1
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
2
|
Mansour AM, Khaled RM, Ferraro G, Shehab OR, Merlino A. Metal-based carbon monoxide releasing molecules with promising cytotoxic properties. Dalton Trans 2024; 53:9612-9656. [PMID: 38808485 DOI: 10.1039/d4dt00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Carbon monoxide, the "silent killer" gas, is increasingly recognised as an important signalling molecule in human physiology, which has beneficial biological properties. A particular way of achieving controlled CO administration is based on the use of biocompatible molecules that only release CO when triggered by internal or external factors. These approaches include the development of pharmacologically effective prodrugs known as CO releasing molecules (CORMs), which can supply biological systems with CO in well-regulated doses. An overview of transition metal-based CORMs with cytotoxic properties is here reported. The mechanisms at the basis of the biological activities of these molecules and their potential therapeutical applications with respect to their stability and CO releasing properties have been discussed. The activation of metal-based CORMs is determined by the type of metal and by the nature and features of the auxiliary ligands, which affect the metal core electronic density and therefore the prodrug resistance towards oxidation and CO release ability. A major role in regulating the cytotoxic properties of these CORMs is played by CO and/or CO-depleted species. However, several mysteries concerning the cytotoxicity of CORMs remain as intriguing questions for scientists.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, 12613, Egypt.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
3
|
Antibacterial gas therapy: Strategies, advances, and prospects. Bioact Mater 2023; 23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
|
4
|
Clostridium novyi’s Alpha-Toxin Changes Proteome and Phosphoproteome of HEp-2 Cells. Int J Mol Sci 2022; 23:ijms23179939. [PMID: 36077344 PMCID: PMC9456407 DOI: 10.3390/ijms23179939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
C. novyi type A produces the alpha-toxin (TcnA) that belongs to the large clostridial glucosylating toxins (LCGTs) and is able to modify small GTPases by N-acetylglucosamination on conserved threonine residues. In contrast, other LCGTs including Clostridioides difficile toxin A and toxin B (TcdA; TcdB) modify small GTPases by mono-o-glucosylation. Both modifications inactivate the GTPases and cause strong effects on GTPase-dependent signal transduction pathways and the consequent reorganization of the actin cytoskeleton leading to cell rounding and finally cell death. However, the effect of TcnA on target cells is largely unexplored. Therefore, we performed a comprehensive screening approach of TcnA treated HEp-2 cells and analyzed their proteome and their phosphoproteome using LC-MS-based methods. With this data-dependent acquisition (DDA) approach, 5086 proteins and 9427 phosphosites could be identified and quantified. Of these, 35 proteins were found to be significantly altered after toxin treatment, and 1832 phosphosites were responsive to TcnA treatment. By analyzing the TcnA-induced proteomic effects of HEp-2 cells, 23 common signaling pathways were identified to be altered, including Actin Cytoskeleton Signaling, Epithelial Adherens Junction Signaling, and Signaling by Rho Family GTPases. All these pathways are also regulated after application of TcdA or TcdB of C. difficile. After TcnA treatment the regulation on phosphorylation level was much stronger compared to the proteome level, in terms of both strength of regulation and the number of regulated phosphosites. Interestingly, various signaling pathways such as Signaling by Rho Family GTPases or Integrin Signaling were activated on proteome level while being inhibited on phosphorylation level or vice versa as observed for the Role of BRCA1 in DNA Damage Response. ZIP kinase, as well as Calmodulin-dependent protein kinases IV & II, were observed as activated while Aurora-A kinase and CDK kinases tended to be inhibited in cells treated with TcnA based on their substrate regulation pattern.
