1
|
Soussi-Therond M, Guarin D, Razanahoera A, Zhang Y, Baudin M, Miclet E, Giraud N, Abergel D. Simultaneous Observation of the Anomerization and Reaction Rates of Enzymatic Dehydrogenation of Glucose-6-Phosphate by Dissolution DNP. J Am Chem Soc 2024; 146:34651-34660. [PMID: 39635873 DOI: 10.1021/jacs.4c12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The hyperpolarization of biological samples using dissolution dynamic nuclear polarization (dDNP) has become an attractive method for the monitoring of fast chemical and enzymatic reactions using NMR by taking advantage of a large signal increase. This approach is actively developing but still needs key methodological breakthroughs to be used as an analytical method for the monitoring of complex networks of simultaneous metabolic pathways. In this article, we use the deceptively simple example of glucose-6-phosphate (G6P) oxidation reaction by the enzyme G6P dehydrogenase (G6PDH) to discuss some important methodological aspects of dDNP kinetic experiments, such as its robustness and its ability to provide repeatable results as well as the capacity of this time-resolved methodology to test kinetic models and hypotheses and to provide reliable parameter estimates. To illustrate the potential of our approach, we report the first direct and quantitative evidence of selectivity of G6PDH toward the β anomer of G6P.
Collapse
Affiliation(s)
- Mehdi Soussi-Therond
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| | - David Guarin
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| | - Aiky Razanahoera
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, CNRS, UMR 8232, Sorbonne Université, 4 Place Jussieu, Paris 75005, France
- Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang311422, China
| | - Mathieu Baudin
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, LCBPT UMR 8601, Université Paris Cité, 45, Rue des Saints Pères, Paris 75006 , France
| | - Emeric Miclet
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| | - Nicolas Giraud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, LCBPT UMR 8601, Université Paris Cité, 45, Rue des Saints Pères, Paris 75006 , France
| | - Daniel Abergel
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| |
Collapse
|
2
|
Hanke P, Parrello B, Vasieva O, Akins C, Chlenski P, Babnigg G, Henry C, Foflonker F, Brettin T, Antonopoulos D, Stevens R, Fonstein M. Engineering of increased L-Threonine production in bacteria by combinatorial cloning and machine learning. Metab Eng Commun 2023; 17:e00225. [PMID: 37435441 PMCID: PMC10331477 DOI: 10.1016/j.mec.2023.e00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 07/13/2023] Open
Abstract
The goal of this study is to develop a general strategy for bacterial engineering using an integrated synthetic biology and machine learning (ML) approach. This strategy was developed in the context of increasing L-threonine production in Escherichia coli ATCC 21277. A set of 16 genes was initially selected based on metabolic pathway relevance to threonine biosynthesis and used for combinatorial cloning to construct a set of 385 strains to generate training data (i.e., a range of L-threonine titers linked to each of the specific gene combinations). Hybrid (regression/classification) deep learning (DL) models were developed and used to predict additional gene combinations in subsequent rounds of combinatorial cloning for increased L-threonine production based on the training data. As a result, E. coli strains built after just three rounds of iterative combinatorial cloning and model prediction generated higher L-threonine titers (from 2.7 g/L to 8.4 g/L) than those of patented L-threonine strains being used as controls (4-5 g/L). Interesting combinations of genes in L-threonine production included deletions of the tdh, metL, dapA, and dhaM genes as well as overexpression of the pntAB, ppc, and aspC genes. Mechanistic analysis of the metabolic system constraints for the best performing constructs offers ways to improve the models by adjusting weights for specific gene combinations. Graph theory analysis of pairwise gene modifications and corresponding levels of L-threonine production also suggests additional rules that can be incorporated into future ML models.
