1
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
2
|
Tienda S, Gutiérrez-Barranquero JA, Padilla-Roji I, Arrebola E, de Vicente A, Cazorla FM. Polyhydroxyalkanoate production by the plant beneficial rhizobacterium Pseudomonas chlororaphis PCL1606 influences survival and rhizospheric performance. Microbiol Res 2024; 278:127527. [PMID: 37863020 DOI: 10.1016/j.micres.2023.127527] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Pseudomonas chlororaphis PCL1606 (PcPCL1606) is a model rhizobacterium used to study beneficial bacterial interactions with the plant rhizosphere. Many of its beneficial phenotypes depend on the production of the antifungal compound 2-hexyl, 5-propyl resorcinol (HPR). Transcriptomic analysis of PcPCL1606 and the deletional mutant in HPR production ΔdarB strain, assigned an additional regulatory role to HPR, and allowed the detection of differentially expressed genes during the bacterial interaction with the avocado rhizosphere. Interestingly, the putative genes phaG (PCL1606_46820) and phaI (PCL1606_56560), with a predicted role in polyhydroxyalkanoate biosynthesis, were detected to be under HPR control. Both putative genes were expressed in the HPR-producing wild-type strain, but strongly repressed in the derivative mutant ΔdarB, impaired in HPR production. Thus, a derivative mutant impaired in the phaG gene was constructed, characterized and compared with the wild-type strain PcPCL1606 and with the derivative mutant ΔdarB. The phaG mutant had strongly reduced PHA production by PcPCL1606, and displayed altered phenotypes involved in bacterial survival on the plant roots, such as tolerance to high temperature and hydrogen peroxide, and decreased root survival, in a similar way that the ΔdarB mutant. On the other hand, the phaG mutant does not have altered resistance to desiccation, motility, biofilm formation or adhesion phenotypes, as displayed by the HPR-defective ΔdarB mutant have. Interestingly, the mutant defective in PHA production also lacked a biocontrol phenotype against the soilborne pathogenic fungus Rosellinia necatrix, even when the derivative mutant still produced the antifungal HPR compound, demonstrating that the final biocontrol phenotype of PcPCL1606 first requires bacterial survival and adaptation traits to the soil and rhizosphere environment.
Collapse
Affiliation(s)
- Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain
| | - José Antonio Gutiérrez-Barranquero
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain
| | - Isabel Padilla-Roji
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain
| | - Eva Arrebola
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Avda. Louis Pasteur 31, 29071 Málaga, Spain; Grupo de Biología y Control de Enfermedades de Plantas, Área de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Avda. Louis Pasteur 49, 29010 Málaga, Spain.
| |
Collapse
|
3
|
Argandoña M, Piubeli F, Reina‐Bueno M, Nieto JJ, Vargas C. New insights into hydroxyectoine synthesis and its transcriptional regulation in the broad-salt growing halophilic bacterium Chromohalobacter salexigens. Microb Biotechnol 2021; 14:1472-1493. [PMID: 33955667 PMCID: PMC8313267 DOI: 10.1111/1751-7915.13799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022] Open
Abstract
Elucidating the mechanisms controlling the synthesis of hydroxyectoine is important to design novel genetic engineering strategies for optimizing the production of this biotechnologically relevant compatible solute. The genome of the halophilic bacterium Chromohalobacter salexigens carries two ectoine hydroxylase genes, namely ectD and ectE, whose encoded proteins share the characteristic consensus motif of ectoine hydroxylases but showed only a 51.9% identity between them. In this work, we have shown that ectE encodes a secondary functional ectoine hydroxylase and that the hydroxyectoine synthesis mediated by this enzyme contributes to C.␣salexigens thermoprotection. The evolutionary pattern of EctD and EctE and related proteins suggests that they may have arisen from duplication of an ancestral gene preceding the directional divergence that gave origin to the orders Oceanospirillales and Alteromonadales. Osmoregulated expression of ectD at exponential phase, as well as the thermoregulated expression of ectD at the stationary phase, seemed to be dependent on the general stress factor RpoS. In contrast, expression of ectE was always RpoS-dependent regardless of the growth phase and osmotic or heat stress conditions tested. The data presented here suggest that the AraC-GlxA-like EctZ transcriptional regulator, whose encoding gene lies upstream of ectD, plays a dual function under exponential growth as both a transcriptional activator of osmoregulated ectD expression and a repressor of ectE transcription, privileging the synthesis of the main ectoine hydroxylase EctD. Inactivation of ectZ resulted in a higher amount of the total ectoines pool at the expenses of a higher accumulation of ectoine, with maintenance of the hydroxyectoine levels. In addition to the transcriptional control, our results suggest a strong post-transcriptional regulation of hydroxyectoine synthesis. Data on the accumulation of ectoine and hydroxyectoine in rpoS and ectZ strains pave the way for using these genetic backgrounds for metabolic engineering for hydroxyectoine production.
