1
|
Prince JP, Bolla JR, Fisher GLM, Mäkelä J, Fournier M, Robinson CV, Arciszewska LK, Sherratt DJ. Acyl carrier protein promotes MukBEF action in Escherichia coli chromosome organization-segregation. Nat Commun 2021; 12:6721. [PMID: 34795302 PMCID: PMC8602292 DOI: 10.1038/s41467-021-27107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.
Collapse
Affiliation(s)
- Josh P. Prince
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: Meiosis Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jani R. Bolla
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK ,grid.4991.50000 0004 1936 8948Present Address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Gemma L. M. Fisher
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: DNA Motors Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jarno Mäkelä
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.168010.e0000000419368956Present Address: ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305 USA
| | - Marjorie Fournier
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Carol V. Robinson
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK
| | - Lidia K. Arciszewska
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - David J. Sherratt
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
2
|
Foo YH, Spahn C, Zhang H, Heilemann M, Kenney LJ. Single cell super-resolution imaging of E. coli OmpR during environmental stress. Integr Biol (Camb) 2015; 7:1297-308. [PMID: 26156621 DOI: 10.1039/c5ib00077g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-component signaling systems are a major strategy employed by bacteria, and to some extent, yeast and plants, to respond to environmental stress. The EnvZ/OmpR system in E. coli responds to osmotic and acid stress and is responsible for regulating the protein composition of the outer membrane. EnvZ is a histidine kinase located in the inner membrane. Upon activation, it is autophosphorylated by ATP and subsequently, it activates OmpR. Phosphorylated OmpR binds with high affinity to the regulatory regions of the ompF and ompC porin genes to regulate their transcription. We set out to visualize these two-components in single bacterial cells during different environmental stress conditions and to examine the subsequent modifications to the bacterial nucleoid as a result. We created a chromosomally-encoded, active, fluorescent OmpR-PAmCherry fusion protein and compared its expression levels with RNA polymerase. Quantitative western blotting had indicated that these two proteins were expressed at similar levels. From our images, it is evident that OmpR is significantly less abundant compared to RNA polymerase. In cross-sectional axial images, we observed OmpR molecules closely juxtaposed near the inner membrane during acidic and hyposomotic growth. In acidic conditions, the chromosome was compacted. Surprisingly, under acidic conditions, we also observed evidence of a spatial correlation between the DNA and the inner membrane, suggesting a mechanical link through an active DNA-OmpR-EnvZ complex. This work represents the first direct visualization of a response regulator with respect to the bacterial chromosome.
Collapse
Affiliation(s)
- Yong Hwee Foo
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore 117411
| | | | | | | | | |
Collapse
|
4
|
Adachi S, Murakawa Y, Hiraga S. Dynamic nature of SecA and its associated proteins in Escherichia coli. Front Microbiol 2015; 6:75. [PMID: 25713567 PMCID: PMC4322705 DOI: 10.3389/fmicb.2015.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/21/2015] [Indexed: 11/13/2022] Open
Abstract
Mechanical properties such as physical constraint and pushing of chromosomes are thought to be important for chromosome segregation in Escherichia coli and it could be mediated by a hypothetical molecular "tether." However, the actual tether that mediates these features is not known. We previously described that SecA (Secretory A) and Secretory Y (SecY), components of the membrane protein translocation machinery, and AcpP (Acyl carrier protein P) were involved in chromosome segregation and homeostasis of DNA topology. In the present work, we performed three-dimensional deconvolution of microscopic images and time-lapse experiments of these proteins together with MukB and DNA topoisomerases, and found that these proteins embraced the structures of tortuous nucleoids with condensed regions. Notably, SecA, SecY, and AcpP dynamically localized in cells, which was interdependent on each other requiring the ATPase activity of SecA. Our findings imply that the membrane protein translocation machinery plays a role in the maintenance of proper chromosome partitioning, possibly through "tethering" of MukB [a functional homolog of structural maintenance of chromosomes (SMC) proteins], DNA gyrase, DNA topoisomerase IV, and SeqA (Sequestration A).
Collapse
Affiliation(s)
- Shun Adachi
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Yasuhiro Murakawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Sota Hiraga
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University Kyoto, Japan
| |
Collapse
|