Collapse
Affiliation(s)
- Paul Hanke
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Bruce Parrello
- University of Chicago, 5801 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Olga Vasieva
- BSMI, 1818 Skokie Blvd., #201, Northbrook, IL, 60062, USA
| | - Chase Akins
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Philippe Chlenski
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Gyorgy Babnigg
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Chris Henry
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Fatima Foflonker
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Thomas Brettin
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | | | - Rick Stevens
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
- University of Chicago, 5801 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Michael Fonstein
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| |
Collapse
|
3
|
Shah BA, Kasarlawar ST, Phale PS. Glucose-6-Phosphate Dehydrogenase, ZwfA, a Dual Cofactor-Specific Isozyme Is Predominantly Involved in the Glucose Metabolism of Pseudomonas bharatica CSV86 T. Microbiol Spectr 2022; 10:e0381822. [PMID: 36354357 PMCID: PMC9769727 DOI: 10.1128/spectrum.03818-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (Zwf) is an important enzyme in glucose metabolism via the Entner-Doudoroff pathway and the first enzyme in the oxidative pentose-phosphate pathway. It generates NAD(P)H during the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolactone, thus aiding in anabolic processes, energy yield, and oxidative stress responses. Pseudomonas bharatica CSV86T preferentially utilized aromatic compounds over glucose and exhibited a significantly lower growth rate on glucose (0.24 h-1) with a prolonged lag phase (~10 h). In strain CSV86T, glucose was metabolized via the intracellular phosphorylative route only because it lacked an oxidative (gluconate and 2-ketogluconate) route. The genome harbored three genes zwfA, zwfB, and zwfC encoding three Zwf isozymes. The present study aimed to understand gene arrangement, gene expression profiling, and molecular and kinetic properties of the purified enzymes to unveil their physiological significance in the strain CSV86T. The zwfA was found to be a part of the zwfA-pgl-eda operon, which was proximal to other glucose transport and metabolic clusters. The zwfB was found to be arranged as a gnd-zwfB operon, while zwfC was present independently. Among the three, zwfA was transcribed maximally, and the purified ZwfA displayed the highest catalytic efficiency, cooperativity with respect to G6P, and dual cofactor specificity. Isozymes ZwfB and ZwfC were NADP+-preferring and NADP+-specific, respectively. Among other functionally characterized Zwfs, ZwfA from strain CSV86T displayed poor catalytic efficiency and the further absence of oxidative routes of glucose metabolism reflected its lower growth rate on glucose compared to P. putida KT2440 and could be probable reasons for the unique carbon source utilization hierarchy. IMPORTANCE Pseudomonas bharatica CSV86T metabolizes glucose exclusively via the intracellular phosphorylative Entner-Doudoroff pathway leading the entire glucose flux through Zwf as the strain lacks oxidative routes. This may lead to limiting the concentration of downstream metabolic intermediates. The strain CSV86T possesses three isoforms of glucose-6-phosphate dehydrogenase, ZwfA, ZwfB, and ZwfC. The expression profile and kinetic properties of purified enzymes will help to understand glucose metabolism. Isozyme ZwfA dominated in terms of expression and displayed cooperativity with dual cofactor specificity. ZwfB preferred NADP+, and ZwfC was NADP+ specific, which may aid in redox cofactor balance. Such beneficial metabolic flexibility facilitated the regulation of metabolic pathways giving survival/fitness advantages in dynamic environments. Additionally, multiple genes allowed the distribution of function among these isoforms where the primary function was allocated to one of the isoforms.
