1
|
Mahavy CE, Razanatseheno AJ, Mol A, Ngezahayo J, Duez P, El Jaziri M, Baucher M, Rasamiravaka T. Edible Medicinal Guava Fruit ( Psidium guajava L.) Are a Source of Anti-Biofilm Compounds against Pseudomonas aeruginosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1122. [PMID: 38674531 PMCID: PMC11054768 DOI: 10.3390/plants13081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Psidium guajava is one of the most common edible medicinal plants frequently used in Malagasy traditional medicine to treat gastrointestinal infections. In order to evaluate their probable antibacterial activities, three organic extracts (successive extractions by hexane, dichloromethane, and ethanol) of ripe guava fruits were assessed for their bactericidal and anti-virulence properties against P. aeruginosa PAO1. Although these three extracts have shown no direct antibacterial activity (MIC of 1000 µg/mL) and, at the non-bactericidal concentration of 100 µg/mL, no impact on the production of major P. aeruginosa PAO1 virulence factors (pyocyanin and rhamnolipids), the hexane and dichloromethane extracts showed significant anti-biofilm properties and the dichloromethane extract disrupted the P. aeruginosa PAO1 swarming motility. Bioguided fractionation of the dichloromethane extract led to the isolation and identification of lycopene and β-sitosterol-β-D-glucoside as major anti-biofilm compounds. Interestingly, both compounds disrupt P. aeruginosa PAO1 biofilm formation and maintenance with IC50 of 1383 µM and 131 µM, respectively. More interestingly, both compounds displayed a synergistic effect with tobramycin with a two-fold increase in its effectiveness in killing biofilm-encapsulated P. aeruginosa PAO1. The present study validates the traditional uses of this edible medicinal plant, indicating the therapeutic effectiveness of guava fruits plausibly through the presence of these tri- and tetraterpenoids, which deserve to be tested against pathogens generally implicated in diarrhea.
Collapse
Affiliation(s)
- Christian Emmanuel Mahavy
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906, Antananarivo 101, Madagascar
| | | | - Adeline Mol
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Jeremie Ngezahayo
- Centre de Recherche en Sciences Naturelles et de l'Environnement (CRSNE), Université du Burundi, Bujumbura BP 2700, Burundi
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons, B-7000 Mons, Belgium
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Marie Baucher
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Tsiry Rasamiravaka
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906, Antananarivo 101, Madagascar
| |
Collapse
|
2
|
The Molecular Architecture of Pseudomonas aeruginosa Quorum-Sensing Inhibitors. Mar Drugs 2022; 20:md20080488. [PMID: 36005489 PMCID: PMC9409833 DOI: 10.3390/md20080488] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
The survival selection pressure caused by antibiotic-mediated bactericidal and bacteriostatic activity is one of the important inducements for bacteria to develop drug resistance. Bacteria gain drug resistance through spontaneous mutation so as to achieve the goals of survival and reproduction. Quorum sensing (QS) is an intercellular communication system based on cell density that can regulate bacterial virulence and biofilm formation. The secretion of more than 30 virulence factors of P. aeruginosa is controlled by QS, and the formation and diffusion of biofilm is an important mechanism causing the multidrug resistance of P. aeruginosa, which is also closely related to the QS system. There are three main QS systems in P. aeruginosa: las system, rhl system, and pqs system. Quorum-sensing inhibitors (QSIs) can reduce the toxicity of bacteria without affecting the growth and enhance the sensitivity of bacterial biofilms to antibiotic treatment. These characteristics make QSIs a popular topic for research and development in the field of anti-infection. This paper reviews the research progress of the P. aeruginosa quorum-sensing system and QSIs, targeting three QS systems, which will provide help for the future research and development of novel quorum-sensing inhibitors.
Collapse
|
3
|
Methoxyisoflavan derivative from Trigonella stellata inhibited quorum sensing and virulence factors of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2022; 38:156. [PMID: 35798919 PMCID: PMC9262770 DOI: 10.1007/s11274-022-03337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
The number of deaths caused by multidrug-resistant Pseudomonas aeruginosa has risen in the recent decade. The development of quorum sensing inhibition (QSI) is a promising approach for controlling Pseudomonas infection. Therefore, this study mainly aimed to investigate how a plant-source material inhibits QSI to produce an antipathogenic effect for fighting microbial infections. The QSI effect of Trigonella stellata was assessed by using Chromobacterium violaceum ATCC 12472 reporter strain. Trigonella stellata exhibited high QSI activity, and an ethanolic extract of T. stellata was prepared for phytochemical isolation of the most active QSI compound. Nine pure compounds were isolated and identified as kaempferitrin (1), soyasaponin I (2), β-sitosterol-3-O-glucoside (3), dihydromelilotoside (4), astrasikokioside I (5), methyl dihydromelilotoside (6), (3R, 4S)-4, 2′, 4′-trihydroxy-7-methoxy-4′-O-β-d-glucopyranosylisoflavan (7), (3S, 4R)-4, 2′, 4′-trihydroxy-7-methoxyisoflavan (8, TMF), and (+)-d-pinitol (9). These compounds were screened against C. violaceum ATCC 12472, and TMF exhibited a potent QSI. The effect of TMF at sub-minimum inhibitory concentrations (MICs) was assessed against P. aeruginosa virulence factors, including biofilm, pyocyanin formation protease and hemolysin activity. TMF induced significant elimination of QS-associated virulence behavior. In addition, TMF at sub-MICs significantly reduced the relative expression of lasI, lasR, rhlI, and rhlR compared with that in untreated cells. Furthermore, molecular docking was performed to predict structural basis of the QSI activity of TMF. The study demonstrated the importance of T. stellata as a signal modulator and inhibitor of P. aeruginosa pathogenesis.
