1
|
Tanaka Y, Nagano H, Okano M, Kishimoto T, Tatsukawa A, Kunitake H, Fukumoto A, Anzai Y, Arakawa K. Isolation of Hydrazide-alkenes with Different Amino Acid Origins from an Azoxy-alkene-Producing Mutant of Streptomyces rochei 7434AN4. JOURNAL OF NATURAL PRODUCTS 2023; 86:2185-2192. [PMID: 37624992 DOI: 10.1021/acs.jnatprod.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
A triple mutant (strain KA57) of Streptomyces rochei 7434AN4 produces an azoxy-alkene compound, KA57A, which was not detected in a parent strain or other single and double mutants. This strain accumulated several additional minor components, whose structures were elucidated. HPLC analysis of strain KA57 indicated the presence of two UV active components (KA57D1 and KA57D2) as minor components. They exhibited a maximum UV absorbance at 218 nm, whereas a UV absorbance of azoxy-alkene KA57A was detected at 236 nm, suggesting that both KA57D1 and KA57D2 contain a different chromophore from KA57A. KA57D1 has a molecular formula of C12H22N2O2, and NMR analysis revealed KA57D1 is a novel hydrazide-alkene compound, (Z)-N-acetyl-N'-(hex-1-en-1-yl)isobutylhydrazide. Labeling studies indicated that nitrogen Nβ of KA57D1 is derived from l-glutamic acid, and the isobutylamide unit (C-1 to C-3, 2-Me, and Nα) originates from valine. KA57D2 has a molecular formula of C13H24N2O2, and its structure was determined to be (Z)-N-acetyl-N'-(hex-1-en-1-yl)-2-methylbutanehydrazide, in which a 2-methylbutanamide unit was shown to originate from isoleucine. Different biogenesis of the Nα atom (l-serine for KA57A, l-valine for KA57D1, and l-isoleucine for KA57D2) indicates the relaxed substrate recognition for nitrogen-nitrogen bond formation in the biosyntheses of KA57A, KA57D1, and KA57D2.
Collapse
Affiliation(s)
- Yu Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Haruka Nagano
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Mei Okano
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takuya Kishimoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ayaka Tatsukawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Hirofumi Kunitake
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Atsushi Fukumoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Yojiro Anzai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
2
|
Waschulin V, Borsetto C, Corre C, Wellington EM. Design and validation of a PCR screen for γ-butyrolactone-like regulatory systems in Streptomyces. Access Microbiol 2023; 5:000661.v3. [PMID: 37841097 PMCID: PMC10569655 DOI: 10.1099/acmi.0.000661.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
γ-butyrolactone and related signalling systems are found in Streptomyces and other actinobacteria where they control the production of secondary or specialized metabolites such as antibiotics. Genetic manipulation of these regulatory systems therefore leads to changes in the secondary metabolite profile of a strain and has been used to activate previously silent secondary metabolite gene clusters. However, there is no easy way to assess the presence of γ-butyrolactone-like systems in Streptomyces strains without whole-genome sequencing. We have therefore developed and tested a PCR screen that is able to detect homologues of the commonly co-located butenolide synthase and γ-butyrolactone receptor genes. This PCR screen could be employed for the screening of strain libraries to detect signalling systems without the necessity for whole-genome sequencing.