Collapse
|
5
|
Limited Heme Oxygenase Contribution to Modulating the Severity of Salmonella enterica serovar Typhimurium Infection. Antioxidants (Basel) 2022; 11:antiox11061040. [PMID: 35739937 PMCID: PMC9219982 DOI: 10.3390/antiox11061040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
An important virulence trait of Salmonella enterica serovar Typhimurium (S. Typhimurium) is the ability to avoid the host immune response, generating systemic and persistent infections. Host cells play a crucial role in bacterial clearance by expressing the enzyme heme oxygenase 1 (Hmox1), which catalyzes the degradation of heme groups into Fe2+, biliverdin, and carbon monoxide (CO). The role of Hmox1 activity during S. Typhimurium infection is not clear and previous studies have shown contradictory results. We evaluated the effect of pharmacologic modulation of Hmox1 in a mouse model of acute and persistent S. Typhimurium infection by administering the Hmox1 activity inductor cobalt protoporphyrin-IX (CoPP) or inhibitor tin protoporphyrin-IX (SnPP) before infection. To evaluate the molecular mechanism involved, we measured the colocalization of S. Typhimurium and autophagosome and lysosomal markers in macrophages. Administering CoPP reduced the bacterial burden in organs of mice 5 days post-infection, while SnPP-treated mice showed bacterial loads similar to vehicle-treated mice. Furthermore, CoPP reduced bacterial loads when administered after infection in macrophages in vitro and in a persistent infection model of S. Typhimurium in vivo, while tin protoporphyrin-IX (SnPP) treatment resulted in a bacterial burden similar to vehicle-treated controls. However, we did not observe significant differences in co-localization of green fluorescent protein (GFP)-labeled S. Typhimurium with the autophagic vesicles marker microtubule-associated protein 1A/1B-light chain 3 (LC3) and the lysosomal marker lysosomal-associated membrane protein 1 (LAMP-1) in macrophages treated with CoPP. Our results suggest that CoPP can enhance antimicrobial activity in response to Salmonella infection, reducing bacterial dissemination and persistence in mice, in a CO and autophagy- independent manner.
Collapse
|
6
|
Mansour AM, Khaled RM, Khaled E, Ahmed SK, Ismael OS, Zeinhom A, Magdy H, Ibrahim SS, Abdelfatah M. Ruthenium(II) carbon monoxide releasing molecules: Structural perspective, antimicrobial and anti-inflammatory properties. Biochem Pharmacol 2022; 199:114991. [DOI: 10.1016/j.bcp.2022.114991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
|
7
|
Munteanu AC, Uivarosi V. Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics 2021; 13:874. [PMID: 34199283 PMCID: PMC8232020 DOI: 10.3390/pharmaceutics13060874] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The widespread use of antibiotics has resulted in the emergence of drug-resistant populations of microorganisms. Clearly, one can see the need to develop new, more effective, antimicrobial agents that go beyond the explored 'chemical space'. In this regard, their unique modes of action (e.g., reactive oxygen species (ROS) generation, redox activation, ligand exchange, depletion of substrates involved in vital cellular processes) render metal complexes as promising drug candidates. Several Ru (II/III) complexes have been included in, or are currently undergoing, clinical trials as anticancer agents. Based on the in-depth knowledge of their chemical properties and biological behavior, the interest in developing new ruthenium compounds as antibiotic, antifungal, antiparasitic, or antiviral drugs has risen. This review will discuss the advantages and disadvantages of Ru (II/III) frameworks as antimicrobial agents. Some aspects regarding the relationship between their chemical structure and mechanism of action, cellular localization, and/or metabolism of the ruthenium complexes in bacterial and eukaryotic cells are discussed as well. Regarding the antiviral activity, in light of current events related to the Covid-19 pandemic, the Ru (II/III) compounds used against SARS-CoV-2 (e.g., BOLD-100) are also reviewed herein.