Collapse
|
4
|
The Xanthophyll Carotenoid Lutein Reduces the Invasive Potential of Pseudomonas aeruginosa and Increases Its Susceptibility to Tobramycin. Int J Mol Sci 2022; 23:ijms23137199. [PMID: 35806201 PMCID: PMC9266958 DOI: 10.3390/ijms23137199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the xanthophyll carotenoid lutein has been qualified as a potential quorum sensing (QS) and biofilm inhibitor against Pseudomonas aeruginosa. To address the potential of this xanthophyll compound as a relevant antivirulence agent, we investigated in depth its impact on the invasion capabilities and aggressiveness of P. aeruginosa PAO1, which rely on the bacterial ability to build and maintain protective barriers, use different types of motilities and release myriad virulence factors, leading to host cell and tissue damages. Our data, obtained on the PAO1 strain, indicate that all-trans lutein (Lut; 22 µM) disrupts biofilm formation and disorganizes established biofilm structure without affecting bacterial viability, while improving the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Furthermore, this xanthophyll affects PAO1 twitching and swarming motilities while reducing the production of the extracellular virulence factors pyocyanin, elastase and rhamnolipids as well as the expression of the QS-regulated lasB and rhlA genes without inhibiting the QS-independent aceA gene. Interestingly, the expression of the QS regulators rhlR/I and lasR/I is significantly reduced as well as that of the global virulence factor regulator vfr, which is suggested to be a major target of Lut. Finally, an oxidative metabolite of Lut, 3′-dehydrolutein, induces a similar inhibition phenotype. Taken together, lutein-type compounds represent potential agents to control the invasive ability and antibiotic resistance of P. aeruginosa.
Collapse
|
5
|
Ulusoy S, B Akalin R, Çevikbaş H, Berisha A, Oral A, Boşgelmez-Tinaz G. Zeolite 4A as a jammer of bacterial communication in Chromobacterium violaceum and Pseudomonas aeruginosa. Future Microbiol 2022; 17:861-871. [PMID: 35658574 DOI: 10.2217/fmb-2021-0174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the hypothesis that zeolites interfere with quorum-sensing (QS) systems of Chromobacterium violaceum and Pseudomonas aeruginosa by adsorbing N-acyl homoserine lactone (AHL) signal molecules. Methods: QS inhibition by zeolite 4A was investigated using an AHL-based bioreporter assay. The adsorption of the AHLs was evaluated by performing inductively coupled plasma-optical emission spectroscopy and confirmed by Monte Carlo and molecular dynamic simulations. Results: Zeolite 4A reduced the violacein production in C. violaceum by over 90% and the biofilm formation, elastase and pyocyanin production in P. aeruginosa by 87, 68 and 98%, respectively. Conclusion: Zeolite 4A disrupts the QS systems of C. violaceum and P. aeruginosa by means of adsorbing 3-oxo-C6-AHL and 3-oxo-C12-AHL signaling molecules and can be developed as a novel QS jammer to combat P. aeruginosa-related infections.