Collapse
Affiliation(s)
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Christophe Corre
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
3
|
Zhang M, Shuang B, Arakawa K. Accumulation of lankamycin derivative with a branched-chain sugar from a blocked mutant of chalcose biosynthesis in Streptomyces rochei 7434AN4. Bioorg Med Chem Lett 2023; 80:129125. [PMID: 36621553 DOI: 10.1016/j.bmcl.2023.129125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Lankamycin, a macrolide antibiotic produced by Streptomyces rochei 7434AN4, exhibits a moderate antimicrobial activity and acts as a synergistic pair with carbocyclic antibiotic lankacidin C by binding to the ribosome exit tunnel. Its biosynthetic gene (lkm) cluster (orf24-orf53) is located on the largest plasmid pSLA2-L (210,614 bp). Our group possesses a variety of lankamycin derivatives and macrolide-modification enzymes including P450 enzymes and glycosyltransferases, which may lead to expand the chemical library of bioactive macrolides. Here we constructed a mutant of a 3-ketoreductase gene lkmCVI (orf42) involved in d-chalcose biosynthesis, and its metabolite was isolated and structure-elucidated. Accumulation of novel lankamycin derivative harboring a branched-chain deoxysugar, 5-O-(4',6'-dideoxy-3'-C-acetyl-d-ribo-hexopyranosyl)-3-O-(4″-O-acetyl-l-arcanosyl)-lankanolide, indicated that LkmCVI acts as a gate keeper enzyme for d-chalcose synthesis in lankamycin biosynthesis.
Collapse
Affiliation(s)
- Mingge Zhang
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Bao Shuang
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; School of Life Sciences, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang 150030, China
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
4
|
Bioinspired computational design of lankacidin derivatives for improvement in antitumor activity. Future Med Chem 2022; 14:1349-1360. [PMID: 36073363 DOI: 10.4155/fmc-2022-0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The 17-membered polyketide, lankacidin C, exhibits considerable antitumor activity as a microtubule stabilizer by binding to the paclitaxel binding site. Method: Esterification of the C-7/C-13 hydroxyl in lankacidin C was performed with acetyl, cinnamoyl and hydrocinnamoyl groups and their antitumor activity was assessed to improve the cytotoxicity of lankacidins through bioinspired computational design. Results: Compared with the cytotoxicity of parent lankacidin C against the HeLa cell line, 13-O-cinnamoyl-lankacidin C demonstrated sevenfold higher cytotoxicity. Furthermore, 7,13-di-O-cinnamoyl-lankacidin C exhibited considerable antitumor activity against three tested cell lines. Conclusion: C13-esterification by a cinnamoyl group dramatically improved antitumor activity, in agreement with computational predictions. This finding provides a potential substrate for next-generation lankacidin derivatives with significant antitumor activity.
Collapse
|
5
|
Misaki Y, Takahashi Y, Hara K, Tatsuno S, Arakawa K. Three 4-monosubstituted butyrolactones from a regulatory gene mutant of Streptomyces rochei 7434AN4. J Biosci Bioeng 2022; 133:329-334. [DOI: 10.1016/j.jbiosc.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
6
|
Creamer KE, Kudo Y, Moore BS, Jensen PR. Phylogenetic analysis of the salinipostin γ-butyrolactone gene cluster uncovers new potential for bacterial signalling-molecule diversity. Microb Genom 2021; 7:000568. [PMID: 33979276 PMCID: PMC8209734 DOI: 10.1099/mgen.0.000568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteria communicate by small-molecule chemicals that facilitate intra- and inter-species interactions. These extracellular signalling molecules mediate diverse processes including virulence, bioluminescence, biofilm formation, motility and specialized metabolism. The signalling molecules produced by members of the phylum Actinobacteria generally comprise γ-butyrolactones, γ-butenolides and furans. The best-known actinomycete γ-butyrolactone is A-factor, which triggers specialized metabolism and morphological differentiation in the genus Streptomyces . Salinipostins A–K are unique γ-butyrolactone molecules with rare phosphotriester moieties that were recently characterized from the marine actinomycete genus Salinispora . The production of these compounds has been linked to the nine-gene biosynthetic gene cluster (BGC) spt . Critical to salinipostin assembly is the γ-butyrolactone synthase encoded by spt9 . Here, we report the surprising distribution of spt9 homologues across 12 bacterial phyla, the majority of which are not known to produce γ-butyrolactones. Further analyses uncovered a large group of spt -like gene clusters outside of the genus Salinispora , suggesting the production of new salinipostin-like diversity. These gene clusters show evidence of horizontal transfer and location-specific recombination among Salinispora strains. The results suggest that γ-butyrolactone production may be more widespread than previously recognized. The identification of new γ-butyrolactone BGCs is the first step towards understanding the regulatory roles of the encoded small molecules in Actinobacteria.