Collapse
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
8
|
Southam HM, Williamson MP, Chapman JA, Lyon RL, Trevitt CR, Henderson PJF, Poole RK. 'Carbon-Monoxide-Releasing Molecule-2 (CORM-2)' Is a Misnomer: Ruthenium Toxicity, Not CO Release, Accounts for Its Antimicrobial Effects. Antioxidants (Basel) 2021; 10:antiox10060915. [PMID: 34198746 PMCID: PMC8227206 DOI: 10.3390/antiox10060915] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Carbon monoxide (CO)-releasing molecules (CORMs) are used to deliver CO, a biological ‘gasotransmitter’, in biological chemistry and biomedicine. CORMs kill bacteria in culture and in animal models, but are reportedly benign towards mammalian cells. CORM-2 (tricarbonyldichlororuthenium(II) dimer, Ru2Cl4(CO)6), the first widely used and commercially available CORM, displays numerous pharmacological, biochemical and microbiological activities, generally attributed to CO release. Here, we investigate the basis of its potent antibacterial activity against Escherichia coli and demonstrate, using three globin CO sensors, that CORM-2 releases negligible CO (<0.1 mol CO per mol CORM-2). A strong negative correlation between viability and cellular ruthenium accumulation implies that ruthenium toxicity underlies biocidal activity. Exogenous amino acids and thiols (especially cysteine, glutathione and N-acetyl cysteine) protected bacteria against inhibition of growth by CORM-2. Bacteria treated with 30 μM CORM-2, with added cysteine and histidine, exhibited no significant loss of viability, but were killed in the absence of these amino acids. Their prevention of toxicity correlates with their CORM-2-binding affinities (Cys, Kd 3 μM; His, Kd 130 μM) as determined by 1H-NMR. Glutathione is proposed to be an important intracellular target of CORM-2, with CORM-2 having a much higher affinity for reduced glutathione (GSH) than oxidised glutathione (GSSG) (GSH, Kd 2 μM; GSSG, Kd 25,000 μM). The toxicity of low, but potent, levels (15 μM) of CORM-2 was accompanied by cell lysis, as judged by the release of cytoplasmic ATP pools. The biological effects of CORM-2 and related CORMs, and the design of biological experiments, must be re-examined in the light of these data.
Collapse
Affiliation(s)
- Hannah M. Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Michael P. Williamson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Jonathan A. Chapman
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Rhiannon L. Lyon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Clare R. Trevitt
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Peter J. F. Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK;
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
- Correspondence:
| |
Collapse
|
9
|
Mendes SS, Miranda V, Saraiva LM. Hydrogen Sulfide and Carbon Monoxide Tolerance in Bacteria. Antioxidants (Basel) 2021; 10:729. [PMID: 34063102 PMCID: PMC8148161 DOI: 10.3390/antiox10050729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Hydrogen sulfide and carbon monoxide share the ability to be beneficial or harmful molecules depending on the concentrations to which organisms are exposed. Interestingly, humans and some bacteria produce small amounts of these compounds. Since several publications have summarized the recent knowledge of its effects in humans, here we have chosen to focus on the role of H2S and CO on microbial physiology. We briefly review the current knowledge on how bacteria produce and use H2S and CO. We address their potential antimicrobial properties when used at higher concentrations, and describe how microbial systems detect and survive toxic levels of H2S and CO. Finally, we highlight their antimicrobial properties against human pathogens when endogenously produced by the host and when released by external chemical donors.
Collapse
|
10
|
Di Pietro C, Öz HH, Murray TS, Bruscia EM. Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Front Pharmacol 2020; 11:1059. [PMID: 32760278 PMCID: PMC7372134 DOI: 10.3389/fphar.2020.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
In individuals with cystic fibrosis (CF), lung hyper-inflammation starts early in life and is perpetuated by mucus obstruction and persistent bacterial infections. The continuous tissue damage and scarring caused by non-resolving inflammation leads to bronchiectasis and, ultimately, respiratory failure. Macrophages (MΦs) are key regulators of immune response and host defense. We and others have shown that, in CF, MΦs are hyper-inflammatory and exhibit reduced bactericidal activity. Thus, MΦs contribute to the inability of CF lung tissues to control the inflammatory response or restore tissue homeostasis. The non-resolving hyper-inflammation in CF lungs is attributed to an impairment of several signaling pathways associated with resolution of the inflammatory response, including the heme oxygenase-1/carbon monoxide (HO-1/CO) pathway. HO-1 is an enzyme that degrades heme groups, leading to the production of potent antioxidant, anti-inflammatory, and bactericidal mediators, such as biliverdin, bilirubin, and CO. This pathway is fundamental to re-establishing cellular homeostasis in response to various insults, such as oxidative stress and infection. Monocytes/MΦs rely on abundant induction of the HO-1/CO pathway for a controlled immune response and for potent bactericidal activity. Here, we discuss studies showing that blunted HO-1 activation in CF-affected cells contributes to hyper-inflammation and defective host defense against bacteria. We dissect potential cellular mechanisms that may lead to decreased HO-1 induction in CF cells. We review literature suggesting that induction of HO-1 may be beneficial for the treatment of CF lung disease. Finally, we discuss recent studies highlighting how endogenous HO-1 can be induced by administration of controlled doses of CO to reduce lung hyper-inflammation, oxidative stress, bacterial infection, and dysfunctional ion transport, which are all hallmarks of CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Blake RC, White RA. In situ absorbance measurements: a new means to study respiratory electron transfer in chemolithotrophic microorganisms. Adv Microb Physiol 2020; 76:81-127. [PMID: 32408948 DOI: 10.1016/bs.ampbs.