1
|
Poláček A, Lombard V, Coutinho PM, Terrapon N, Janeček Š. Dividing the α-amylase family GH57 of starch hydrolases and related enzymes into subfamilies using evolutionary, clustering and functional criteria. Int J Biol Macromol 2025; 309:142823. [PMID: 40187459 DOI: 10.1016/j.ijbiomac.2025.142823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
In the CAZy classification, four glycoside hydrolase families - GH13, GH57, GH119 and GH126 - have been designated as α-amylase families. The present study applied to a dataset of over 5000 family GH57 sequences, delivers a functionally balanced subdivision of the family GH57 into ten subfamilies. Eight of these subfamilies bear a specific enzyme activity: GH57_1, 4-α-glucanotransferases; GH57_2, amylopullulanases; GH57_3, α-amylases; GH57_4, α-galactosidases; GH57_5, α-glucan-branching enzymes; GH57_6, non-specified amylases; GH57_7, amylopullulanases-cyclomaltodextrinases; and GH57_8, maltogenic amylases. Two subfamilies, GH57_9 and GH57_10, not including any characterized members so far despite their conserved catalytic machinery, will deserve the community attention. Each subfamily is highlighted by its sequence fingerprints, through the logo of the five GH57 conserved sequence regions. The structural features are also compared with regard to domains complementing the catalytic module composed by the (β/α)7-barrel and the succeeding α-helical bundle. Characterized members in each subfamily display a strong agreement in their functional profile, indicating that the here proposed GH57 subfamily annotation results in functionally meaningful subsets. Moreover, several small groups of sequences still lacking sufficient sequence diversity and biochemical characterization did not integrate any of the created GH57 subfamilies so far; nevertheless, they could complete the overall GH57 subfamily picture in future.
Collapse
Affiliation(s)
- Adam Poláček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS, Aix-Marseille Univ, USC 1408 INRAE, F-13288 Marseille, France
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS, Aix-Marseille Univ, USC 1408 INRAE, F-13288 Marseille, France
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS, Aix-Marseille Univ, USC 1408 INRAE, F-13288 Marseille, France.
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia; Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, SK-91701 Trnava, Slovakia.
| |
Collapse
|
2
|
Shad M, Rehman HM, Akhtar MW, Sajjad M. Structural and functional insights of starch processing α-amylase from hyperthermophilic archaeon Pyrococcusabyssi. Carbohydr Res 2024; 539:109122. [PMID: 38657354 DOI: 10.1016/j.carres.2024.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
The genomic screening of hyper-thermophilic Pyrococcus abyssi showed uncharacterized novel α-amylase sequences. Homology modelling analysis revealed that the α-amylase from P. abyssi consists of an N-terminal GH57 catalytic domain, α-amylase central, and C-terminal domain. Current studies emphasize in-silico structural and functional analysis, recombinant expression, characterization, structural studies through CD spectroscopy, and ligand binding studies of the novel α-amylase from P. abyssi. The soluble expression of PaAFG was observed in the E. coli Rosetta™ (DE3) pLysS strain upon incubation overnight at 18 °C in an orbital shaker. The optimum temperature and pH of the PaAFG were observed at 90 °C in 50 mM phosphate buffer pH 6. The Km value for PaAFG against wheat starch was determined as 0.20 ± 0.053 mg while the corresponding Vmax value was 25.00 ± 0.67 μmol min-1 mg-1 in the presence of 2 mM CaCl2 and 12.5 % glycerol. The temperature ramping experiments through CD spectroscopy reveal no significant change in the secondary structures and positive and negative ellipticities of the CD spectra showing the proper folding and optimal temperature of PaAFG protein. The RMSD and RMSF of the PaAFG enzyme determined through molecular dynamic simulation show the significant protein's stability and mobility. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various industrial applications.