Collapse
Affiliation(s)
- Kaitlin E. Creamer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Yuta Kudo
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Present address: Frontier Research Institute for Interdisciplinary Sciences, Japan Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Teshima A, Kondo H, Tanaka Y, Nindita Y, Misaki Y, Konaka Y, Itakura Y, Tonokawa T, Kinashi H, Arakawa K. Substrate specificity of two cytochrome P450 monooxygenases involved in lankamycin biosynthesis. Biosci Biotechnol Biochem 2021; 85:115-125. [PMID: 33577670 DOI: 10.1093/bbb/zbaa063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022]
Abstract
To elucidate the gross lankamycin biosynthetic pathway including two cytochrome P450 monooxygenases, LkmK and LkmF, we constructed two double mutants of P450 genes in combination with glycosyltransferase genes, lkmL and lkmI. An aglycon 8,15-dideoxylankanolide, a possible substrate for LkmK, was prepared from an lkmK-lkmL double mutant, while a monoglycoside 3-O-l-arcanosyl-8-deoxylankanolide, a substrate for LkmF, was from an lkmF-lkmI double mutant. Bioconversion of lankamycin derivatives was performed in the Escherichia coli recombinant for LkmK and the Streptomyces lividans recombinant for LkmF, respectively. LkmK catalyzes the C-15 hydroxylation on all 15-deoxy derivatives, including 8,15-dideoxylankanolide (a possible substrate), 8,15-dideoxylankamycin, and 15-deoxylankamycin, suggesting the relaxed substrate specificity of LkmK. On the other hand, LkmF hydroxylates the C-8 methine of 3-O-l-anosyl-8-deoxylankanolide. Other 8-deoxy lankamycin/lankanolide derivatives were not oxidized, suggesting the importance of a C-3 l-arcanosyl moiety for substrate recognition by LkmF in lankamycin biosynthesis. Thus, LkmF has a strict substrate specificity in lankamycin biosynthesis.
Collapse
Affiliation(s)
- Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan
| | - Hisashi Kondo
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| | - Yu Tanaka
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yosi Nindita
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuya Misaki
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuji Konaka
- Faculty of Engineering, Hiroshima University, Hiroshima, Japan
| | | | | | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Rich Repertoire of Quorum Sensing Protein Coding Sequences in CPR and DPANN Associated with Interspecies and Interkingdom Communication. mSystems 2020; 5:5/5/e00414-20. [PMID: 33051376 PMCID: PMC7567580 DOI: 10.1128/msystems.00414-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The selection of predicted genes for interspecies communication within the CPR and DPANN genomes sheds some light onto the underlying mechanisms supporting their inferred symbiotic lifestyle. Also, considering the lack of core pathways such as the de novo synthesis of nucleotides or amino acids in the CPR and DPANN lineages, the persistence of these genes highlights how determinant social traits can be for the survival of some microorganisms. Finally, the considerable number of variants of QS proteins identified among the 69 CPR and DPANN phyla substantially expands our knowledge of prokaryotic communication across the tree of life and suggests that the multiplicity of “dialects” in the microbial world is probably larger than previously appreciated. The bacterial candidate phyla radiation (CPR) and the archaeal DPANN superphylum are two novel lineages that have substantially expanded the tree of life due to their large phylogenetic diversity. Because of their ultrasmall size, reduced genome, and lack of core biosynthetic capabilities, most CPR and DPANN members are predicted to be sustained through their interactions with other species. How the few characterized CPR and DPANN symbionts achieve these critical interactions is, however, poorly understood. Here, we conducted an in silico analysis on 2,597 CPR/DPANN genomes to test whether these ultrasmall microorganisms might encode homologs of reference proteins involved in the synthesis and/or the detection of 26 different types of communication molecules (quorum sensing [QS] signals), since QS signals are well-known mediators of intra- and interorganismic relationships. We report the discovery of 5,693 variants of QS proteins distributed across 63 CPR and 6 DPANN phyla and associated with 14 distinct types of communication molecules, most of which were characterized as interspecies QS signals. IMPORTANCE The selection of predicted genes for interspecies communication within the CPR and DPANN genomes sheds some light onto the underlying mechanisms supporting their inferred symbiotic lifestyle. Also, considering the lack of core pathways such as the de novo synthesis of nucleotides or amino acids in the CPR and DPANN lineages, the persistence of these genes highlights how determinant social traits can be for the survival of some microorganisms. Finally, the considerable number of variants of QS proteins identified among the 69 CPR and DPANN phyla substantially expands our knowledge of prokaryotic communication across the tree of life and suggests that the multiplicity of “dialects” in the microbial world is probably larger than previously appreciated.