Collapse
Affiliation(s)
- Seyhan Ulusoy
- Department of Biology, Suleyman Demirel University, Isparta, 32260, Turkey
| | - Ramadan B Akalin
- The Vocational School of Health Services, Namık Kemal University, Tekirdağ, 59030, Turkey
| | - Halime Çevikbaş
- Department of Biology, Suleyman Demirel University, Isparta, 32260, Turkey
| | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, Prishtina, 10000, Kosovo.,Materials Science-Nanochemistry Research Group, NanoAlb-Unit of Albanian Nanoscienceand Nanotechnology, Tirana, 1000, Albania
| | - Ayhan Oral
- Department of Chemistry, Onsekiz Mart University, Çanakkale, 18100, Turkey
| | - Gülgün Boşgelmez-Tinaz
- Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| |
Collapse
|
6
|
Chen Q, Zhao K, Li H, Liu K, Li J, Chu Y, Prithiviraj B, Yue B, Zhang X. Antibacterial and anti-virulence effects of furazolidone on Trueperella pyogenes and Pseudomonas aeruginosa. BMC Vet Res 2022; 18:114. [PMID: 35331229 PMCID: PMC8943969 DOI: 10.1186/s12917-022-03216-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Background Trueperella pyogenes and Pseudomonas aeruginosa are two important bacterial pathogens closely relating to the occurrence and development of forest musk deer respiratory purulent disease. Although T. pyogenes is the causative agent of the disease, the subsequently invaded P. aeruginosa will predominate the infection by producing a substantial amount of quorum-sensing (QS)-controlled virulence factors, and co-infection of them usually creates serious difficulties for veterinary treatment. In order to find a potential compound that targets both T. pyogenes and P. aeruginosa, the antibacterial and anti-virulence capacities of 55 compounds, which have similar core structure to the signal molecules of P. aeruginosa QS system, were tested in this study by performing a series of in vitro screening experiments. Results We identified that furazolidone could significantly reduce the cell densities of T. pyogenes in mono-culture or in the co-culture with P. aeruginosa. Although the growth of P. aeruginosa could also be moderately inhibited by furazolidone, the results of phenotypic identification and transcriptomic analysis further revealed that sub-inhibitory furazolidone had remarkable inhibitory effect on the biofilm production, motility, and QS system of P. aeruginosa. Moreover, furazolidone could efficiently protect Caenorhabditis elegans models from P. aeruginosa infection under both fast-killing and slow-killing conditions. Conclusions This study reports the antibacterial and anti-virulence abilities of furazolidone on T. pyogenes and P. aeruginosa, and provides a promising strategy and molecular basis for the development of novel anti-infectious drugs to dealing with forest musk deer purulent disease, or other diseases caused by T. pyogenes and P. aeruginosa co-infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03216-5.
Collapse
Affiliation(s)
- Qin Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No. 24, South Section 1, Yihuan Road, Chengdu, 610064, Sichuan, PR China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, PR China.
| | - Heyue Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No. 24, South Section 1, Yihuan Road, Chengdu, 610064, Sichuan, PR China
| | - Kanghua Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No. 24, South Section 1, Yihuan Road, Chengdu, 610064, Sichuan, PR China
| | - Jing Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, PR China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, PR China
| | - Balakrishnan Prithiviraj
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No. 24, South Section 1, Yihuan Road, Chengdu, 610064, Sichuan, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, No. 24, South Section 1, Yihuan Road, Chengdu, 610064, Sichuan, PR China.
| |
Collapse
|
7
|
Current strategies in inhibiting biofilm formation for combating urinary tract infections: Special focus on peptides, nano-particles and phytochemicals. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Mahavy CE, Duez P, ElJaziri M, Rasamiravaka T. African Plant-Based Natural Products with Antivirulence Activities to the Rescue of Antibiotics. Antibiotics (Basel) 2020; 9:antibiotics9110830. [PMID: 33228261 PMCID: PMC7699609 DOI: 10.3390/antibiotics9110830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
The worldwide emergence of antibiotic-resistant bacteria and the thread of widespread superbug infections have led researchers to constantly look for novel effective antimicrobial agents. Within the past two decades, there has been an increase in studies attempting to discover molecules with innovative properties against pathogenic bacteria, notably by disrupting mechanisms of bacterial virulence and/or biofilm formation which are both regulated by the cell-to-cell communication mechanism called ‘quorum sensing’ (QS). Certainly, targeting the virulence of bacteria and their capacity to form biofilms, without affecting their viability, may contribute to reduce their pathogenicity, allowing sufficient time for an immune response to infection and a reduction in the use of antibiotics. African plants, through their huge biodiversity, present a considerable reservoir of secondary metabolites with a very broad spectrum of biological activities, a potential source of natural products targeting such non-microbicidal mechanisms. The present paper aims to provide an overview on two main aspects: (i) succinct presentation of bacterial virulence and biofilm formation as well as their entanglement through QS mechanisms and (ii) detailed reports on African plant extracts and isolated compounds with antivirulence properties against particular pathogenic bacteria.