Collapse
Affiliation(s)
- Mohsin Shad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, P.O. 54590, Lahore, Pakistan; Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Quaid-e-Azam Campus, P.O. 54590, Lahore, Pakistan
| | - Muhammad Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, P.O. 54590, Lahore, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, P.O. 54590, Lahore, Pakistan.
| |
Collapse
|
3
|
Shad M, Sajjad M, Gardner QA, Ahmad S, Akhtar MW. Structural engineering and truncation of α-amylase from the hyperthermophilic archaeon Methanocaldococcus jannaschii. Int J Biol Macromol 2024; 256:128387. [PMID: 38000593 DOI: 10.1016/j.ijbiomac.2023.128387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Alpha amylases catalyse the hydrolysis of α-1, 4-glycosidic bonds in starch, yielding glucose, maltose, dextrin, and short oligosaccharides, vital to various industrial processes. Structural and functional insights on α-amylase from Methanocaldococcus jannaschii were computationally explored to evaluate a catalytic domain and its fusion with a small ubiquitin-like modifier (SUMO). The recombinant proteins' production, characterization, ligand binding studies, and structural analysis of the cloned amylase native full gene (MjAFG), catalytic domain (MjAD) and fusion enzymes (S-MjAD) were thoroughly analysed in this comparative study. The MjAD and S-MjAD showed 2-fold and 2.5-fold higher specific activities (μmol min-1 mg -1) than MjAFG at 95 °C at pH 6.0. Molecular modelling and MD simulation results showed that the removal of the extra loop (178 residues) at the C-terminal of the catalytic domain exposed the binding and catalytic residues near its active site, which was buried in the MjAFG enzyme. The temperature ramping and secondary structure analysis of MjAFG, MjAD and S-MjAD through CD spectrometry showed no notable alterations in the secondary structures but verified the correct folding of MjA variants. The chimeric fusion of amylases with thermostable α-glucosidases makes it a potential candidate for the starch degrading processes.
Collapse
Affiliation(s)
- Mohsin Shad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Qurratulann Afza Gardner
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Saira Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
4
|
Fawaz R, Bingham C, Nayebi H, Chiou J, Gilbert L, Park SH, Geiger JH. The Structure of Maltooctaose-Bound Escherichia coli Branching Enzyme Suggests a Mechanism for Donor Chain Specificity. Molecules 2023; 28:molecules28114377. [PMID: 37298853 DOI: 10.3390/molecules28114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Glycogen is the primary storage polysaccharide in bacteria and animals. It is a glucose polymer linked by α-1,4 glucose linkages and branched via α-1,6-linkages, with the latter reaction catalyzed by branching enzymes. Both the length and dispensation of these branches are critical in defining the structure, density, and relative bioavailability of the storage polysaccharide. Key to this is the specificity of branching enzymes because they define branch length. Herein, we report the crystal structure of the maltooctaose-bound branching enzyme from the enterobacteria E. coli. The structure identifies three new malto-oligosaccharide binding sites and confirms oligosaccharide binding in seven others, bringing the total number of oligosaccharide binding sites to twelve. In addition, the structure shows distinctly different binding in previously identified site I, with a substantially longer glucan chain ordered in the binding site. Using the donor oligosaccharide chain-bound Cyanothece branching enzyme structure as a guide, binding site I was identified as the likely binding surface for the extended donor chains that the E. coli branching enzyme is known to transfer. Furthermore, the structure suggests that analogous loops in branching enzymes from a diversity of organisms are responsible for branch chain length specificity. Together, these results suggest a possible mechanism for transfer chain specificity involving some of these surface binding sites.
Collapse
Affiliation(s)
- Remie Fawaz
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Courtney Bingham
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Hadi Nayebi
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Janice Chiou
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lindsey Gilbert
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Sung Hoon Park
- Department of Food Service Management and Nutrition, College of Natural Sciences, Sangmyung University, Hongjidong, Jongnogu, Seoul 03016, Republic of Korea
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Molecular cloning and production of recombinant Pcal_0672, a family GH57 glycoside hydrolase from Pyrobaculum calidifontis. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
6
|
A putative novel starch-binding domain revealed by in silico analysis of the N-terminal domain in bacterial amylomaltases from the family GH77. 3 Biotech 2021; 11:229. [PMID: 33968573 DOI: 10.1007/s13205-021-02787-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
The family GH77 contains 4-α-glucanotransferase acting on α-1,4-glucans, known as amylomaltase in prokaryotes and disproportionating enzyme in plants. A group of bacterial GH77 members, represented by amylomaltases from Escherichia coli and Corynebacterium glutamicum, possesses an N-terminal extension that forms a distinct immunoglobulin-like fold domain, of which no function has been identified. Here, in silico analysis of 100 selected sequences of N-terminal domain homologues disclosed several well-conserved residues, among which Tyr108 (E. coli amylomaltase numbering) may be involved in α-glucan binding. These N-terminal domains, therefore, may represent a new type of starch-binding domain and define a new CBM family. This hypothesis is supported by docking of maltooligosaccharides to the N-terminal domain in amylomaltases, representing the four clusters of the phylogenetic tree. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02787-8.