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Absorbance measurements on intact chemolithotrophic microorganisms that respire aerobically on soluble iron are described that used a novel integrating cavity absorption meter to eliminate the effects of light scattering on the experimental results. Steady state kinetic measurements on ferric iron production by intact cells revealed that the Michaelis Menten equation described the initial rates of product formation for at least 8 different chemolithotrophic microorganisms in 6 phyla distributed equally among the archaea and the Gram negative and Gram positive eubacteria. Cell-monitored turnover measurements during aerobic respiration on soluble iron by the same 12 intact microorganisms revealed six different patterns of iron-dependent absorbance changes, suggesting that there may be at least six different sets of prosthetic groups and biomolecules that can accomplish aerobic respiration on soluble iron. Detailed kinetic studies revealed that the 3-component iron respiratory chain of Acidithiobacillus ferrooxidans functioned as an ensemble with a single macroscopic rate constant when the iron-reduced proteins were oxidized in the presence of excess molecular oxygen. The principal member of this 3-component system was a cupredoxin called rusticyanin that was present in the periplasm of At. ferrooxidans at an approximate concentration of 350 mg/mL, an observation that provides new insights into the crowded environments in the periplasms of Gram negative eubacteria that conduct electrons across their periplasm. The ability to conduct direct spectrophotometric measurements under noninvasive physiological conditions represents a new and powerful approach to examine the rates and extents of biological events in situ without disrupting the complexity of the live cellular environment.
Collapse
Affiliation(s)
- Robert C Blake
- College of Pharmacy, Xavier University of Louisiana, New Orleans, United States
| | - Richard A White
- Department of Plant Pathology, Washington State University, Pullman, WA, United States; RAW Molecular Systems (RMS) LLC, Spokane, WA, United States; Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
|
13
|
Sebastián VP, Salazar GA, Coronado-Arrázola I, Schultz BM, Vallejos OP, Berkowitz L, Álvarez-Lobos MM, Riedel CA, Kalergis AM, Bueno SM. Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development and Progression. Front Immunol 2018; 9:1956. [PMID: 30258436 PMCID: PMC6143658 DOI: 10.3389/fimmu.2018.01956] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Heme Oxygenase 1 (HMOX1) is an enzyme that catalyzes the reaction that degrades the heme group contained in several important proteins, such as hemoglobin, myoglobin, and cytochrome p450. The enzymatic reaction catalyzed by HMOX1 generates Fe2+, biliverdin and CO. It has been shown that HMOX1 activity and the by-product CO can downmodulate the damaging immune response in several models of intestinal inflammation as a result of pharmacological induction of HMOX1 expression and the administration of non-toxic amounts of CO. Inflammatory Bowel Diseases, which includes Crohn's Disease (CD) and Ulcerative Colitis (UC), are one of the most studied ailments associated to HMOX1 effects. However, microbiota imbalances and infections are also important factors influencing the occurrence of acute and chronic intestinal inflammation, where HMOX1 activity may play a major role. As part of this article we discuss the immune modulatory capacity of HMOX1 during IBD, as well during the infections and interactions with the microbiota that contribute to this inflammatory disease.
Collapse
Affiliation(s)
- Valentina P. Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Geraldyne A. Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Irenice Coronado-Arrázola
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M. Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loni Berkowitz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel M. Álvarez-Lobos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
An Overview of the Potential Therapeutic Applications of CO-Releasing Molecules. Bioinorg Chem Appl 2018; 2018:8547364. [PMID: 30158958 PMCID: PMC6109489 DOI: 10.1155/2018/8547364] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023] Open
Abstract
Carbon monoxide (CO) has long been known as the “silent killer” owing to its ability to form carboxyhemoglobin—the main cause of CO poisoning in humans. Its role as an endogenous neurotransmitter, however, was suggested in the early 1990s. Since then, the biological activity of CO has been widely examined via both the direct administration of CO and in the form of so-called “carbon monoxide releasing molecules (CORMs).” This overview will explore the general physiological effects and potential therapeutic applications of CO when delivered in the form of CORMs.