Collapse
Affiliation(s)
- Christian Emmanuel Mahavy
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906 Antananarivo 101, Madagascar;
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium;
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons, 7000 Mons, Belgium;
| | - Mondher ElJaziri
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, B-1050 Brussels, Belgium;
| | - Tsiry Rasamiravaka
- Laboratory of Biotechnology and Microbiology, University of Antananarivo, BP 906 Antananarivo 101, Madagascar;
- Correspondence: ; Tel.: +261-32-61-903-38
| |
Collapse
|
9
|
Akram M, Riaz M, Munir N, Rasul A, Daniyal M, Ali Shah SM, Shariati MA, Shaheen G, Akhtar N, Parveen F, Akhter N, Owais Ghauri A, Chishti AW, Usman Sarwar M, Said Khan F. Progress and prospects in the management of bacterial infections and developments in Phytotherapeutic modalities. Clin Exp Pharmacol Physiol 2020; 47:1107-1119. [PMID: 32064656 DOI: 10.1111/1440-1681.13282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/28/2022]
Abstract
The advent of antibiotics revolutionized medical care resulting in significantly reduced mortality and morbidity caused by infectious diseases. However, excessive use of antibiotics has led to the development of antibiotic resistance and indeed, the incidence of multidrug-resistant pathogens is considered as a major disadvantage in medication strategy, which has led the scholar's attention towards innovative antibiotic sources in recent years. Medicinal plants contain a variety of secondary metabolites with a wide range of therapeutic potential against the resistant microbes. Therefore, the aim of this review is to explore the antibacterial potential of traditional herbal medicine against bacterial infections. More than 200 published research articles reporting the therapeutic potential of medicinal plants against drug-resistant microbial infections were searched using different databases such as Google Scholar, Science Direct, PubMed and the Directory of Open Access Journals (DOAJ), etc., with various keywords like medicinal plants having antibacterial activities, antimicrobial potentials, phytotherapy of bacterial infection, etc. Articles were selected related to the efficacious herbs easily available to local populations addressing common pathogens. Various plants such as Artocarpus communis, Rheum emodi, Gentiana lutea L., Cassia fistula L., Rosemarinus officinalis, Argemone maxicana L, Hydrastis canadensis, Citrus aurantifolia, Cymbopogon citrates, Carica papaya, Euphorbia hirta, etc, were found to have significant antibacterial activities. Although herbal preparations have promising potential in the treatment of multidrug-resistant bacterial infection, still more research is required to isolate phytoconstituents, their mechanism of action as well as to find their impacts on the human body.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Akhtar Rasul
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Syed Muhammad Ali Shah
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food Industry (Semey branch), Semey, Kazakhstan
| | - Ghazala Shaheen
- Department of Eastern Medicine, Faculty of Pharmacy and Alternative Medicine, College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Akhtar
- Department of Pharmacy, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Akhter
- College of Allied Health Professional, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aymen Owais Ghauri
- Faculty of Pharmacy, Rayaz College of Eastern Medicine, Jinnah University for Women, Karachi, Pakistan
| | - Abdul Wadood Chishti
- Faculty of Pharmacy and Alternative Medicine, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Usman Sarwar
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fahad Said Khan
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
10
|
Hernando-Amado S, Alcalde-Rico M, Gil-Gil T, Valverde JR, Martínez JL. Naringenin Inhibition of the Pseudomonas aeruginosa Quorum Sensing Response Is Based on Its Time-Dependent Competition With N-(3-Oxo-dodecanoyl)-L-homoserine Lactone for LasR Binding. Front Mol Biosci 2020; 7:25. [PMID: 32181260 PMCID: PMC7059128 DOI: 10.3389/fmolb.2020.00025] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/07/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial quorum sensing (QS) is a cell-to-cell communication system that governs the expression of a large set of genes involved in bacterial-host interactions, including the production of virulence factors. Conversely, the hosts can produce anti-QS compounds to impair virulence of bacterial pathogens. One of these inhibitors is the plant flavonoid naringenin, which impairs the production of QS-regulated Pseudomonas aeruginosa virulence factors. In the present work, we analyze the molecular basis for such inhibition. Our data indicate that naringenin produces its effect by directly binding the QS regulator LasR, hence competing with its physiological activator, N-(3-oxo-dodecanoyl)-L-homoserine lactone (3OC12-HSL). The in vitro analysis of LasR binding to its cognate target DNA showed that the capacity of naringenin to outcompete 3OC12-HSL, when the latter is previously bound to LasR, is low. By using an E. coli LasR-based biosensor strain, which does not produce 3OC12-HSL, we determined that the inhibition of LasR is more efficient when naringenin binds to nascent LasR than when this regulator is already activated through 3OC12-HSL binding. According to these findings, at early exponential growth phase, when the amount of 3OC12-HSL is low, naringenin should proficiently inhibit the P. aeruginosa QS response, whereas at later stages of growth, once 3OC12-HSL concentration reaches a threshold enough for binding LasR, naringenin would not efficiently inhibit the QS response. To test this hypothesis, we analyze the potential effect of naringenin over the QS response by adding naringenin to P. aeruginosa cultures at either time zero (early inhibition) or at stationary growth phase (late inhibition). In early inhibitory conditions, naringenin inhibited the expression of QS-regulated genes, as well as the production of the QS-regulated virulence factors, pyocyanin and elastase. Nevertheless, in late inhibitory conditions, the P. aeruginosa QS response was not inhibited by naringenin. Therefore, this time-dependent inhibition may compromise the efficiency of this flavonoid, which will be effective just when used against bacterial populations presenting low cellular densities, and highlight the importance of searching for QS inhibitors whose mechanism of action does not depend on the QS status of the population.