Collapse
|
7
|
Janeček Š, Martinovičová M. New groups of protein homologues in the α-amylase family GH57 closely related to α-glucan branching enzymes and 4-α-glucanotransferases. Genetica 2020; 148:77-86. [PMID: 32096055 DOI: 10.1007/s10709-020-00089-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
The glycoside hydrolase family GH57 is known as the second α-amylase family. Its main characteristics are as follows: (i) employing the retaining reaction mechanism; (ii) adopting the (β/α)7-barrel (the incomplete TIM-barrel) with succeeding bundle of α-helices as the catalytic domain; (iii) sharing the five conserved sequence regions (CSRs) exhibiting the sequence fingerprints of the individual enzyme specificities; and (iv) using the catalytic machinery consisting of glutamic acid (the catalytic nucleophile) and aspartic acid (the proton donor) positioned at strands β4 (CSR-3) and β7 (CSR-4) of the (β/α)7-barrel domain, respectively. Several years ago, a group of hypothetical proteins closely related to the specificity of α-amylase was revealed, the so-called α-amylase-like homologues, the members of which lack either one or even both catalytic residues. The novelty of the present study lies in delivering two additional groups of the "like" proteins that are homologues of α-glucan-branching enzyme (GBE) and 4-α-glucanotransferase (4AGT) specificities. Based on a recently published in silico analysis of more than 1600 family GH57 sequences, 13 GBE-like and 18 4AGT-like proteins from unique sources were collected and analyzed in a detail with respect to their taxonomical origin, sequence and structural features as well as evolutionary relationships. This in silico study could accelerate the efforts leading to experimental revealing the real function of the enzymes-like proteins in the α-amylase family GH57.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 84551, Bratislava, Slovakia. .,Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nam. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Mária Martinovičová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nam. J. Herdu 2, 91701, Trnava, Slovakia
| |
Collapse
|
8
|
Ban X, Dhoble AS, Li C, Gu Z, Hong Y, Cheng L, Holler TP, Kaustubh B, Li Z. Bacterial 1,4-α-glucan branching enzymes: characteristics, preparation and commercial applications. Crit Rev Biotechnol 2020; 40:380-396. [DOI: 10.1080/07388551.2020.1713720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Abhishek S. Dhoble
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Tod P. Holler
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Bhalerao Kaustubh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
9
|
Pang B, Zhou L, Cui W, Liu Z, Zhou S, Xu J, Zhou Z. A Hyperthermostable Type II Pullulanase from a Deep-Sea Microorganism Pyrococcus yayanosii CH1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9611-9617. [PMID: 31385500 DOI: 10.1021/acs.jafc.9b03376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pullulanase is a commonly used debranching enzyme in the starch processing industry. Because the starch liquefaction process requires high temperature, a thermostable pullulanase is desired. Here, a novel hyperthermostable type II pullulanase gene (pulPY) was cloned from Pyrococcus yayanosii CH1, isolated from a deep-sea hydrothermal site. PulPY was optimally active at pH 6.6 and 95 °C, retaining more than 50% activity after incubation at 95 °C for 10 h. The thermostability was significantly higher than those of most pullulanases reported previously. To further improve its activity and thermostability, the N-terminal and C-terminal domains of PulPY were truncated. The optimum temperature of the combined truncation mutant Δ28N + Δ791C increased to 100 °C with a specific activity of 32.18 U/mg, which was six times higher than that of wild-type PulPY. PulPY and the truncation mutant enzyme could realize the combined use of pullulanase with α-amylase during the starch liquefaction process to improve hydrolysis efficiency.