Collapse
|
15
|
Southam HM, Smith TW, Lyon RL, Liao C, Trevitt CR, Middlemiss LA, Cox FL, Chapman JA, El-Khamisy SF, Hippler M, Williamson MP, Henderson PJF, Poole RK. A thiol-reactive Ru(II) ion, not CO release, underlies the potent antimicrobial and cytotoxic properties of CO-releasing molecule-3. Redox Biol 2018; 18:114-123. [PMID: 30007887 PMCID: PMC6067063 DOI: 10.1016/j.redox.2018.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/23/2018] [Indexed: 12/25/2022] Open
Abstract
Carbon monoxide (CO)-releasing molecules (CORMs), mostly metal carbonyl compounds, are extensively used as experimental tools to deliver CO, a biological ‘gasotransmitter’, in mammalian systems. CORMs are also explored as potential novel antimicrobial drugs, effectively and rapidly killing bacteria in vitro and in animal models, but are reportedly benign towards mammalian cells. Ru-carbonyl CORMs, exemplified by CORM-3 (Ru(CO)3Cl(glycinate)), exhibit the most potent antimicrobial effects against Escherichia coli. We demonstrate that CORM-3 releases little CO in buffers and cell culture media and that the active antimicrobial agent is Ru(II), which binds tightly to thiols. Thus, thiols and amino acids in complex growth media – such as histidine, methionine and oxidised glutathione, but most pertinently cysteine and reduced glutathione (GSH) – protect both bacterial and mammalian cells against CORM-3 by binding and sequestering Ru(II). No other amino acids exert significant protective effects. NMR reveals that CORM-3 binds cysteine and GSH in a 1:1 stoichiometry with dissociation constants, Kd, of about 5 μM, while histidine, GSSG and methionine are bound less tightly, with Kd values ranging between 800 and 9000 μM. There is a direct positive correlation between protection and amino acid affinity for CORM-3. Intracellular targets of CORM-3 in both bacterial and mammalian cells are therefore expected to include GSH, free Cys, His and Met residues and any molecules that contain these surface-exposed amino acids. These results necessitate a major reappraisal of the biological effects of CORM-3 and related CORMs. Carbon monoxide-releasing molecules (CORMs) are used for experimental CO delivery. CORM-3 is a potent antimicrobial, but is reportedly beneficial to mammalian cells. We demonstrate CORM-3 releases little CO in buffers and cell culture media. Redox-active Ru2+ is the biological agent, binding tightly to metabolites e.g. thiol. These results necessitate a major reappraisal of the biological effects of CORMs.
Collapse
Affiliation(s)
- Hannah M Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Thomas W Smith
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Rhiannon L Lyon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Chunyan Liao
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Clare R Trevitt
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Laurence A Middlemiss
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Francesca L Cox
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Jonathan A Chapman
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Michael Hippler
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Michael P Williamson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
16
|
Singh N, Ahmad Z, Baid N, Kumar A. Host heme oxygenase-1: Friend or foe in tackling pathogens? IUBMB Life 2018; 70:869-880. [PMID: 29761622 DOI: 10.1002/iub.1868] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022]
Abstract
Infectious diseases are a major challenge in management of human health worldwide. Recent literature suggests that host immune system could be modulated to ameliorate the pathogenesis of infectious disease. Heme oxygenase (HMOX1) is a key regulator of cellular signaling and it could be modulated using pharmacological reagents. HMOX1 is a cytoprotective enzyme that degrades heme to generate carbon monoxide (CO), biliverdin, and molecular iron. CO and biliverdin (or bilirubin derived from it) can restrict the growth of a few pathogens. Both of these also induce antioxidant pathways and anti-inflammatory pathways. On the other hand, molecular iron can induce proinflammatory pathway besides making the cellular environment oxidative in nature. Since microbial infections often induce oxidative stress in host cells/tissues, role of HMOX1 has been analyzed in the pathogenesis of number of infections. In this review, we have described the role of HMOX1 in pathogenesis of bacterial infections caused by Mycobacterium species, Salmonella and in microbial sepsis. We have also provided a succinct overview of the role of HMOX1 in parasitic infections such as malaria and leishmaniasis. In the end, we have also elaborated the role of HMOX1 in viral infections such as AIDS, hepatitis, dengue, and influenza. © 2018 IUBMB Life, 70(9):869-880, 2018.
