosphopeptides on 307 phosphoproteins with high confidence. Fifty-five phosphopeptides were differentially phosphorylated, of these, 23 phosphopeptides were phosphorylated in M. bovis BCG wild-type only and not in the mutant. These were further validated through targeted mass spectrometry assays (PRMs). Kinase-peptide docking studies based on a published crystal structure of PknG in complex with GarA revealed that the majority of identified phosphosites presented docking scores close to that seen in previously described PknG substrates, GarA, and ribosomal protein L13. Six out of the 22 phosphoproteins had higher docking scores than GarA, consistent with the proteins identified here being true PknG substrates. Based on protein functional analysis of the PknG substrates identified, this study confirms that PknG plays an important regulatory role in mycobacterial metabolism, through phosphorylation of ATP binding proteins and enzymes in the TCA cycle. This work also reinforces PknG's regulation of protein translation and folding machinery.
Collapse
Affiliation(s)
- Kehilwe C Nakedi
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Bridget Calder
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Mousumi Banerjee
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Alexander Giddey
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Andrew J M Nel
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Shaun Garnett
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Jonathan M Blackburn
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa.,§Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Nelson C Soares
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa;
| |
Collapse
|
8
|
The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of Mycobacterium tuberculosis. mBio 2017; 8:mBio.00148-17. [PMID: 28270579 PMCID: PMC5340868 DOI: 10.1128/mbio.00148-17] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cell wall of Mycobacterium tuberculosis is composed of unique lipids that are important for pathogenesis. Indeed, the first-ever genetic screen in M. tuberculosis identified genes involved in the biosynthesis and transport of the cell wall lipid PDIM (phthiocerol dimycocerosates) as crucial for the survival of M. tuberculosis in mice. Here we show evidence for a novel molecular mechanism of the PDIM-mediated virulence in M. tuberculosis We characterized the DNA interaction and the regulon of Rv3167c, a transcriptional repressor that is involved in virulence regulation of M. tuberculosis, and discovered that it controls the PDIM operon. A loss-of-function genetic approach showed that PDIM levels directly correlate with the capacity of M. tuberculosis to escape the phagosome and induce host cell necrosis and macroautophagy. In conclusion, our study attributes a novel role of the cell wall lipid PDIM in intracellular host cell modulation, which is important for host cell exit and dissemination of M. tuberculosisIMPORTANCEMycobacterium tuberculosis is a major human pathogen that has coevolved with its host for thousands of years. The complex and unique cell wall of M. tuberculosis contains the lipid PDIM (phthiocerol dimycocerosates), which is crucial for virulence of the bacterium, but its function is not well understood. Here we show that PDIM expression by M. tuberculosis is negatively regulated by a novel transcriptional repressor, Rv3167c. In addition, we discovered that the escape of M. tuberculosis from its intracellular vacuole was greatly augmented by the presence of PDIM. The increased release of M. tuberculosis into the cytosol led to increased host cell necrosis. The discovery of a link between the cell wall lipid PDIM and a major pathogenesis pathway of M. tuberculosis provides important insights into the molecular mechanisms of host cell manipulation by M. tuberculosis.
Collapse
|
9
|
Richard-Greenblatt M, Av-Gay Y. Epigenetic Phosphorylation Control of Mycobacterium tuberculosis Infection and Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0005-2015. [PMID: 28281439 PMCID: PMC11687473 DOI: 10.1128/microbiolspec.tbtb2-0005-2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/20/2023] Open
Abstract
Reversible protein phosphorylation is the most common type of epigenetic posttranslational modification in living cells used as a major regulation mechanism of biological processes. The Mycobacterium tuberculosis genome encodes for 11 serine/threonine protein kinases that are responsible for sensing environmental signals to coordinate a cellular response to ensure the pathogen's infectivity, survival, and growth. To overcome killing mechanisms generated within the host during infection, M. tuberculosis enters a state of nonreplicating persistence that is characterized by arrested growth, limited metabolic activity, and phenotypic resistance to antimycobacterial drugs. In this article we focus our attention on the role of M. tuberculosis serine/threonine protein kinases in sensing the host environment to coordinate the bacilli's physiology, including growth, cell wall components, and central metabolism, to establish a persistent infection.