Collapse
Affiliation(s)
- Bhavik A. Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| | - Sravanti T. Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| |
Collapse
|
4
|
Figueroa JD, Fuentes-Lemus E, Reyes JS, Loaiza M, Aliaga ME, Fierro A, Leinisch F, Hägglund P, Davies MJ, López-Alarcón C. Role of amino acid oxidation and protein unfolding in peroxyl radical and peroxynitrite-induced inactivation of glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Free Radic Biol Med 2022; 190:292-306. [PMID: 35987422 DOI: 10.1016/j.freeradbiomed.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022]
Abstract
The mechanisms underlying the inactivation of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PDH) induced by peroxyl radicals (ROO●) and peroxynitrite (ONOO-), were explored. G6PDH was incubated with AAPH (2,2' -azobis(2-methylpropionamidine)dihydrochloride), used as ROO● source, and ONOO-. Enzymatic activity was assessed by NADPH generation, while oxidative modifications were analyzed by gel electrophoresis and liquid chromatography (LC) with fluorescence and mass detection. Changes in protein conformation were studied by circular dichroism (CD) and binding of the fluorescent dye ANS (1-anilinonaphthalene-8-sulfonic acid). Incubation of G6PDH (54.4 μM) with 60 mM AAPH showed an initial phase without significant changes in enzymatic activity, followed by a secondary time-dependent continuous decrease in activity to ∼59% of the initial level after 90 min. ONOO- induced a significant and concentration-dependent loss of G6PDH activity with ∼46% of the initial activity lost on treatment with 1.5 mM ONOO-. CD and ANS fluorescence indicated changes in G6PDH secondary structure with exposure of hydrophobic sites on exposure to ROO●, but not ONOO-. LC-MS analysis provided evidence for ONOO--mediated oxidation of Tyr, Met and Trp residues, with damage to critical Met and Tyr residues underlying enzyme inactivation, but without effects on the native (dimeric) state of the protein. In contrast, studies using chloramine T, a specific oxidant of Met, provided evidence that oxidation of specific Met and Trp residues and concomitant protein unfolding, loss of dimer structure and protein aggregation are involved in G6PDH inactivation by ROO●. These two oxidant systems therefore have markedly different effects on G6PDH structure and activity.
Collapse
Affiliation(s)
- Juan David Figueroa
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | | | - Juan Sebastián Reyes
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | - Matías Loaiza
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | - Margarita E Aliaga
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | - Angélica Fierro
- Pontificia Universidad Católica de Chile(,) Facultad de Química y de Farmacia, Departamento de Química Orgánica, Santiago, Chile
| | - Fabian Leinisch
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Per Hägglund
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Michael J Davies
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Camilo López-Alarcón
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile.
| |
Collapse
|
5
|
Olavarria K, Pijman YO, Cabrera R, van Loosdrecht MCM, Wahl SA. Engineering an acetoacetyl-CoA reductase from Cupriavidus necator toward NADH preference under physiological conditions. Sci Rep 2022; 12:3757. [PMID: 35260659 PMCID: PMC8904767 DOI: 10.1038/s41598-022-07663-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
The coupling of PHB generation with NADH reoxidation is required to generate PHB as a fermentation product. A fundamental trait to accomplish this feature is to express a functional NADH-preferring acetoacetyl-CoA reductase, engaged in PHB accumulation. One way to obtain such a reductase is by engineering the cofactor preference of the acetoacetyl-CoA reductase encoded by the phaB1 gene from Cupriavidus necator (AARCn1). Aiming to have a deeper understanding of the structural determinants of the cofactor preference in AARCn1, and to obtain an NADH-preferring acetoacetyl-CoA reductase derived from this protein, some engineered enzymes were expressed, purified and kinetically characterized, together with the parental AARCn1. One of these engineered enzymes, Chimera 5, experimentally showed a selectivity ratio ((kcat/KM)NADH/(kcat/KM)NADPH) ≈ 18, which is 160 times higher than the selectivity ratio experimentally observed in the parental AARCn1. A thermodynamic-kinetic approach was employed to estimate the cofactor preference and flux capacity of Chimera 5 under physiological conditions. According to this approach, Chimera 5 could prefer NADH over NADPH between 25 and 150 times. Being a derivative of AARCn1, Chimera 5 should be readily functional in Escherichia coli and C. necator. Moreover, with the expected expression level, its activity should be enough to sustain PHB accumulation fluxes similar to the fluxes previously observed in these biotechnologically relevant cell factories.