Collapse
Affiliation(s)
- Nisha Singh
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, Punjab, India
| | - Zeeshan Ahmad
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, Punjab, India
| | - Navin Baid
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, Punjab, India
| | - Ashwani Kumar
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, Punjab, India
| |
Collapse
|
17
|
Wareham LK, McLean S, Begg R, Rana N, Ali S, Kendall JJ, Sanguinetti G, Mann BE, Poole RK. The Broad-Spectrum Antimicrobial Potential of [Mn(CO) 4(S 2CNMe(CH 2CO 2H))], a Water-Soluble CO-Releasing Molecule (CORM-401): Intracellular Accumulation, Transcriptomic and Statistical Analyses, and Membrane Polarization. Antioxid Redox Signal 2018; 28:1286-1308. [PMID: 28816060 PMCID: PMC5905950 DOI: 10.1089/ars.2017.7239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Carbon monoxide (CO)-releasing molecules (CORMs) are candidates for animal and antimicrobial therapeutics. We aimed to probe the antimicrobial potential of a novel manganese CORM. RESULTS [Mn(CO)4S2CNMe(CH2CO2H)], CORM-401, inhibits growth of Escherichia coli and several antibiotic-resistant clinical pathogens. CORM-401 releases CO that binds oxidases in vivo, but is an ineffective respiratory inhibitor. Extensive CORM accumulation (assayed as intracellular manganese) accompanies antimicrobial activity. CORM-401 stimulates respiration, polarizes the cytoplasmic membrane in an uncoupler-like manner, and elicits loss of intracellular potassium and zinc. Transcriptomics and mathematical modeling of transcription factor activities reveal a multifaceted response characterized by elevated expression of genes encoding potassium uptake, efflux pumps, and envelope stress responses. Regulators implicated in stress responses (CpxR), respiration (Arc, Fnr), methionine biosynthesis (MetJ), and iron homeostasis (Fur) are significantly disturbed. Although CORM-401 reduces bacterial growth in combination with cefotaxime and trimethoprim, fractional inhibition studies reveal no interaction. INNOVATION We present the most detailed microbiological analysis yet of a CORM that is not a ruthenium carbonyl. We demonstrate CO-independent striking effects on the bacterial membrane and global transcriptomic responses. CONCLUSIONS CORM-401, contrary to our expectations of a CO delivery vehicle, does not inhibit respiration. It accumulates in the cytoplasm, acts like an uncoupler in disrupting cytoplasmic ion balance, and triggers multiple effects, including osmotic stress and futile respiration. Rebound Track: This work was rejected during standard peer review and rescued by rebound peer review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Miguel Aon, Giancarlo Biagini, James Imlay, and Nigel Robinson. Antioxid. Redox Signal. 28, 1286-1308.
Collapse
Affiliation(s)
- Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom .,2 School of Science and Technology , Nottingham Trent University, Nottingham, United Kingdom
| | - Ronald Begg
- 3 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Namrata Rana
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Salar Ali
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - John J Kendall
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Guido Sanguinetti
- 3 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Brian E Mann
- 4 Department of Chemistry, The University of Sheffield , Sheffield, United Kingdom
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
18
|
Abstract
Ruthenium is seldom mentioned in microbiology texts, due to the fact that this metal has no known, essential roles in biological systems, nor is it generally considered toxic. Since the fortuitous discovery of cisplatin, first as an antimicrobial agent and then later employed widely as an anticancer agent, complexes of other platinum group metals, such as ruthenium, have attracted interest for their medicinal properties. Here, we review at length how ruthenium complexes have been investigated as potential antimicrobial, antiparasitic and chemotherapeutic agents, in addition to their long and well-established roles as biological stains and inhibitors of calcium channels. Ruthenium complexes are also employed in a surprising number of biotechnological roles. It is in the employment of ruthenium complexes as antimicrobial agents and alternatives or adjuvants to more traditional antibiotics, that we expect to see the most striking developments in the future. Such novel contributions from organometallic chemistry are undoubtedly sorely needed to address the antimicrobial resistance crisis and the slow appearance on the market of new antibiotics.