Collapse
Affiliation(s)
- Montserrat Argandoña
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Francine Piubeli
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Mercedes Reina‐Bueno
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Joaquín J. Nieto
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Carmen Vargas
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| |
Collapse
|
4
|
Arrebola E, Tienda S, Vida C, de Vicente A, Cazorla FM. Fitness Features Involved in the Biocontrol Interaction of Pseudomonas chlororaphis With Host Plants: The Case Study of PcPCL1606. Front Microbiol 2019; 10:719. [PMID: 31024497 PMCID: PMC6469467 DOI: 10.3389/fmicb.2019.00719] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/21/2019] [Indexed: 12/31/2022] Open
Abstract
The goal of this mini review is to summarize the relevant contribution of some beneficial traits to the behavior of the species Pseudomonas chlororaphis, and using that information, to give a practical point of view using the model biocontrol strain P. chlororaphis PCL1606 (PcPCL1606). Among the group of plant-beneficial rhizobacteria, P. chlororaphis has emerged as a plant- and soil-related bacterium that is mainly known because of its biological control of phytopathogenic fungi. Many traits have been reported to be crucial during the multitrophic interaction involving the plant, the fungal pathogen and the soil environment. To explore the different biocontrol-related traits, the biocontrol rhizobacterium PcPCL1606 has been used as a model in recent studies. This bacterium is antagonistic to many phytopathogenic fungi and displays effective biocontrol against fungal phytopathogens. Antagonistic and biocontrol activities are directly related to the production of the compound 2-hexyl, 5-propyl resorcinol (HPR), despite the production of other antifungal compounds. Furthermore, PcPCL1606 has displayed additional traits regarding its fitness in soil and plant root environments such as soil survival, efficient plant root colonization, cell-to-cell interaction or promotion of plant growth.
Collapse
Affiliation(s)
- Eva Arrebola
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Carmen Vida
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" IHSM, UMA-CSIC, Málaga, Spain
| |
Collapse
|
5
|
Calderón CE, Tienda S, Heredia-Ponce Z, Arrebola E, Cárcamo-Oyarce G, Eberl L, Cazorla FM. The Compound 2-Hexyl, 5-Propyl Resorcinol Has a Key Role in Biofilm Formation by the Biocontrol Rhizobacterium Pseudomonas chlororaphis PCL1606. Front Microbiol 2019; 10:396. [PMID: 30873149 PMCID: PMC6403133 DOI: 10.3389/fmicb.2019.00396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
The production of the compound 2-hexyl-5-propyl resorcinol (HPR) by the biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606 (PcPCL1606) is crucial for fungal antagonism and biocontrol activity that protects plants against the phytopathogenic fungus Rosellinia necatrix. The production of HPR is also involved in avocado root colonization during the biocontrol process. This pleiotrophic response prompted us to study the potential role of HPR production in biofilm formation. The swimming motility of PcPLL1606 is enhanced by the disruption of HPR production. Mutants impaired in HPR production, revealed that adhesion, colony morphology, and typical air–liquid interphase pellicles were all dependent on HPR production. The role of HPR production in biofilm architecture was also analyzed in flow chamber experiments. These experiments revealed that the HPR mutant cells had less tight unions than those producing HPR, suggesting an involvement of HPR in the production of the biofilm matrix.