Collapse
Affiliation(s)
- Melissa Richard-Greenblatt
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yossef Av-Gay
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
10
|
Touchette MH, Seeliger JC. Transport of outer membrane lipids in mycobacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1340-1354. [PMID: 28110100 DOI: 10.1016/j.bbalip.2017.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
The complex organization of the mycobacterial cell wall poses unique challenges for the study of its assembly. Although mycobacteria are classified evolutionarily as Gram-positive bacteria, their cell wall architecture more closely resembles that of Gram-negative organisms. They possess not only an inner cytoplasmic membrane, but also a bilayer outer membrane that encloses an aqueous periplasm and includes diverse lipids that are required for the survival and virulence of pathogenic species. Questions surrounding how mycobacterial outer membrane lipids are transported from where they are made in the cytoplasm to where they function at the cell exterior are thus similar, and similarly compelling, to those that have driven the study of Gram-negative outer membrane transport pathways. However, little is understood about these processes in mycobacteria. Here we contextualize these questions by comparing our current knowledge of mycobacteria with better-defined systems in other organisms. Based on this analysis, we propose possible models and highlight continuing challenges to improving our understanding of outer membrane assembly in these medically and environmentally important bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Megan H Touchette
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, United States
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
11
|
Chalut C. MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria. Tuberculosis (Edinb) 2016; 100:32-45. [DOI: 10.1016/j.tube.2016.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
12
|
Turapov O, Loraine J, Jenkins CH, Barthe P, McFeely D, Forti F, Ghisotti D, Hesek D, Lee M, Bottrill AR, Vollmer W, Mobashery S, Cohen-Gonsaud M, Mukamolova GV. The external PASTA domain of the essential serine/threonine protein kinase PknB regulates mycobacterial growth. Open Biol 2016; 5:150025. [PMID: 26136255 PMCID: PMC4632501 DOI: 10.1098/rsob.150025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PknB is an essential serine/threonine protein kinase required for mycobacterial cell division and cell-wall biosynthesis. Here we demonstrate that overexpression of the external PknB_PASTA domain in mycobacteria results in delayed regrowth, accumulation of elongated bacteria and increased sensitivity to β-lactam antibiotics. These changes are accompanied by altered production of certain enzymes involved in cell-wall biosynthesis as revealed by proteomics studies. The growth inhibition caused by overexpression of the PknB_PASTA domain is completely abolished by enhanced concentration of magnesium ions, but not muropeptides. Finally, we show that the addition of recombinant PASTA domain could prevent regrowth of Mycobacterium tuberculosis, and therefore offers an alternative opportunity to control replication of this pathogen. These results suggest that the PknB_PASTA domain is involved in regulation of peptidoglycan biosynthesis and maintenance of cell-wall architecture.
Collapse
Affiliation(s)
- Obolbek Turapov
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Jessica Loraine
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Christopher H Jenkins
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS UMR 5048, 29, rue de Navacelles, Montpellier 34090, France INSERM U1054, Université Montpellier I et II, Montpellier, France
| | - Daniel McFeely
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Francesca Forti
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | - Daniela Ghisotti
- Dipartimento di BioScienze, Università degli Studi di Milano, Milan, Italy
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew R Bottrill
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, CNRS UMR 5048, 29, rue de Navacelles, Montpellier 34090, France INSERM U1054, Université Montpellier I et II, Montpellier, France
| | - Galina V Mukamolova
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| |
Collapse
|
13
|
Mourão MP, Denekamp I, Kuijper S, Kolk AH, Janssen HG. Hyphenated and comprehensive liquid chromatography ÿ gas chromatographymass spectrometry for the identification of Mycobacterium tuberculosis. J Chromatogr A 2016; 1439:152-160. [DOI: 10.1016/j.chroma.2015.10.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/24/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
|
14
|
Abstract
The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis.