Collapse
|
9
|
Teshima A, Hadae N, Tsuda N, Arakawa K. Functional Analysis of P450 Monooxygenase SrrO in the Biosynthesis of Butenolide-Type Signaling Molecules in Streptomyces rochei. Biomolecules 2020; 10:biom10091237. [PMID: 32854353 PMCID: PMC7564063 DOI: 10.3390/biom10091237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Streptomyces rochei 7434AN4 produces two structurally unrelated polyketide antibiotics lankacidin and lankamycin, and their biosynthesis is tightly controlled by butenolide-type signaling molecules SRB1 and SRB2. SRBs are synthesized by SRB synthase SrrX, and induce lankacidin and lankamycin production at 40 nM concentration. We here investigated the role of a P450 monooxygenase gene srrO (orf84), which is located adjacent to srrX (orf85), in SRB biosynthesis. An srrO mutant KA54 accumulated lankacidin and lankamycin at a normal level when compared with the parent strain. To elucidate the chemical structures of the signaling molecules accumulated in KA54 (termed as KA54-SRBs), this mutant was cultured (30 L) and the active components were purified. Two active components (KA54-SRB1 and KA54-SRB2) were detected in ESI-MS and chiral HPLC analysis. The molecular formulae for KA54-SRB1 and KA54-SRB2 are C15H26O4 and C16H28O4, whose values are one oxygen smaller and two hydrogen larger when compared with those for SRB1 and SRB2, respectively. Based on extensive NMR analysis, the signaling molecules in KA54 were determined to be 6'-deoxo-SRB1 and 6'-deoxo-SRB2. Gel shift analysis indicated that a ligand affinity of 6'-deoxo-SRB1 to the specific receptor SrrA was 100-fold less than that of SRB1. We performed bioconversion of the synthetic 6'-deoxo-SRB1 in the Streptomyces lividans recombinant carrying SrrO-expression plasmid. Substrate 6'-deoxo-SRB1 was converted through 6'-deoxo-6'-hydroxy-SRB1 to SRB1 in a time-dependent manner. Thus, these results clearly indicated that SrrO catalyzes the C-6' oxidation at a final step in SRB biosynthesis.
Collapse
Affiliation(s)
- Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Nozomi Hadae
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Naoto Tsuda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; (A.T.); (N.H.); (N.T.)