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Nucleus for Collaborative Research on Bacterial Resistance, Valparaíso, Chile
| | - Teresa Gil-Gil
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José R. Valverde
- Servicio de Computación Científica, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L. Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
11
|
Galdino ACM, de Oliveira MP, Ramalho TC, de Castro AA, Branquinha MH, Santos ALS. Anti-Virulence Strategy against the Multidrug-Resistant Bacterial Pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a Potential Druggable Target. Curr Protein Pept Sci 2019; 20:471-487. [PMID: 30727891 DOI: 10.2174/1389203720666190207100415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is a non-fermentative, gram-negative bacterium that is one of the most common pathogens responsible for hospital-acquired infections worldwide. The management of the infections caused by P. aeruginosa represents a huge challenge in the healthcare settings due to the increased emergence of resistant isolates, some of them resistant to all the currently available antimicrobials, which results in elevated morbimortality rates. Consequently, the development of new therapeutic strategies against multidrug-resistant P. aeruginosa is urgent and needful. P. aeruginosa is wellrecognized for its extreme genetic versatility and its ability to produce a lush variety of virulence factors. In this context, pseudolysin (or elastase B) outstands as a pivotal virulence attribute during the infectious process, playing multifunctional roles in different aspects of the pathogen-host interaction. This protein is a 33-kDa neutral zinc-dependent metallopeptidase that is the most abundant peptidase found in pseudomonal secretions, which contributes to the invasiveness of P. aeruginosa due to its ability to cleave several extracellular matrix proteins and to disrupt the basolateral intercellular junctions present in the host tissues. Moreover, pseudolysin makes P. aeruginosa able to overcome host defenses by the hydrolysis of many immunologically relevant molecules, including antibodies and complement components. The attenuation of this striking peptidase therefore emerges as an alternative and promising antivirulence strategy to combat antibiotic-refractory infections caused by P. aeruginosa. The anti-virulence approach aims to disarm the P. aeruginosa infective arsenal by inhibiting the expression/activity of bacterial virulence factors in order to reduce the invasiveness of P. aeruginosa, avoiding the emergence of resistance since the proliferation is not affected. This review summarizes the most relevant features of pseudolysin and highlights this enzyme as a promising target for the development of new anti-virulence compounds.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P de Oliveira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States
| | - Teodorico C Ramalho
- Departamento de Quimica, Universidade Federal de Lavras, Minas Gerais, Brazil
| | | | - Marta H Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Influence of naringenin on the biofilm formation of Streptococcus mutans. J Dent 2018; 76:24-31. [DOI: 10.1016/j.jdent.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/15/2018] [Indexed: 12/18/2022] Open
|
13
|
Chong YM, How KY, Yin WF, Chan KG. The Effects of Chinese Herbal Medicines on the Quorum Sensing-Regulated Virulence in Pseudomonas aeruginosa PAO1. Molecules 2018; 23:molecules23040972. [PMID: 29690523 PMCID: PMC6017394 DOI: 10.3390/molecules23040972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/31/2022] Open
Abstract
The quorum sensing (QS) system has been used by many opportunistic pathogenic bacteria to coordinate their virulence determinants in relation to cell-population density. As antibiotic-resistant bacteria are on the rise, interference with QS has been regarded as a novel way to control bacterial infections. As such, many plant-based natural products have been widely explored for their therapeutic roles. These natural products may contain anti-QS compounds that could block QS signals generation or transmission to combat QS pathogens. In this study, we report the anti-QS activities of four different Chinese herbal plant extracts: Poria cum Radix pini, Angelica dahurica, Rhizoma cibotii and Schizonepeta tenuifolia, on Pseudomonas aeruginosa PAO1. All the plants extracted using hexane, chloroform and methanol were tested and found to impair swarming motility and pyocyanin production in P.aeruginosa PAO1, particularly by Poria cum Radix pini. In addition, all the plant extracts also inhibited violacein production in C.violaceum CV026 up to 50% while bioluminescence activities were reduced in lux-based E. coli biosensors, pSB401 and pSB1075, up to about 57%. These anti-QS properties of the four medicinal plants are the first documentation that demonstrates a potential approach to attenuate pathogens’ virulence determinants.
Collapse
Affiliation(s)
- Yee Meng Chong
- Division of Genetics and Molecular Biology, ISB, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kah Yan How
- Division of Genetics and Molecular Biology, ISB, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai Fong Yin
- Division of Genetics and Molecular Biology, ISB, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok Gan Chan
- Vice Chancellor Office, Jiangsu University, Zhenjiang 212013, China.