Collapse
Affiliation(s)
- Bo Pang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology , East China University of Science and Technology , Shanghai 200237 , P.R. China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology and State Key Laboratory of Ocean Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| |
Collapse
|
10
|
Zhang X, Leemhuis H, Janeček Š, Martinovičová M, Pijning T, van der Maarel MJEC. Identification of Thermotoga maritima MSB8 GH57 α-amylase AmyC as a glycogen-branching enzyme with high hydrolytic activity. Appl Microbiol Biotechnol 2019; 103:6141-6151. [PMID: 31190240 PMCID: PMC6616209 DOI: 10.1007/s00253-019-09938-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/03/2022]
Abstract
AmyC, a glycoside hydrolase family 57 (GH57) enzyme of Thermotoga maritima MSB8, has previously been identified as an intracellular α-amylase playing a role in either maltodextrin utilization or storage polysaccharide metabolism. However, the α-amylase specificity of AmyC is questionable as extensive phylogenetic analysis of GH57 and tertiary structural comparison suggest that AmyC could actually be a glycogen-branching enzyme (GBE), a key enzyme in the biosynthesis of glycogen. This communication presents phylogenetic and biochemical evidence that AmyC is a GBE with a relatively high hydrolytic (α-amylase) activity (up to 30% of the total activity), creating a branched α-glucan with 8.5% α-1,6-glycosidic bonds. The high hydrolytic activity is explained by the fact that AmyC has a considerably shorter catalytic loop (residues 213-220) not reaching the acceptor side. Secondly, in AmyC, the tryptophan residue (W 246) near the active site has its side chain buried in the protein interior, while the side chain is at the surface in Tk1436 and Tt1467 GBEs. The putative GBEs from three other Thermotogaceae, with very high sequence similarities to AmyC, were found to have the same structural elements as AmyC, suggesting that GH57 GBEs with relatively high hydrolytic activity may be widespread in nature.
Collapse
Affiliation(s)
- Xuewen Zhang
- Department of Aquatic Biotechnology and Bioproduct Engineering, Engineering and Technology institute Groningen, University of Groningen, 9747 AG, Groningen, Netherlands
| | - Hans Leemhuis
- Department of Aquatic Biotechnology and Bioproduct Engineering, Engineering and Technology institute Groningen, University of Groningen, 9747 AG, Groningen, Netherlands
- Avebe Innovation Center, 9747 AG, Groningen, Netherlands
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551, Bratislava, Slovakia
- Department of Biology, Faculty of Natural Sciences, University of SS Cyril and Methodius, SK-91701, Trnava, Slovakia
| | - Mária Martinovičová
- Department of Biology, Faculty of Natural Sciences, University of SS Cyril and Methodius, SK-91701, Trnava, Slovakia
| | - Tjaard Pijning
- Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, Netherlands
| | - Marc J E C van der Maarel
- Department of Aquatic Biotechnology and Bioproduct Engineering, Engineering and Technology institute Groningen, University of Groningen, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
11
|
Li X, Pei J, Fei T, Zhao J, Wang Y, Li D. Production of slowly digestible corn starch using hyperthermophilic Staphylothermus marinus amylopullulanase in Bacillus subtilis. Food Chem 2019; 277:1-5. [DOI: 10.1016/j.foodchem.2018.10.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
|
12
|
In silico analysis of the α-amylase family GH57: eventual subfamilies reflecting enzyme specificities. 3 Biotech 2018; 8:307. [PMID: 29998051 PMCID: PMC6037648 DOI: 10.1007/s13205-018-1325-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/20/2018] [Indexed: 01/20/2023] Open
Abstract
Glycoside hydrolases (GHs) have been classified in the CAZy database into 153 GH families. Currently, there might be four α-amylase families: the main family GH13, the family GH57 with related GH119 and, eventually, also GH126. The family GH57 was established in 1996 as the second and smaller α-amylase family. In addition to α-amylase, it contains 4-α-glucanotransferase, α-glucan branching enzyme, amylopullulanase, dual-specificity amylopullulanase–cyclomaltodextrinase, non-specified amylase, maltogenic amylase and α-galactosidase. The family GH57 enzymes employ the retaining reaction mechanism, share five typical conserved sequence regions and possess catalytic (β/α)7-barrel succeeded by a four-helix bundle with the catalytic machinery consisting of catalytic nucleophile and proton donor (glutamic acid and aspartic acid at strands β4 and β7, respectively). The present bioinformatics study delivers a detailed sequence comparison of 1602 family GH57 sequences with the aim to highlight the uniqueness of each enzyme’s specificity and all eventual protein groups. This was achieved by creating the evolutionary tree focused on both the enzyme specificities and taxonomical origin. The substantial increase of numbers of sequences from recent comparisons done more than 5 years ago has allowed to refine the details of the sequence logos for the individual enzyme specificities. The study identifies a new evolutionary distinct group of α-galactosidase-related enzymes with until-now-undefined enzyme specificity but positioned on the evolutionary tree on a branch adjacent to α-galactosidases. The specificity of α-galactosidase is, moreover, the only one of the entire family GH57 for which there is no structural support for the proposal of the proton donor based on sequence analysis. The analysis also suggests a few so-called “like” protein groups related to some family GH57 enzyme specificities but lacking one or both catalytic residues.