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Correspondence: ; Tel./Fax: +81-82-424-7767
| |
Collapse
|
10
|
Misaki Y, Yamamoto S, Suzuki T, Iwakuni M, Sasaki H, Takahashi Y, Inada K, Kinashi H, Arakawa K. SrrB, a Pseudo-Receptor Protein, Acts as a Negative Regulator for Lankacidin and Lankamycin Production in Streptomyces rochei. Front Microbiol 2020; 11:1089. [PMID: 32582072 PMCID: PMC7296167 DOI: 10.3389/fmicb.2020.01089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 11/15/2022] Open
Abstract
Streptomyces rochei 7434AN4, a producer of lankacidin (LC) and lankamycin (LM), carries many regulatory genes including a biosynthesis gene for signaling molecules SRBs (srrX), an SRB receptor gene (srrA), and a SARP (Streptomyces antibiotic regulatory protein) family activator gene (srrY). Our previous study revealed that the main regulatory cascade goes from srrX through srrA to srrY, leading to LC production, whereas srrY further regulates a second SARP gene srrZ to synthesize LM. In this study we extensively investigated the function of srrB, a pseudo-receptor gene, by analyzing antibiotic production and transcription. Metabolite analysis showed that the srrB mutation increased both LC and LM production over four-folds. Transcription, gel shift, and DNase I footprinting experiments revealed that srrB and srrY are expressed under the SRB/SrrA regulatory system, and at the later stage, SrrB represses srrY expression by binding to the promoter region of srrY. These findings confirmed that SrrB acts as a negative regulator of the activator gene srrY to control LC and LM production at the later stage of fermentation in S. rochei.
Collapse
Affiliation(s)
- Yuya Misaki
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shouji Yamamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Toshihiro Suzuki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyuki Iwakuni
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroaki Sasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuzuru Takahashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kuninobu Inada
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kenji Arakawa
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
11
|
Nindita Y, Cao Z, Fauzi AA, Teshima A, Misaki Y, Muslimin R, Yang Y, Shiwa Y, Yoshikawa H, Tagami M, Lezhava A, Ishikawa J, Kuroda M, Sekizuka T, Inada K, Kinashi H, Arakawa K. The genome sequence of Streptomyces rochei 7434AN4, which carries a linear chromosome and three characteristic linear plasmids. Sci Rep 2019; 9:10973. [PMID: 31358803 PMCID: PMC6662830 DOI: 10.1038/s41598-019-47406-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Streptomyces rochei 7434AN4 produces two structurally unrelated polyketide antibiotics, lankacidin and lankamycin, and carries three linear plasmids, pSLA2-L (211 kb), -M (113 kb), and -S (18 kb), whose nucleotide sequences were previously reported. The complete nucleotide sequence of the S. rochei chromosome has now been determined using the long-read PacBio RS-II sequencing together with short-read Illumina Genome Analyzer IIx sequencing and Roche 454 pyrosequencing techniques. The assembled sequence revealed an 8,364,802-bp linear chromosome with a high G + C content of 71.7% and 7,568 protein-coding ORFs. Thus, the gross genome size of S. rochei 7434AN4 was confirmed to be 8,706,406 bp including the three linear plasmids. Consistent with our previous study, a tap-tpg gene pair, which is essential for the maintenance of a linear topology of Streptomyces genomes, was not found on the chromosome. Remarkably, the S. rochei chromosome contains seven ribosomal RNA (rrn) operons (16S-23S-5S), although Streptomyces species generally contain six rrn operons. Based on 2ndFind and antiSMASH platforms, the S. rochei chromosome harbors at least 35 secondary metabolite biosynthetic gene clusters, including those for the 28-membered polyene macrolide pentamycin and the azoxyalkene compound KA57-A.