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
14
|
Bouyahya A, Dakka N, Et-Touys A, Abrini J, Bakri Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. ASIAN PAC J TROP MED 2017; 10:729-743. [DOI: 10.1016/j.apjtm.2017.07.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023] Open
|
15
|
Rasamiravaka T, Ngezahayo J, Pottier L, Ribeiro SO, Souard F, Hari L, Stévigny C, Jaziri ME, Duez P. Terpenoids from Platostoma rotundifolium (Briq.) A. J. Paton Alter the Expression of Quorum Sensing-Related Virulence Factors and the Formation of Biofilm in Pseudomonas aeruginosa PAO1. Int J Mol Sci 2017; 18:ijms18061270. [PMID: 28613253 PMCID: PMC5486092 DOI: 10.3390/ijms18061270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/22/2023] Open
Abstract
Platostoma rotundifolium (Briq.) A. J. Paton aerial parts are widely used in Burundi traditional medicine to treat infectious diseases. In order to investigate their probable antibacterial activities, crude extracts from P. rotundifolium were assessed for their bactericidal and anti-virulence properties against an opportunistic bacterial model, Pseudomonas aeruginosa PAO1. Whereas none of the tested extracts exert bacteriostatic and/or bactericidal proprieties, the ethyl acetate and dichloromethane extracts exhibit anti-virulence properties against Pseudomonas aeruginosa PAO1 characterized by an alteration in quorum sensing gene expression and biofilm formation without affecting bacterial viability. Bioguided fractionation of the ethyl acetate extract led to the isolation of major anti-virulence compounds that were identified from nuclear magnetic resonance and high-resolution molecular spectroscopy spectra as cassipourol, β-sitosterol and α-amyrin. Globally, cassipourol and β-sitosterol inhibit quorum sensing-regulated and -regulatory genes expression in las and rhl systems without affecting the global regulators gacA and vfr, whereas α-amyrin had no effect on the expression of these genes. These terpenoids disrupt the formation of biofilms at concentrations down to 12.5, 50 and 50 µM for cassipourol, β-sitosterol and α-amyrin, respectively. Moreover, these terpenoids reduce the production of total exopolysaccharides and promote flagella-dependent motilities (swimming and swarming). The isolated terpenoids exert a wide range of inhibition processes, suggesting a complex mechanism of action targeting P. aeruginosa virulence mechanisms which support the wide anti-infectious use of this plant species in traditional Burundian medicine.
Collapse
Affiliation(s)
- Tsiry Rasamiravaka
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
- Laboratoire de Biotechnologie et Microbiologie, Département de Biochimie Fondamentale et Appliquée, Faculté des Sciences, Université d'Antananarivo (UA), BP 906, Antananarivo 101, Madagascar.
| | - Jérémie Ngezahayo
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
- Centre de Recherche Universitaire en Pharmacopée et Médecine Traditionnelle (CRUPHAMET), Faculté des Sciences, Université du Burundi, BP 2700 Bujumbura, Burundi.
| | - Laurent Pottier
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | - Sofia Oliveira Ribeiro
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | - Florence Souard
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, 38000 Grenoble, France.
- Département de Pharmacochimie Moléculaire, Centre National de Recherche Scientifique, 38000 Grenoble, France.
| | - Léonard Hari
- Centre de Recherche Universitaire en Pharmacopée et Médecine Traditionnelle (CRUPHAMET), Faculté des Sciences, Université du Burundi, BP 2700 Bujumbura, Burundi.
| | - Caroline Stévigny
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
| | - Pierre Duez
- Laboratoire de Pharmacognosie, Bromatologie et Nutrition Humaine, Faculté de Pharmacie, Université Libre de Bruxelles, CP 205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
- Unit of Therapeutic Chemistry and Pharmacognosy, Université de Mons (UMONS), Bâtiment VI, Chemin du Champ de Mars 25, 7000 Mons, Belgium.
| |
Collapse
|
16
|
Borges A, Abreu AC, Dias C, Saavedra MJ, Borges F, Simões M. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules 2016; 21:molecules21070877. [PMID: 27399652 PMCID: PMC6274140 DOI: 10.3390/molecules21070877] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
The majority of current infectious diseases are almost untreatable by conventional antibiotic therapy given the advent of multidrug-resistant bacteria. The degree of severity and the persistence of infections are worsened when microorganisms form biofilms. Therefore, efforts are being applied to develop new drugs not as vulnerable as the current ones to bacterial resistance mechanisms, and also able to target bacteria in biofilms. Natural products, especially those obtained from plants, have proven to be outstanding compounds with unique properties, making them perfect candidates for these much-needed therapeutics. This review presents the current knowledge on the potentialities of plant products as antibiotic adjuvants to restore the therapeutic activity of drugs. Further, the difficulties associated with the use of the existing antibiotics in the treatment of biofilm-related infections are described. To counteract the biofilm resistance problems, innovative strategies are suggested based on literature data. Among the proposed strategies, the use of phytochemicals to inhibit or eradicate biofilms is highlighted. An overview on the use of phytochemicals to interfere with bacterial quorum sensing (QS) signaling pathways and underlying phenotypes is provided. The use of phytochemicals as chelating agents and efflux pump inhibitors is also reviewed.
Collapse
Affiliation(s)
- Anabela Borges
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
- CECAV-Veterinary and Animal Science Research Center, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, Apartado 1013, Vila Real 5001-801, Portugal.
| | - Ana Cristina Abreu
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
- CECAV-Veterinary and Animal Science Research Center, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, Apartado 1013, Vila Real 5001-801, Portugal.
| | - Carla Dias
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
- CECAV-Veterinary and Animal Science Research Center, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, Apartado 1013, Vila Real 5001-801, Portugal.
| | - Maria José Saavedra
- CECAV-Veterinary and Animal Science Research Center, Department of Veterinary Science, University of Trás-os-Montes e Alto Douro, Apartado 1013, Vila Real 5001-801, Portugal.