Collapse
|
15
|
Wright DP, Ulijasz AT. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens. Virulence 2015; 5:863-85. [PMID: 25603430 PMCID: PMC4601284 DOI: 10.4161/21505594.2014.983404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial eukaryotic-like serine threonine kinases (eSTKs) and serine threonine phosphatases (eSTPs) have emerged as important signaling elements that are indispensable for pathogenesis. Differing considerably from their histidine kinase counterparts, few eSTK genes are encoded within the average bacterial genome, and their targets are pleiotropic in nature instead of exclusive. The growing list of important eSTK/P substrates includes proteins involved in translation, cell division, peptidoglycan synthesis, antibiotic tolerance, resistance to innate immunity and control of virulence factors. Recently it has come to light that eSTK/Ps also directly modulate transcriptional machinery in many microbial pathogens. This novel form of regulation is now emerging as an additional means by which bacteria can alter their transcriptomes in response to host-specific environmental stimuli. Here we focus on the ability of eSTKs and eSTPs in Gram-positive bacterial pathogens to directly modulate transcription, the known mechanistic outcomes of these modifications, and their roles as an added layer of complexity in controlling targeted RNA synthesis to enhance virulence potential.
Collapse
Key Words
- OCS, one-component signaling
- PASTA, penicillin-binding protein and Ser/Thr kinase associated
- PPM, protein phosphatase metal binding
- PTM, posttranslational modification
- REC, receiver
- ROS, reactive oxygen species
- TCS, two-component signaling
- bacteria
- eSTK, eukaryotic-like serine-threonine kinase
- eSTP, eukaryotic-like serine-threonine phosphatase
- infection
- phosphorylation
- serine threonine kinase
- serine threonine phosphatase
- transcription
- wHTH, winged helix-turn-helix
Collapse
Affiliation(s)
- David P Wright
- a MRC Centre for Molecular Bacteriology and Infection (CMBI); Imperial College London ; London , UK
| | | |
Collapse
|
16
|
Touchette MH, Bommineni GR, Delle Bovi RJ, Gadbery JE, Nicora CD, Shukla AK, Kyle JE, Metz TO, Martin DW, Sampson NS, Miller WT, Tonge PJ, Seeliger JC. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl β-Diol Lipids. Biochemistry 2015; 54:5457-68. [PMID: 26271001 DOI: 10.1021/acs.biochem.5b00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although they are classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl β-diol, phthiocerol, with branched-chain fatty acids known as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. Here, we show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl β-diol substrate analogues. By applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinases PknB and PknE modify PapA5 on three overlapping Thr residues and that a fourth Thr is unique to PknE phosphorylation. These results clarify the DIM biosynthetic pathway and indicate post-translational modifications that warrant further elucidation for their roles in the regulation of DIM biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | |
Collapse
|
17
|
Richard-Greenblatt M, Bach H, Adamson J, Peña-Diaz S, Li W, Steyn AJC, Av-Gay Y. Regulation of Ergothioneine Biosynthesis and Its Effect on Mycobacterium tuberculosis Growth and Infectivity. J Biol Chem 2015; 290:23064-76. [PMID: 26229105 DOI: 10.1074/jbc.m115.648642] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
Ergothioneine (EGT) is synthesized in mycobacteria, but limited knowledge exists regarding its synthesis, physiological role, and regulation. We have identified Rv3701c from Mycobacterium tuberculosis to encode for EgtD, a required histidine methyltransferase that catalyzes first biosynthesis step in EGT biosynthesis. EgtD was found to be phosphorylated by the serine/threonine protein kinase PknD. PknD phosphorylates EgtD both in vitro and in a cell-based system on Thr(213). The phosphomimetic (T213E) but not the phosphoablative (T213A) mutant of EgtD failed to restore EGT synthesis in a ΔegtD mutant. The findings together with observed elevated levels of EGT in a pknD transposon mutant during in vitro growth suggests that EgtD phosphorylation by PknD negatively regulates EGT biosynthesis. We further showed that EGT is required in a nutrient-starved model of persistence and is needed for long term infection of murine macrophages.
