1
|
Naranjo-Ortiz MA, Molina M, Fuentes D, Mixão V, Gabaldón T. Karyon: a computational framework for the diagnosis of hybrids, aneuploids, and other nonstandard architectures in genome assemblies. Gigascience 2022; 11:giac088. [PMID: 36205401 PMCID: PMC9540331 DOI: 10.1093/gigascience/giac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/23/2021] [Accepted: 08/24/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent technological developments have made genome sequencing and assembly highly accessible and widely used. However, the presence in sequenced organisms of certain genomic features such as high heterozygosity, polyploidy, aneuploidy, heterokaryosis, or extreme compositional biases can challenge current standard assembly procedures and result in highly fragmented assemblies. Hence, we hypothesized that genome databases must contain a nonnegligible fraction of low-quality assemblies that result from such type of intrinsic genomic factors. FINDINGS Here we present Karyon, a Python-based toolkit that uses raw sequencing data and de novo genome assembly to assess several parameters and generate informative plots to assist in the identification of nonchanonical genomic traits. Karyon includes automated de novo genome assembly and variant calling pipelines. We tested Karyon by diagnosing 35 highly fragmented publicly available assemblies from 19 different Mucorales (Fungi) species. CONCLUSIONS Our results show that 10 (28.57%) of the assemblies presented signs of unusual genomic configurations, suggesting that these are common, at least for some lineages within the Fungi.
Collapse
Affiliation(s)
- Miguel A Naranjo-Ortiz
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Biology Department, Clark University, Worcester, MA 01610, USA
- Naturhistoriskmuseum, University of Oslo, Oslo 0562, Norway
| | - Manu Molina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
| | - Diego Fuentes
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Verónica Mixão
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Health and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Barcelona 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Barcelona 28029, Spain
| |
Collapse
|
2
|
|
3
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Ellenberger S, Burmester A, Schuster S, Wöstemeyer J. Post-translational regulation by structural changes of 4-dihydromethyltrisporate dehydrogenase, a key enzyme in sexual and parasitic communication mediated by the trisporic acid pheromone system, of the fungal fusion parasite Parasitella parasitica. J Theor Biol 2017; 413:50-57. [DOI: 10.1016/j.jtbi.2016.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/05/2016] [Indexed: 12/17/2022]
|
5
|
Ellenberger S, Burmester A, Wöstemeyer J. The fate of mitochondria after infection of the Mucoralean fungus Absidia glauca by the fusion parasite Parasitella parasitica: comparison of mitochondrial genomes in zygomycetes. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 29:113-120. [PMID: 28034347 DOI: 10.1080/24701394.2016.1248432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Absidia glauca and Parasitella parasitica constitute a versatile experimental system for studying horizontal gene transfer between a mucoralean host and its fusion parasite. The A. glauca chondriome has a length of approximately 63 kb and a GC content of 28%. The chondriome of P. parasitica is larger, 83 kb, and contains 31% GC base pairs. These mtDNAs contain the standard fungal mitochondrial gene set, small and large subunit rRNAs, plus ribonuclease P RNA. Comparing zygomycete chondriomes reveals an unusually high number of homing endonuclease genes in P. parasitica, substantiating the mobility of intron elements independent of host-parasite interactions.
Collapse
Affiliation(s)
- Sabrina Ellenberger
- a Chair for General Microbiology and Microbe Genetics , Friedrich Schiller University Jena , Jena , Germany
| | - Anke Burmester
- a Chair for General Microbiology and Microbe Genetics , Friedrich Schiller University Jena , Jena , Germany
| | - Johannes Wöstemeyer
- a Chair for General Microbiology and Microbe Genetics , Friedrich Schiller University Jena , Jena , Germany
| |
Collapse
|
6
|
Schulz E, Wetzel J. Morphological characterization of sex-deficient mutants of the homothallic zygomycete Zygorhynchus moelleri. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Complete Mitochondrial DNA Sequence of the Mucoralean Fungus Absidia glauca, a Model for Studying Host-Parasite Interactions. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00153-16. [PMID: 27013042 PMCID: PMC4807231 DOI: 10.1128/genomea.00153-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mitochondrial DNA (mtDNA) ofAbsidia glaucahas been completely sequenced. It is 63,080 bp long, has a G+C content of 28%, and contains the standard fungal gene set.A. glaucais the recipient in a laboratory model for horizontal gene transfer withParasitella parasiticaas a donor of nuclei and mitochondria.
Collapse
|
8
|
Complete Mitochondrial DNA Sequence of the Mucoralean Fusion Parasite Parasitella parasitica. GENOME ANNOUNCEMENTS 2014; 2:2/6/e00912-14. [PMID: 25395626 PMCID: PMC4241652 DOI: 10.1128/genomea.00912-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complete mitochondrial DNA sequence of the Mucor-related fungus Parasitella parasitica has been sequenced. It has a G+C content of 30% and a total length of 83,361 bp. All protein-coding genes normally found in fungi are present in the sequence. A special feature is the remarkably high number of 27 homing endonucleases.
Collapse
|
9
|
González-Delgado JA, Escobar G, Arteaga JF, Barrero AF. Easy access to a cyclic key intermediate for the synthesis of trisporic acids and related compounds. Molecules 2014; 19:1748-62. [PMID: 24496268 PMCID: PMC6271007 DOI: 10.3390/molecules19021748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 11/16/2022] Open
Abstract
The synthesis of a cyclohexane skeleton possessing different oxygenated functional groups at C–3, C–8 and C–9, and a Δ1,6-double bond has been accomplished in 10 steps with an overall 17% yield. This compound is a key intermediate for access to a wide range of compounds of the bioactive trisporoid family. The synthetic sequence consists of the preparation of a properly functionalized epoxygeraniol derivative, and its subsequent stereoselective cyclization mediated by Ti(III). This last step implies a domino process that starts with a homolytic epoxide opening followed by a radical cyclization and regioselective elimination. This concerted process gives access to the cyclohexane moiety with stereochemical control of five of its six carbon atoms.
Collapse
Affiliation(s)
- José A González-Delgado
- Department of Organic Chemistry and Institute of Biotechnology, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Gustavo Escobar
- Department of Organic Chemistry and Institute of Biotechnology, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Jesús F Arteaga
- CIQSO-Center for Research in Sustainable Chemistry and Department of Chemical Engineering, Physical Chemistry and Organic Chemistry, University of Huelva, Avda 3 Marzo s/n, 21071 Huelva, Spain.
| | - Alejandro F Barrero
- Department of Organic Chemistry and Institute of Biotechnology, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|