Collapse
|
19
|
Marcero JR, Piel Iii RB, Burch JS, Dailey HA. Rapid and sensitive quantitation of heme in hemoglobinized cells. Biotechniques 2016; 61:83-91. [PMID: 27528073 DOI: 10.2144/000114444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/20/2016] [Indexed: 11/23/2022] Open
Abstract
Rapid and accurate heme quantitation in the research lab has become more desirable as the crucial role that intracellular hemoproteins play in metabolism continues to emerge. Here, the time-honored approaches of pyridine hemochromogen and fluorescence heme assays are compared with direct absorbance-based technologies using the CLARiTY spectrophotometer. All samples tested with these methods were rich in hemoglobin-associated heme, including buffered hemoglobin standards, whole blood from mice, and murine erythroleukemia (MEL) and K562 cells. While the pyridine hemochromogen assay demonstrated the greatest linear range of heme detection, all 3 methods demonstrated similar analytical sensitivities and normalized limits of quantitation of ∼1 µM. Surprisingly, the fluorescence assay was only shown to be distinct in its ability to quantitate extremely small samples. Using the CLARiTY system in combination with pyridine hemochromogen and cell count data, a common hemoglobin extinction coefficient for blood and differentiating MEL and K562 cells of 0.46 µM-1 cm-1 was derived. This value was applied to supplemental experiments designed to measure MEL cell hemoglobinization in response to the addition or removal of factors previously shown to affect heme biosynthesis (e.g., L-glutamine, iron).
Collapse
Affiliation(s)
- Jason R Marcero
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, University of Georgia, Athens
| | - Robert B Piel Iii
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, University of Georgia, Athens
| | - Joseph S Burch
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, University of Georgia, Athens
| | - Harry A Dailey
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, University of Georgia, Athens
| |
Collapse
|
20
|
Pak O, Bakr AG, Gierhardt M, Albus J, Strielkov I, Kroschel F, Hoeres T, Hecker M, Ghofrani HA, Seeger W, Weissmann N, Sommer N. Effects of carbon monoxide-releasing molecules on pulmonary vasoreactivity in isolated perfused lungs. J Appl Physiol (1985) 2016; 120:271-81. [DOI: 10.1152/japplphysiol.00726.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022] Open
Abstract
In addition to its renowned poisonous effects, carbon monoxide (CO) is being recognized for its beneficial actions on inflammatory and vasoregulatory pathways, particularly when applied at low concentrations via CO-releasing molecules (CO-RMs). In the lung, CO gas and CO-RMs are suggested to decrease pulmonary vascular tone and hypoxic pulmonary vasoconstriction (HPV). However, the direct effect of CO-RMs on the pulmonary vasoreactivity in isolated lungs has not yet been investigated. We assessed the effect of CORM-2 and CORM-3 on the pulmonary vasculature during normoxia and acute hypoxia (1% oxygen for 10 min) in isolated ventilated and perfused mouse lungs. The effects were compared with those of inhaled CO gas (10%). The interaction of CORM-2 or CO with cytochrome P-450 (CYP) was measured simultaneously by tissue spectrophotometry. Inhaled CO decreased HPV and vasoconstriction induced by the thromboxane mimetic U-46619 but did not alter KCl-induced vasoconstriction. In contrast, concentrations of CORM-2 and CORM-3 used to elicit beneficial effects on the systemic circulation did not affect pulmonary vascular tone. High concentration of CO-RMs or long-term application induced a continuous increase in normoxic pressure. Inhaled CO showed spectral alterations correlating with the inhibition of CYP. In contrast, during application of CORM-2 spectrophotometric signs of interaction with CYP could not be detected. Application of CO-RMs in therapeutic doses in isolated lungs neither decreases pulmonary vascular tone and HPV nor does it induce spectral alterations that are characteristic of CO-inhibited CYP. High doses, however, may cause pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| | - Adel G. Bakr
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Al-Azhar University, Assiut, Egypt
| | - Mareike Gierhardt
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| | - Julia Albus
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| | - Ievgen Strielkov
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| | - Florian Kroschel
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| | - Timm Hoeres
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| | - Matthias Hecker
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| | - Hossein A. Ghofrani
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| | - Werner Seeger
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| | - Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Member of the German Center for Lung Research (DZL), Germany; and
| |
Collapse
|
21
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|