Collapse
Affiliation(s)
| | - Horacio Bach
- From the Division of Infectious Diseases, Department of Medicine and
| | - John Adamson
- Kwazulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa 4001
| | - Sandra Peña-Diaz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Wu Li
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing 400715, China, and
| | - Adrie J C Steyn
- Kwazulu-Natal Research Institute for Tuberculosis and HIV, Durban, South Africa 4001, Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama, Birmingham, Alabama 35233
| | - Yossef Av-Gay
- From the Division of Infectious Diseases, Department of Medicine and
| |
Collapse
|
18
|
Sherman DR, Grundner C. Agents of change - concepts in Mycobacterium tuberculosis Ser/Thr/Tyr phosphosignalling. Mol Microbiol 2014; 94:231-41. [PMID: 25099260 DOI: 10.1111/mmi.12747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2014] [Indexed: 11/26/2022]
Abstract
The flow of information from the outside to the inside of bacterial cells is largely directed by protein kinases. In addition to histidine/aspartate phosphorelays of two-component response regulators, recent work in Mycobacterium tuberculosis (Mtb) reinforces the idea that phosphorylation on serine (Ser), threonine (Thr) and tyrosine (Tyr) is central to bacterial physiology and pathogenesis, and that the corresponding phosphosystems are highly similar to those in eukaryotes. In this way, eukaryotes are a useful guide to understanding Ser/Thr/Tyr phosphorylation (O-phosphorylation) in prokaryotes such as Mtb. However, as novel functions and components of bacterial O-phosphorylation are identified, distinct differences between pro- and eukaryotic phosphosignalling systems become apparent. The emerging picture of O-phosphorylation in Mtb is complicated, goes beyond the eukaryotic paradigms, and shows the limitations of viewing bacterial phosphosignalling within the confines of the 'eukaryotic-like' model. Here, we summarize recent findings about Ser/Thr and the recently discovered Tyr phosphorylation pathways in Mtb, highlight the similarities and differences between eukaryotic and prokaryotic O-phosphorylation, and pose additional questions about signalling components, pathway organization, and ultimately, the cellular roles of O-phosphorylation in Mtb physiology and pathogenesis.
Collapse
Affiliation(s)
- David R Sherman
- Seattle Biomedical Research Institute, Seattle, WA, 98109, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
19
|
Nezametdinova VZ, Zakharevich NV, Alekseeva MG, Averina OV, Mavletova DA, Danilenko VN. Identification and characterization of the serine/threonine protein kinases in Bifidobacterium. Arch Microbiol 2014; 196:125-36. [PMID: 24395073 DOI: 10.1007/s00203-013-0949-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/09/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Six genes encoding the bifidobacterial Hanks-type (eukaryote-like) serine/threonine protein kinases (STPK) were identified and classified. The genome of each bifidobacterial strain contains four conserved genes and one species-specific gene. Bifidobacterium longum and Bifidobacterium bifidum possess the unique gene found only in these species. The STPK genes of Russian industrial probiotic strain B. longum B379M were cloned and sequenced. The expression of these genes in Escherichia coli and bifidobacteria was observed. Autophosphorylation of the conserved STPK Pkb5 and species-specific STPK Pkb2 was demonstrated. This is the first report on Hanks-type STPK in bifidobacteria.
Collapse
Affiliation(s)
- Venera Z Nezametdinova
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, 119991, Moscow, Russia,
| | | | | | | | | | | |
Collapse
|