Collapse
Affiliation(s)
- Karel Olavarria
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands. .,Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6700 EH, Wageningen, The Netherlands.
| | - Yared O Pijman
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Región Metropolitana, Chile
| | - Mark C M van Loosdrecht
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - S Aljoscha Wahl
- Departement Biotechnologie, Faculteit Technische Natuurwetenschappen, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
6
|
Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria. mSystems 2021; 6:6/2/e00014-21. [PMID: 33727391 PMCID: PMC8546961 DOI: 10.1128/msystems.00014-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is widely distributed in nature and catalyzes the first committing step in the oxidative branch of the pentose phosphate (PP) pathway, feeding either the reductive PP or the Entner-Doudoroff pathway. Besides its role in central carbon metabolism, this dehydrogenase provides reduced cofactors, thereby affecting redox balance. Although G6PDH is typically considered to display specificity toward NADP+, some variants accept NAD+ similarly or even preferentially. Furthermore, the number of G6PDH isozymes encoded in bacterial genomes varies from none to more than four orthologues. On this background, we systematically analyzed the interplay of the three G6PDH isoforms of the soil bacterium Pseudomonas putida KT2440 from genomic, genetic, and biochemical perspectives. P. putida represents an ideal model to tackle this endeavor, as its genome harbors gene orthologues for most dehydrogenases in central carbon metabolism. We show that the three G6PDHs of strain KT2440 have different cofactor specificities and that the isoforms encoded by zwfA and zwfB carry most of the activity, acting as metabolic “gatekeepers” for carbon sources that enter at different nodes of the biochemical network. Moreover, we demonstrate how multiplication of G6PDH isoforms is a widespread strategy in bacteria, correlating with the presence of an incomplete Embden-Meyerhof-Parnas pathway. The abundance of G6PDH isoforms in these species goes hand in hand with low NADP+ affinity, at least in one isozyme. We propose that gene duplication and relaxation in cofactor specificity is an evolutionary strategy toward balancing the relative production of NADPH and NADH. IMPORTANCE Protein families have likely arisen during evolution by gene duplication and divergence followed by neofunctionalization. While this phenomenon is well documented for catabolic activities (typical of environmental bacteria that colonize highly polluted niches), the coexistence of multiple isozymes in central carbon catabolism remains relatively unexplored. We have adopted the metabolically versatile soil bacterium Pseudomonas putida KT2440 as a model to interrogate the physiological and evolutionary significance of coexisting glucose-6-phosphate dehydrogenase (G6PDH) isozymes. Our results show that each of the three G6PDHs in this bacterium display distinct biochemical properties, especially at the level of cofactor preference, impacting bacterial physiology in a carbon source-dependent fashion. Furthermore, the presence of multiple G6PDHs differing in NAD+ or NADP+ specificity in bacterial species strongly correlates with their predominant metabolic lifestyle. Our findings support the notion that multiplication of genes encoding cofactor-dependent dehydrogenases is a general evolutionary strategy toward achieving redox balance according to the growth conditions.
Collapse
|
7
|
Cardinali-Rezende J, Di Genova A, Nahat RATPS, Steinbüchel A, Sagot MF, Costa RS, Oliveira HC, Taciro MK, Silva LF, Gomez JGC. The relevance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. Int J Biol Macromol 2020; 163:240-250. [PMID: 32622773 DOI: 10.1016/j.ijbiomac.2020.06.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
Reconstruction of genome-based metabolic model is a useful approach for the assessment of metabolic pathways, genes and proteins involved in the environmental fitness capabilities or pathogenic potential as well as for biotechnological processes development. Pseudomonas sp. LFM046 was selected as a good polyhydroxyalkanoates (PHA) producer from carbohydrates and plant oils. Its complete genome sequence and metabolic model were obtained. Analysis revealed that the gnd gene, encoding 6-phosphogluconate dehydrogenase, is absent in Pseudomonas sp. LFM046 genome. In order to improve the knowledge about LFM046 metabolism, the coenzyme specificities of different enzymes was evaluated. Furthermore, the heterologous expression of gnd genes from Pseudomonas putida KT2440 (NAD+ dependent) and Escherichia coli MG1655 (NADP+ dependent) in LFM046 was carried out and provoke a delay on cell growth and a reduction in PHA yield, respectively. The results indicate that the adjustment in cyclic Entner-Doudoroff pathway may be an interesting strategy for it and other bacteria to simultaneously meet divergent cell needs during cultivation phases of growth and PHA production.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil; Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany.