Collapse
Affiliation(s)
- Claudia E Calderón
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga, IHSM-UMA-CSIC, Málaga, Spain
| | - Sandra Tienda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga, IHSM-UMA-CSIC, Málaga, Spain
| | - Zaira Heredia-Ponce
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga, IHSM-UMA-CSIC, Málaga, Spain
| | - Eva Arrebola
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga, IHSM-UMA-CSIC, Málaga, Spain
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Francisco M Cazorla
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, Universidad de Málaga, IHSM-UMA-CSIC, Málaga, Spain
| |
Collapse
|
6
|
HupO, a Novel Regulator Involved in Thiosulfate-Responsive Control of HupSL [NiFe]-Hydrogenase Synthesis in Thiocapsa roseopersicina. Appl Environ Microbiol 2016; 82:2039-2049. [PMID: 26801573 DOI: 10.1128/aem.04041-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022] Open
Abstract
[NiFe]-hydrogenases are regulated by various factors to fulfill their physiological functions in bacterial cells. The photosynthetic purple sulfur bacterium Thiocapsa roseopersicina harbors four functional [NiFe]-hydrogenases: HynSL, HupSL, Hox1, and Hox2. Most of these hydrogenases are functionally linked to sulfur metabolism, and thiosulfate has a central role in this organism. The membrane-associated Hup hydrogenases have been shown to play a role in energy conservation through hydrogen recycling. The expression of Hup-type hydrogenases is regulated by H2 in Rhodobacter capsulatus and Cupriavidus necator; however, it has been shown that the corresponding hydrogen-sensing system is nonfunctional in T. roseopersicina and that thiosulfate is a regulating factor of hup expression. Here, we describe the discovery and analysis of mutants of a putative regulator (HupO) of the Hup hydrogenase in T. roseopersicina. HupO appears to mediate the transcriptional repression of Hup enzyme synthesis under low-thiosulfate conditions. We also demonstrate that the presence of the Hox1 hydrogenase strongly influences Hup enzyme synthesis in that hup expression was decreased significantly in the hox1 mutant. This reduction in Hup synthesis could be reversed by mutation of hupO, which resulted in strongly elevated hup expression, as well as Hup protein levels, and concomitant in vivo hydrogen uptake activity in the hox1 mutant. However, this regulatory control was observed only at low thiosulfate concentrations. Additionally, weak hydrogen-dependent hup expression was shown in the hupO mutant strain lacking the Hox1 hydrogenase. HupO-mediated Hup regulation therefore appears to link thiosulfate metabolism and the hydrogenase network in T. roseopersicina.
Collapse
|
7
|
Calderón CE, Ramos C, de Vicente A, Cazorla FM. Comparative Genomic Analysis of Pseudomonas chlororaphis PCL1606 Reveals New Insight into Antifungal Compounds Involved in Biocontrol. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:249-260. [PMID: 25679537 DOI: 10.1094/mpmi-10-14-0326-fi] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudomonas chlororaphis PCL1606 is a rhizobacterium that has biocontrol activity against many soilborne phytopathogenic fungi. The whole genome sequence of this strain was obtained using the Illumina Hiseq 2000 sequencing platform and was assembled using SOAP denovo software. The resulting 6.66-Mb complete sequence of the PCL1606 genome was further analyzed. A comparative genomic analysis using 10 plant-associated strains within the fluorescent Pseudomonas group, including the complete genome of P. chlororaphis PCL1606, revealed a diverse spectrum of traits involved in multitrophic interactions with plants and microbes as well as biological control. Phylogenetic analysis of these strains using eight housekeeping genes clearly placed strain PCL1606 into the P. chlororaphis group. The genome sequence of P. chlororaphis PCL1606 revealed the presence of sequences that were homologous to biosynthetic genes for the antifungal compounds 2-hexyl, 5-propyl resorcinol (HPR), hydrogen cyanide, and pyrrolnitrin; this is the first report of pyrrolnitrin encoding genes in this P. chlororaphis strain. Single-, double-, and triple-insertional mutants in the biosynthetic genes of each antifungal compound were used to test their roles in the production of these antifungal compounds and in antagonism and biocontrol of two fungal pathogens. The results confirmed the function of HPR in the antagonistic phenotype and in the biocontrol activity of P. chlororaphis PCL1606.
Collapse
|