Collapse
Affiliation(s)
- Yosi Nindita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Zhisheng Cao
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Amirudin Akhmad Fauzi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yuya Misaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Rukman Muslimin
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yingjie Yang
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hirofumi Yoshikawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Michihira Tagami
- Omics Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Alexander Lezhava
- Omics Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kuninobu Inada
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan. .,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| |
Collapse
|
12
|
Martín JF, Liras P. Harnessing microbiota interactions to produce bioactive metabolites: communication signals and receptor proteins. Curr Opin Pharmacol 2019; 48:8-16. [PMID: 30933876 DOI: 10.1016/j.coph.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 11/30/2022]
Abstract
Numerous microbial communities live in soil, aquatic habitats, plants, and animal bodies. Microbial genome sequences have revealed that thousands of biosynthetic gene clusters (BGCs) are present in different bacteria and filamentous fungi. Many of these BGCs are not expressed in pure cultures in the laboratory. However, a large part of these silent clusters is expressed in nature when complex microbial populations are studied. The encoding specialized metabolites are frequently produced at very low concentrations but still they serve as communication signals that produce important biochemical and differentiation effects on other microorganisms of the consortium. Many specialized metabolites acting as communication signals have been identified, including autoinducers, intergeneric, and interkingdom cues. These signals trigger expression of silent BGCs in other microorganisms, thus providing new compounds with interesting biological and pharmacological activities. Examples of interactions between different bacteria or between bacteria and fungi are described here. Finally, the relevance of the human microbiota and the production in vivo of specialized metabolites of medical interest is discussed.
Collapse
Affiliation(s)
- Juan F Martín
- Department of Molecular Biology, Section Microbiology, University of León, 24071 León, Spain.
| | - Paloma Liras
- Department of Molecular Biology, Section Microbiology, University of León, 24071 León, Spain
| |
Collapse
|
13
|
Wang W, Zhang J, Liu X, Li D, Li Y, Tian Y, Tan H. Identification of a butenolide signaling system that regulates nikkomycin biosynthesis in Streptomyces. J Biol Chem 2018; 293:20029-20040. [PMID: 30355730 DOI: 10.1074/jbc.ra118.005667] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/13/2018] [Indexed: 11/06/2022] Open
Abstract
Butenolides are an emerging family of signaling molecules in Streptomyces. They control complex physiological traits, such as morphological differentiation and antibiotic production. However, how butenolides regulate these processes is poorly investigated because of obstacles in obtaining these signaling molecules. This study reports the identification of a butenolide-type signaling system for nikkomycin biosynthesis in Streptomyces ansochromogenes with distinct features. We identified a gene cluster, sab, consisting of three genes, sabAPD, for butenolide biosynthesis and two regulator genes, sabR1 and sabR2, and characterized three butenolides (SAB1, -2, and -3) by heterologous expression of sabAPD. sabA disruption abolished nikkomycin production, which could be restored by the addition of SABs or by deletion of sabR1 in ΔsabA. Electrophoretic mobility-shift assays and transcriptional analyses indicated that SabR1 indirectly represses the transcription of nikkomycin biosynthetic genes, but directly represses sabA and sabR1 In the presence of SABs, the SabR1 transcriptional regulator dissociated from its target genes, verifying that SabR1 is the cognate receptor of SABs. Genome-wide scanning with the conserved SabR1-binding sequence revealed another SabR1 target gene, cprC, whose transcription was strongly repressed by SabR1. Intriguingly, CprC positively regulated the pleiotropic regulatory gene adpA by binding to its promoter and, in turn, activated nikkomycin biosynthesis. This is the first report that butenolide-type signaling molecules and their cognate receptor SabR1 can regulate adpA via a newly identified activator, CprC, to control nikkomycin production. These findings pave the way for further studies seeking to unravel the regulatory mechanism and functions of the butenolide signaling system in Streptomyces.
Collapse
Affiliation(s)
- Wenxi Wang
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and; the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihui Zhang
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and.