| | - Alex Di Genova
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael A T P S Nahat
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Alexander Steinbüchel
- Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany; Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marie-France Sagot
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; REQUIMTE/LAQV, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Henrique C Oliveira
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Marilda K Taciro
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Luiziana F Silva
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - José Gregório C Gomez
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil.
| |
Collapse
|
8
|
Benítez-Rangel E, Rodríguez-Hernández A, Velasco-García R. The substrate of the glucose-6-phosphate dehydrogenase of Pseudomonas aeruginosa provides structural stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140331. [PMID: 31760039 DOI: 10.1016/j.bbapap.2019.140331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/22/2019] [Accepted: 11/20/2019] [Indexed: 01/18/2023]
Abstract
In general, eukaryotic glucose-6-phosphate dehydrogenases (G6PDHs) are structurally stabilized by NADP+. Here we show by spectrofluorometric analysis, thermal and urea denaturation, and trypsin proteolysis, that a different mechanism stabilizes the enzyme from Pseudomonas aeruginosa (PaG6PDH) (EC 1.1.1.363). The spectrofluorometric analysis of the emission of 8-anilino-1-naphthalenesulfonic acid (ANS) indicates that this stabilization is the result of a structural change in the enzyme caused by G6P. The similarity between the Kd values determined for the PaG6PDH-G6P complex (78.0 ± 7.9 μM) and the K0.5 values determined for G6P (57.9 ± 2.5 and 104.5 ± 9.3 μM in the NADP+- and NAD+-dependent reactions, respectively) suggests that the structural changes are the result of G6P binding to the active site of PaG6PDH. Modeling of PaG6PDH indicated the residues that potentially bind the ligand. These results and a phylogenetic analysis of the amino acid sequences of forty-four G6PDHs, suggest that the stabilization observed for PaG6PDH could be a characteristic that distinguishes this and other G6PDHs that use NAD+ and NADP+ from those that use NADP+ only or preferentially, such as those found in eukaryotes. This characteristic could be related to the metabolic roles these enzymes play in the organisms to which they belong.
Collapse
Affiliation(s)
- Edaena Benítez-Rangel
- Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico
| | - Annia Rodríguez-Hernández
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Roberto Velasco-García
- Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico.
| |
Collapse
|
9
|
Briones X, Villalobos V, Queneau Y, Danna CS, Muñoz R, Ríos HE, Pavez J, Páez M, Cabrera R, Tamayo L, Urzúa MD. Surfaces based on amino acid functionalized polyelectrolyte films towards active surfaces for enzyme immobilization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109938. [PMID: 31499948 DOI: 10.1016/j.msec.2019.109938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Surface based on polyelectrolytes functionalized with amino acids onto amino-terminated solid surfaces of silicon wafers was prepared, with the purpose of evaluate the chemical functionality of the polyelectrolyte films in adsorption and catalytic activity of an enzyme. In this work, the adsorption of the enzyme glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides (LmG6PD) was studied as model. The polyelectrolytes were obtained from poly (maleic anhydride-alt-vinylpyrrolidone) [poly(MA-alt-VP)] and functionalized with amino acids of different hydropathy index: glutamine (Gln), tyrosine (Tyr) and methionine (Met). The polyelectrolytes were adsorbed onto the amino-terminated silicon wafer at pH 3.5 and 4.5 and at low and high ionic strength. At low ionic strength and pH 3.5, the largest quantity of adsorbed polyelectrolyte was on the films containing glutamine moiety as the most hydrophilic amino acid in the side chain of polymer chain (5.88 mg/m2), whereas at high ionic strength and pH 4.5, the lowest quantity was in films containing tyrosine moiety in the side chain (1.88 mg/m2). The films were characterized by ellipsometry, contact angle measurements and atomic force microscopy (AFM). The polyelectrolyte films showed a moderate degree of hydrophobicity, the methionine derivative being the most hydrophobic film. With the aim of evaluate the effect of the amino acid moieties on the ability of the surface to adsorb enzymes, we study the activity of the enzyme on these surfaces. We observed that the polarity of the side chain of the amino acid in the polyelectrolyte affected the quantity of LmG6PD adsorbed, as well as its specific activity, showing that films prepared from poly(MA-alt-VP) functionalized with Met provide the best enzymatic performance. The results obtained demonstrated that the surfaces prepared from polyelectrolytes functionalized with amino acids could be an attractive and simple platform for the immobilization of enzymes, which could be of interest for biocatalysis applications.