| | - Fernanda Borges
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| |
Collapse
|
17
|
Acebo-Guerrero Y, Hernández-Rodríguez A, Vandeputte O, Miguélez-Sierra Y, Heydrich-Pérez M, Ye L, Cornelis P, Bertin P, El Jaziri M. Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). J Appl Microbiol 2016. [PMID: 26218193 DOI: 10.1111/jam.12910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To isolate and characterize rhizobacteria from Theobroma cacao with antagonistic activity against Phytophthora palmivora, the causal agent of the black pod rot, which is one of the most important diseases of T. cacao. METHODS AND RESULTS Among 127 rhizobacteria isolated from cacao rhizosphere, three isolates (CP07, CP24 and CP30) identified as Pseudomonas chlororaphis, showed in vitro antagonistic activity against P. palmivora. Direct antagonism tested in cacao detached leaves revealed that the isolated rhizobacteria were able to reduce symptom severity upon infection with P. palmivora Mab1, with Ps. chlororaphis CP07 standing out as a potential biocontrol agent. Besides, reduced symptom severity on leaves was also observed in planta where cacao root system was pretreated with the isolated rhizobacteria followed by leaf infection with P. palmivora Mab1. The production of lytic enzymes, siderophores, biosurfactants and HCN, as well as the detection of genes encoding antibiotics, the formation of biofilm, and bacterial motility were also assessed for all three rhizobacterial strains. By using a mutant impaired in viscosin production, derived from CP07, it was found that this particular biosurfactant turned out to be crucial for both motility and biofilm formation, but not for the in vitro antagonism against Phytophthora, although it may contribute to the bioprotection of T. cacao. CONCLUSIONS In the rhizosphere of T. cacao, there are rhizobacteria, such as Ps. chlororaphis, able to protect plants against P. palmivora. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a theoretical basis for the potential use of Ps. chlororaphis CP07 as a biocontrol agent for the protection of cacao plants from P. palmivora infection.
Collapse
Affiliation(s)
- Y Acebo-Guerrero
- Laboratory of Microbial Ecology, Faculty of Biology, University of Havana, Plaza, Cuba
| | - A Hernández-Rodríguez
- Laboratory of Microbial Ecology, Faculty of Biology, University of Havana, Plaza, Cuba
| | - O Vandeputte
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - M Heydrich-Pérez
- Laboratory of Microbial Ecology, Faculty of Biology, University of Havana, Plaza, Cuba
| | - L Ye
- Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology, Brussels, Belgium
| | - P Cornelis
- Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology, Brussels, Belgium
| | - P Bertin
- Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain, Belgium
| | - M El Jaziri
- Laboratory of Plant Biotechnology, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
18
|
Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention--a journey to break the wall: a review. Arch Microbiol 2015; 198:1-15. [PMID: 26377585 DOI: 10.1007/s00203-015-1148-6] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/31/2023]
Abstract
Biofilms contain group(s) of microorganisms that are found to be associated with the biotic and abiotic surfaces. Biofilms contain either homogenous or heterogeneous populations of bacteria which remain in the matrix made up of extracellular polymeric substances secreted by constituent population of the biofilm. Biofilms can be either single or multilayered. Biofilms are an increasing issue of concern that is gaining importance with each passing day. Due to the ubiquitous nature of biofilms, it is difficult to eradicate them. It has been seen that many infectious diseases harbour biofilms of bacterial pathogens as the reservoir of persisting infections which can prove fatal at times. The presence of biofilms can be seen in diseases like endocarditis, cystic fibrosis, periodontitis, rhinosinusitis and osteomyelitis. The presence of biofilms has been mostly seen in medical implants and urinary catheters. Various signalling events including two-component signalling, extra cytoplasmic function and quorum sensing are involved in the formation of biofilms. The presence of an extracellular polymeric matrix in biofilms makes it difficult for the antimicrobials to act on them and make the bacteria tolerant to antibiotics and other drugs. The aim of this review was to discuss about the basic formation of a biofilm, various signalling cascades involved in biofilm formation, possible mechanisms of drug resistance in biofilms and recent therapeutic approaches involved in successful eradication of biofilms.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Subhasis Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College, Bangalore, 560 052, India.
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Prosun Tribedi
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India.
| |
Collapse
|
19
|
Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume. PLoS One 2015; 10:e0132791. [PMID: 26186595 PMCID: PMC4505864 DOI: 10.1371/journal.pone.0132791] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/19/2015] [Indexed: 12/30/2022] Open
Abstract
Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms.
Collapse
|
20
|
The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BIOMED RESEARCH INTERNATIONAL 2015; 2015:759348. [PMID: 25866808 PMCID: PMC4383298 DOI: 10.1155/2015/759348] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i) on P. aeruginosa biofilm lifestyle cycle, (ii) on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii) finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa.