| | - Xiang Liu
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and; the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and; the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and
| | - Yuqing Tian
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and; the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huarong Tan
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and; the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
He H, Ye L, Li C, Wang H, Guo X, Wang X, Zhang Y, Xiang W. SbbR/SbbA, an Important ArpA/AfsA-Like System, Regulates Milbemycin Production in Streptomyces bingchenggensis. Front Microbiol 2018; 9:1064. [PMID: 29875761 PMCID: PMC5974925 DOI: 10.3389/fmicb.2018.01064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
Milbemycins, a group of 16-membered macrolide antibiotics, are used widely as insecticides and anthelmintics. Previously, a limited understanding of the transcriptional regulation of milbemycin biosynthesis has hampered efforts to enhance antibiotic production by engineering of regulatory genes. Here, a novel ArpA/AfsA-type system, SbbR/SbbA (SBI_08928/SBI_08929), has been identified to be involved in regulating milbemycin biosynthesis in the industrial strain S. bingchenggensis BC04. Inactivation of sbbR in BC04 resulted in markedly decreased production of milbemycin, while deletion of sbbA enhanced milbemycin production. Electrophoresis mobility shift assays (EMSAs) and DNase I footprinting studies showed that SbbR has a specific DNA-binding activity for the promoters of milR (the cluster-situated activator gene for milbemycin production) and the bidirectionally organized genes sbbR and sbbA. Transcriptional analysis suggested that SbbR directly activates the transcription of milR, while represses its own transcription and that of sbbA. Moreover, 11 novel targets of SbbR were additionally found, including seven regulatory genes located in secondary metabolite biosynthetic gene clusters (e.g., sbi_08420, sbi_08432, sbi_09158, sbi_00827, sbi_01376, sbi_09325, and sig24sbh) and four well-known global regulatory genes (e.g., glnRsbh, wblAsbh, atrAsbh, and mtrA/Bsbh). These data suggest that SbbR is not only a direct activator of milbemycin production, but also a pleiotropic regulator that controls the expression of other cluster-situated regulatory genes and global regulatory genes. Overall, this study reveals the upper-layer regulatory system that controls milbemycin biosynthesis, which will not only expand our understanding of the complex regulation in milbemycin biosynthesis, but also provide a basis for an approach to improve milbemycin production via genetic manipulation of SbbR/SbbA system.
Collapse
Affiliation(s)
- Hairong He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Lan Ye
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Chuang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowei Guo
- School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xiangjing Wang
- School of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,School of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Arakawa K. Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp. Antonie van Leeuwenhoek 2018; 111:743-751. [PMID: 29476430 DOI: 10.1007/s10482-018-1052-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
Abstract
Streptomyces is well characterized by an ability to produce a wide variety of secondary metabolites including antibiotics, whose expression is strictly controlled by small diffusible signaling molecules at nano-molar concentrations. The signaling molecules identified to date are classified into three skeletons; γ-butyrolactones, furans, and γ-butenolides. Accumulated data suggest the structural diversity of the signaling molecules in Streptomyces species and their potential in activating cryptic secondary metabolite biosynthetic pathways. Several genome mining approaches to activate silent biosynthetic gene clusters have been reported for natural product discovery. This review updates recent examples on genetic manipulation including blockage of metabolic pathways together with inactivation of transcriptional repressor genes.
Collapse
Affiliation(s)
- Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
16
|
Lu F, Hou Y, Zhang H, Chu Y, Xia H, Tian Y. Regulatory genes and their roles for improvement of antibiotic biosynthesis in Streptomyces. 3 Biotech 2017; 7:250. [PMID: 28718097 DOI: 10.1007/s13205-017-0875-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/07/2017] [Indexed: 01/23/2023] Open
Abstract
The numerous secondary metabolites in Streptomyces spp. are crucial for various applications. For example, cephamycin C is used as an antibiotic, and avermectin is used as an insecticide. Specifically, antibiotic yield is closely related to many factors, such as the external environment, nutrition (including nitrogen and carbon sources), biosynthetic efficiency and the regulatory mechanisms in producing strains. There are various types of regulatory genes that work in different ways, such as pleiotropic (or global) regulatory genes, cluster-situated regulators, which are also called pathway-specific regulatory genes, and many other regulators. The study of regulatory genes that influence antibiotic biosynthesis in Streptomyces spp. not only provides a theoretical basis for antibiotic biosynthesis in Streptomyces but also helps to increase the yield of antibiotics via molecular manipulation of these regulatory genes. Currently, more and more emphasis is being placed on the regulatory genes of antibiotic biosynthetic gene clusters in Streptomyces spp., and many studies on these genes have been performed to improve the yield of antibiotics in Streptomyces. This paper lists many antibiotic biosynthesis regulatory genes in Streptomyces spp. and focuses on frequently investigated regulatory genes that are involved in pathway-specific regulation and pleiotropic regulation and their applications in genetic engineering.