Collapse
Affiliation(s)
- Ximena Briones
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile; Centro de Química Médica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Las Condes 12438 Lo Barnechea, Santiago 7710162, Chile
| | - Valeria Villalobos
- Universidad Autónoma de Chile, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, El Llano Subercaseaux 2801, San Miguel, Chile des 12438 Lo Barnechea, Santiago 7710162, Chile
| | - Yves Queneau
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Univ Lyon, ICBMS, UMR 5246 CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, 1 rue Victor grignard, Bâtiment Lederer, Université Claude Bernard, 69622 Villeurbanne cedex, France
| | - Caroline Silva Danna
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Rodrigo Muñoz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Hernán E Ríos
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Jorge Pavez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Soft Matter Research-Technology Center, SMAT-C, Av. B. O'Higgins 3363, Santiago, Chile
| | - Maritza Páez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Soft Matter Research-Technology Center, SMAT-C, Av. B. O'Higgins 3363, Santiago, Chile
| | - Ricardo Cabrera
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| | - Marcela D Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| |
Collapse
|
10
|
McCloskey D, Xu S, Sandberg TE, Brunk E, Hefner Y, Szubin R, Feist AM, Palsson BO. Growth Adaptation of gnd and sdhCB Escherichia coli Deletion Strains Diverges From a Similar Initial Perturbation of the Transcriptome. Front Microbiol 2018; 9:1793. [PMID: 30131786 PMCID: PMC6090065 DOI: 10.3389/fmicb.2018.01793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has emerged as a new approach with which to pursue fundamental biological inquiries and, in particular, new insights into the systemic function of a gene product. Two E. coli knockout strains were constructed: one that blocked the Pentose Phosphate Pathway (gnd KO) and one that decoupled the TCA cycle from electron transport (sdhCDAB KO). Despite major perturbations in central metabolism, minimal growth rate changes were found in the two knockout strains. More surprisingly, many similarities were found in their initial transcriptomic states that could be traced to similarly perturbed metabolites despite the differences in the network location of the gene perturbations and concomitant re-routing of pathway fluxes around these perturbations. However, following ALE, distinct metabolomic and transcriptomic states were realized. These included divergent flux and gene expression profiles in the gnd and sdhCDAB KOs to overcome imbalances in NADPH production and nitrogen/sulfur assimilation, respectively, that were not obvious limitations of growth in the unevolved knockouts. Therefore, this work demonstrates that ALE provides a productive approach to reveal novel insights of gene function at a systems level that cannot be found by observing the fresh knockout alone.
Collapse
Affiliation(s)
- Douglas McCloskey
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sibei Xu
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Elizabeth Brunk
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling. PLoS One 2018; 13:e0196182. [PMID: 29677222 PMCID: PMC5909895 DOI: 10.1371/journal.pone.0196182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/06/2018] [Indexed: 11/19/2022] Open
Abstract
It has been proposed that NADP+-specificity of isocitrate dehydrogenase (ICDH) evolved as an adaptation of microorganisms to grow on acetate as the sole source of carbon and energy. In Escherichia coli, changing the cofactor specificity of ICDH from NADP+ to NAD+ (cofactor swapping) decreases the growth rate on acetate. However, the metabolic basis of this phenotype has not been analyzed. In this work, we used constraint-based modeling to investigate the effect of the cofactor swapping of ICDH in terms of energy production, response of alternative sources of NADPH, and partitioning of fluxes between ICDH and isocitrate lyase (ICL) -a crucial bifurcation when the bacterium grows on acetate-. We generated E. coli strains expressing NAD+-specific ICDH instead of the native enzyme, and bearing the deletion of the NADPH-producing transhydrogenase PntAB. We measured their growth rate and acetate uptake rate, modeled the distribution of metabolic fluxes by Flux Balance Analysis (FBA), and quantified the specific activities of NADPH-producing dehydrogenases in central pathways. The cofactor swapping of ICDH led to one-third decrease in biomass yield, irrespective of the presence of PntAB. According to our simulations, the diminution in growth rate observed upon cofactor swapping could be explained by one-half decrease in the total production of NADPH and a lower availability of carbon for biosynthesis because of a change in the partition at the isocitrate bifurcation. Together with an increased total ATP production, this scenario resulted in a 10-fold increment in the flux of ATP not used for growing purposes. PntAB was identified as the primary NADPH balancing response, with the dehydrogenases of the oxidative branch of the Pentose Phosphate Pathway and the malic enzyme playing a role in its absence. We propose that in the context of E. coli growing on acetate, the NADP+-specificity of ICDH is a trait that impacts not only NADPH production, but also the efficient allocation of carbon and energy.