Collapse
|
21
|
Sharma BK, Saha A, Rahaman L, Bhattacharjee S, Tribedi P. Silver Inhibits the Biofilm Formation of <i>Pseudomonas aeruginosa</i>. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/aim.2015.510070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Okusa PN, Rasamiravaka T, Vandeputte O, Stévigny C, Jaziri ME, Duez P. Extracts of Cordia gilletii de wild (Boraginaceae) quench the quorum sensing of Pseudomonas aeruginosa PAO1. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2014; 3:138-43. [PMID: 26401363 PMCID: PMC4576808 DOI: 10.5455/jice.20140710031312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/10/2014] [Indexed: 11/03/2022]
Abstract
AIM The fight against infectious diseases and antimicrobial resistances needs the exploration of new active compounds with new proprieties like disrupting quorum sensing (QS) mechanisms, which is a cell-to-cell communication that regulates bacterial virulence factors. In this work, leaves and root barks extracts of a Congolese medicinal plant, Cordia gilletii, were investigated for their effect on the production of Pseudomonas aeruginosa major virulence factors regulated by QS. MATERIALS AND METHODS The effect of C. gilletii extracts on virulence factors of P. aeruginosa PAO1 was studied by the evaluation of the production of pyocyanine, elastase and biofilm; and by the measurement of the expression of QS-related genes. RESULTS The dichloromethane extract from root barks was found to quench the production of pyocyanin, a QS-dependent virulence factor in P. aeruginosa PAO1. Moreover, this extract specifically inhibits the expression of several QS-regulated genes (i.e. lasB, rhlA, lasI, lasR, rhlI, and rhlR) and reduces biofilm formation by PAO1. CONCLUSION This study contributes to explain the efficacy of C. gilletii in the traditional treatment of infectious diseases caused by P. aeruginosa.
Collapse
Affiliation(s)
- Philippe N Okusa
- Free University of Brussels, Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Bld du Triomphe, CP 205/09, 1050 Brussels, Belgium ; University of Mons, Laboratoty of Therapeutic Chemistry ad Pharmacognosy, 20 Place du Parc, 7000 Mons, Belgium
| | - Tsiry Rasamiravaka
- Free University of Brussels, Laboratory of Vegetal Biotechnology, 12 Rue des Professeurs Jenner et Brachet, 6041 Gosselies, Belgium
| | - Olivier Vandeputte
- Free University of Brussels, Laboratory of Vegetal Biotechnology, 12 Rue des Professeurs Jenner et Brachet, 6041 Gosselies, Belgium
| | - Caroline Stévigny
- Free University of Brussels, Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Bld du Triomphe, CP 205/09, 1050 Brussels, Belgium
| | - Mondher El Jaziri
- Free University of Brussels, Laboratory of Vegetal Biotechnology, 12 Rue des Professeurs Jenner et Brachet, 6041 Gosselies, Belgium
| | - Pierre Duez
- Free University of Brussels, Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Bld du Triomphe, CP 205/09, 1050 Brussels, Belgium ; University of Mons, Laboratoty of Therapeutic Chemistry ad Pharmacognosy, 20 Place du Parc, 7000 Mons, Belgium
| |
Collapse
|
23
|
Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections. Int J Mol Sci 2013; 14:19309-40. [PMID: 24065108 PMCID: PMC3794835 DOI: 10.3390/ijms140919309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023] Open
Abstract
Bacteria, although considered for decades to be antisocial organisms whose sole purpose is to find nutrients and multiply are, in fact, highly communicative organisms. Referred to as quorum sensing, cell-to-cell communication mechanisms have been adopted by bacteria in order to co-ordinate their gene expression. By behaving as a community rather than as individuals, bacteria can simultaneously switch on their virulence factor production and establish successful infections in eukaryotes. Understanding pathogen-host interactions requires the use of infection models. As the use of rodents is limited, for ethical considerations and the high costs associated with their use, alternative models based on invertebrates have been developed. Invertebrate models have the benefits of low handling costs, limited space requirements and rapid generation of results. This review presents examples of such models available for studying the pathogenicity of the Gram-negative bacterium Pseudomonas aeruginosa. Quorum sensing interference, known as quorum quenching, suggests a promising disease-control strategy since quorum-quenching mechanisms appear to play important roles in microbe-microbe and host-pathogen interactions. Examples of natural and synthetic quorum sensing inhibitors and their potential as antimicrobials in Pseudomonas-related infections are discussed in the second part of this review.
Collapse
|
24
|
Nazzaro F, Fratianni F, Coppola R. Quorum sensing and phytochemicals. Int J Mol Sci 2013; 14:12607-19. [PMID: 23774835 PMCID: PMC3709803 DOI: 10.3390/ijms140612607] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 01/15/2023] Open
Abstract
Most infectious diseases are caused by bacteria, which proliferate within quorum sensing (QS)-mediated biofilms. Efforts to block QS in bacteria and disrupt biofilms have enabled the identification of bioactive molecules that are also produced by plants. This mini review primarily focuses on natural QS inhibitors, which display potential for treating bacterial infections and also enhance the safety of food supply.
Collapse
Affiliation(s)
- Filomena Nazzaro
- Institute of Food Science, ISA-CNR, Via Roma 64, Avellino 83100, Italy.
| | | | | |
Collapse
|