1
|
Saliva-Induced Clotting Captures Streptococci: Novel Roles for Coagulation and Fibrinolysis in Host Defense and Immune Evasion. Infect Immun 2016; 84:2813-23. [PMID: 27456827 PMCID: PMC5038080 DOI: 10.1128/iai.00307-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcal pharyngitis is among the most common bacterial infections, but the molecular mechanisms involved remain poorly understood. Here we investigate the interactions among three major players in streptococcal pharyngitis: streptococci, plasma, and saliva. We find that saliva activates the plasma coagulation system through both the extrinsic and the intrinsic pathways, entrapping the bacteria in fibrin clots. The bacteria escape the clots by activating host plasminogen. Our results identify a potential function for the intrinsic pathway of coagulation in host defense and a corresponding role for fibrinolysis in streptococcal immune evasion.
Collapse
|
2
|
Wisniewska M, Happonen L, Kahn F, Varjosalo M, Malmström L, Rosenberger G, Karlsson C, Cazzamali G, Pozdnyakova I, Frick IM, Björck L, Streicher W, Malmström J, Wikström M. Functional and structural properties of a novel protein and virulence factor (Protein sHIP) in Streptococcus pyogenes. J Biol Chem 2014; 289:18175-88. [PMID: 24825900 DOI: 10.1074/jbc.m114.565978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis.
Collapse
Affiliation(s)
- Magdalena Wisniewska
- From the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lotta Happonen
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Fredrik Kahn
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Markku Varjosalo
- the Institute of Biotechnology, Viikinkaari 1, University of Helsinki, FI-00014 Helsinki, Finland, and
| | - Lars Malmström
- the Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Christofer Karlsson
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Giuseppe Cazzamali
- From the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Irina Pozdnyakova
- From the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Inga-Maria Frick
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Lars Björck
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Werner Streicher
- From the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Johan Malmström
- the Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | - Mats Wikström
- From the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark,
| |
Collapse
|