Collapse
|
12
|
The Nitrogen Regulatory PII Protein (GlnB) and N-Acetylglucosamine 6-Phosphate Epimerase (NanE) Allosterically Activate Glucosamine 6-Phosphate Deaminase (NagB) in Escherichia coli. J Bacteriol 2018; 200:JB.00691-17. [PMID: 29229699 DOI: 10.1128/jb.00691-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Amino sugars are good sources of both ammonia and fructose-6-phosphate, produced by the glucosamine 6-phosphate deaminase, NagB. NagB is known to be allosterically regulated by N-acetylglucosamine 6-phosphate (GlcNAc-6P) and the phosphocarrier protein of the bacterial phosphotransferase system, HPr, in Escherichia coli We provide evidence that NanE, GlcNAc-6P epimerase, and the uridylylated PII protein (U-PII) also allosterically activate NagB by direct protein-protein interactions. NanE is essential for neuraminic acid (NANA) and N-acetylmannosamine (ManNAc) utilization, and PII is known to be a central metabolic nitrogen regulator. We demonstrate that uridylylated PII (but not underivatized PII) activates NagB >10-fold at low concentrations of substrate, whereas NanE increases NagB activity >2-fold. NanE activates NagB in the absence or presence of GlcNAc-6P, but HPr and U-PII activation requires the presence of GlcNAc-6P. Activation of NagB by HPr and uridylylated PII, as well as by NanE and HPr (but not by NanE and U-PII), is synergistic, and the modeling, which suggests specific residues involved in complex formation, provides possible explanations. Specific physiological functions for the regulation of NagB by its three protein activators are proposed. Each regulatory agent is suggested to mediate signal transduction in response to a different stimulus.IMPORTANCE The regulation of amino sugar utilization is important for the survival of bacteria in a competitive environment. NagB, a glucosamine 6-phosphate deaminase in Escherichia coli, is essential for amino sugar utilization and is known to be allosterically regulated by N-acetylglucosamine 6-phosphate (GlcNAc-6P) and the histidine-phosphorylatable phosphocarrier protein, HPr. We provide evidence here that NanE, GlcNAc-6P epimerase, and the uridylylated PII protein allosterically activate NagB by direct protein-protein interactions. NanE is essential for N-acetylneuraminic acid (NANA) and N-acetylmannosamine (ManNAc) utilization, and the PII protein is known to be a central metabolic nitrogen regulator. Regulatory links between carbon and nitrogen metabolism are important for adaptation of metabolism to different growth conditions.