Collapse
|
13
|
Sequence analysis and biochemical properties of an acidophilic and hyperthermophilic amylopullulanase from Thermofilum pendens. Int J Biol Macromol 2018; 114:235-243. [DOI: 10.1016/j.ijbiomac.2018.03.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/18/2022]
|
14
|
Sarian FD, Janeček Š, Pijning T, Ihsanawati, Nurachman Z, Radjasa OK, Dijkhuizen L, Natalia D, van der Maarel MJEC. A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad. Sci Rep 2017; 7:44230. [PMID: 28287181 PMCID: PMC5347038 DOI: 10.1038/srep44230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/31/2017] [Indexed: 11/09/2022] Open
Abstract
α-Amylases are glycoside hydrolase enzymes that act on the α(1→4) glycosidic linkages in glycogen, starch, and related α-glucans, and are ubiquitously present in Nature. Most α-amylases have been classified in glycoside hydrolase family 13 with a typical (β/α)8-barrel containing two aspartic acid and one glutamic acid residue that play an essential role in catalysis. An atypical α-amylase (BmaN1) with only two of the three invariant catalytic residues present was isolated from Bacillus megaterium strain NL3, a bacterial isolate from a sea anemone of Kakaban landlocked marine lake, Derawan Island, Indonesia. In BmaN1 the third residue, the aspartic acid that acts as the transition state stabilizer, was replaced by a histidine. Three-dimensional structure modeling of the BmaN1 amino acid sequence confirmed the aberrant catalytic triad. Glucose and maltose were found as products of the action of the novel α-amylase on soluble starch, demonstrating that it is active in spite of the peculiar catalytic triad. This novel BmaN1 α-amylase is part of a group of α-amylases that all have this atypical catalytic triad, consisting of aspartic acid, glutamic acid and histidine. Phylogenetic analysis showed that this group of α-amylases comprises a new subfamily of the glycoside hydrolase family 13.
Collapse
Affiliation(s)
- Fean D Sarian
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.,Aquatic Biotechnology and Bioproduct Engineering, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, SK-84551 Bratislava, Slovakia.,Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Mehtodius, Nam. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Tjaard Pijning
- X-Ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ihsanawati
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Zeily Nurachman
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Ocky K Radjasa
- Department of Marine Science, Faculty of Fishery and Marine Science, Diponegoro University, Semarang 50275, Central Java, Indonesia
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dessy Natalia
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Marc J E C van der Maarel
- Aquatic Biotechnology and Bioproduct Engineering, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
15
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
16
|
A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Preparation of linear maltodextrins using a hyperthermophilic amylopullulanase with cyclodextrin- and starch-hydrolysing activities. Carbohydr Polym 2015; 119:134-41. [DOI: 10.1016/j.carbpol.2014.11.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/08/2014] [Accepted: 11/21/2014] [Indexed: 11/18/2022]
|
18
|
Sathya T, Khan M. Diversity of Glycosyl Hydrolase Enzymes from Metagenome and Their Application in Food Industry. J Food Sci 2014; 79:R2149-56. [DOI: 10.1111/1750-3841.12677] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022]
Affiliation(s)
- T.A. Sathya
- Academy of Scientific and Innovative Research; New Delhi India
- CSIR-Central Food Technological Research Institute; Mysore-20 Karnataka India
| | - Mahejibin Khan
- Academy of Scientific and Innovative Research; New Delhi India
- CSIR-Central Food Technological Research Institute; Mysore-20 Karnataka India
| |
Collapse
|