Collapse
|
13
|
Abstract
SIGNIFICANCE Pyridine dinucleotides, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), were discovered more than 100 years ago as necessary cofactors for fermentation in yeast extracts. Since that time, these molecules have been recognized as fundamental players in a variety of cellular processes, including energy metabolism, redox homeostasis, cellular signaling, and gene transcription, among many others. Given their critical role as mediators of cellular responses to metabolic perturbations, it is unsurprising that dysregulation of NAD and NADP metabolism has been associated with the pathobiology of many chronic human diseases. Recent Advances: A biochemistry renaissance in biomedical research, with its increasing focus on the metabolic pathobiology of human disease, has reignited interest in pyridine dinucleotides, which has led to new insights into the cell biology of NAD(P) metabolism, including its cellular pharmacokinetics, biosynthesis, subcellular localization, and regulation. This review highlights these advances to illustrate the importance of NAD(P) metabolism in the molecular pathogenesis of disease. CRITICAL ISSUES Perturbations of NAD(H) and NADP(H) are a prominent feature of human disease; however, fundamental questions regarding the regulation of the absolute levels of these cofactors and the key determinants of their redox ratios remain. Moreover, an integrated topological model of NAD(P) biology that combines the metabolic and other roles remains elusive. FUTURE DIRECTIONS As the complex regulatory network of NAD(P) metabolism becomes illuminated, sophisticated new approaches to manipulating these pathways in specific organs, cells, or organelles will be developed to target the underlying pathogenic mechanisms of disease, opening doors for the next generation of redox-based, metabolism-targeted therapies. Antioxid. Redox Signal. 28, 180-212.
Collapse
Affiliation(s)
- Joshua P Fessel
- 1 Department of Medicine, Vanderbilt University , Nashville, Tennessee
| | - William M Oldham
- 2 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,3 Department of Medicine, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
14
|
Efficient genetic approaches for improvement of plasmid based expression of recombinant protein in Escherichia coli : A review. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Fuentealba M, Muñoz R, Maturana P, Krapp A, Cabrera R. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies. PLoS One 2016; 11:e0152403. [PMID: 27010804 PMCID: PMC4807051 DOI: 10.1371/journal.pone.0152403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 03/14/2016] [Indexed: 11/25/2022] Open
Abstract
Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2 loops, play a role in determining cofactor preference.
Collapse
Affiliation(s)
- Matias Fuentealba
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Muñoz
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Maturana
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Adriana Krapp
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Olavarria K, Marone MP, da Costa Oliveira H, Roncallo JC, da Costa Vasconcelos FN, da Silva LF, Gomez JGC. Quantifying NAD(P)H production in the upper Entner-Doudoroff pathway from Pseudomonas putida KT2440. FEBS Open Bio 2015; 5:908-15. [PMID: 26702395 PMCID: PMC4669411 DOI: 10.1016/j.fob.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 11/04/2022] Open
Abstract
The first kinetic characterization of PputG6PDH-1 is presented. The relative production of NADH and NADPH by PputG6PDH-1 is quantified. The stoichiometric matrix of in silico metabolic models for Pseudomonas putida must be modified.
Despite the lack of biochemical information, all available in silico metabolic models of Pseudomonas putida KT2440 consider NADP as the only cofactor accepted by the glucose-6-phosphate dehydrogenases. Because the Entner–Doudoroff pathway is the main glycolytic route in this bacterium, determining how much NADH and NADPH are produced in the reaction catalyzed by these enzymes is very important for the correct interpretation of metabolic flux distributions. To determine the actual cofactor preference of the glucose-6-phosphate dehydrogenase encoded by the zwf-1 gene (PputG6PDH-1), the major isoform during growth on glucose, we purified this protein and studied its kinetic properties. Based on simple kinetic principles, we estimated the in vivo relative production of NADH and NADPH during the oxidation of glucose-6-phosphate (G6P). Contrary to the general assumption, our calculations showed that the reaction catalyzed by PputG6PDH-1 yields around 1/3 mol of NADPH and 2/3 mol of NADH per mol of oxidized G6P. Additionally, we obtained data suggesting that the reaction catalyzed by the 6-phosphogluconate dehydrogenase is active during growth on glucose, and it also produces NADH. These results indicate that the stoichiometric matrix of in silico models of P. putida KT2440 must be corrected and highlight the importance of considering the physiological concentrations of the involved metabolites to estimate the actual proportion of NADH and NADPH produced by a dehydrogenase.
Collapse
Affiliation(s)
- Karel Olavarria
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | - Marina Pupke Marone
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | | | - Juan Camilo Roncallo
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | | | | | | |
Collapse
|