Collapse
|
17
|
Pait IGU, Kitani S, Kurniawan YN, Asa M, Iwai T, Ikeda H, Nihira T. Identification and characterization of lbpA, an indigoidine biosynthetic gene in the γ-butyrolactone signaling system of Streptomyces lavendulae FRI-5. J Biosci Bioeng 2017; 124:369-375. [PMID: 28533156 DOI: 10.1016/j.jbiosc.2017.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 11/18/2022]
Abstract
Streptomyces lavendulae FRI-5 produces the blue pigment indigoidine and other secondary metabolites (d-cycloserine and nucleoside antibiotics). The production of these useful compounds is controlled by a signaling cascade mediated by the γ-butyrolactone autoregulator IM-2. Previously we revealed that the far regulatory island includes the IM-2 receptor, the IM-2 biosynthetic enzyme, and several transcriptional regulators, and that it contributes to the regulation of indigoidine production in response to the signaling molecule. Here, we found that the vicinity of the far regulatory island includes the putative gene cluster for the biosynthesis of indigoidine and unidentified compounds, and demonstrated that the expression of the gene cluster is under the control of the IM-2 regulatory system. Heterologous expression of lbpA, encoding a plausible nonribosomal peptide synthetase, in the versatile model host Streptomyces avermitilis SUKA22 led to indigoidine production, which was enhanced dramatically by feeding of the indigoidine precursor l-glutamine. These results confirmed that LbpA is an indigoidine biosynthetic enzyme in the IM-2 signaling cascade.
Collapse
Affiliation(s)
- Ivy Grace Umadhay Pait
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yohanes Novi Kurniawan
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Maeda Asa
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Iwai
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand.
| |
Collapse
|
18
|
Intra B, Euanorasetr J, Nihira T, Panbangred W. Characterization of a gamma-butyrolactone synthetase gene homologue (stcA) involved in bafilomycin production and aerial mycelium formation in Streptomyces sp. SBI034. Appl Microbiol Biotechnol 2015; 100:2749-60. [PMID: 26603758 DOI: 10.1007/s00253-015-7142-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/26/2022]
Abstract
Streptomyces SBI034 produces several bafilomycin derivatives. Its afsA homologue (stcA) and putative γ-butyrolactone receptor gene (stcB) were cloned. Construction of a stcA disruptant (stcA gene knockout) resulted in complete abolishment of all bafilomycin production. Electron microscopic analysis showed a defect of aerial mycelium formation and sporulation in the stcA disruptant. Restoration of all phenotypic defects and bafilomycin production was observed in a stcA complemented strain. Addition of exogenous γ-butyrolactone (GBL) extracted from the culture broth of the wild-type strain could stimulate the aerial mycelium and spore formation of the stcA disruptant. These results suggest that stcA plays a role in GBL-mediated regulation of bafilomycin biosynthesis and morphological development in Streptomyces strain SBI034.
Collapse
Affiliation(s)
- Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Osaka Collaborative Research Center on Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Jirayut Euanorasetr
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Osaka Collaborative Research Center on Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Takuya Nihira
- Osaka Collaborative Research Center on Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- International Center for Biotechnology, Osaka University, Osaka, 565-0871, Japan
| | - Watanalai Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Osaka Collaborative Research Center on Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
19
|
Kunitake H, Hiramatsu T, Kinashi H, Arakawa K. Isolation and Biosynthesis of an Azoxyalkene Compound Produced by a Multiple Gene Disruptant ofStreptomyces rochei. Chembiochem 2015; 16:2237-43. [DOI: 10.1002/cbic.201500393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Hirofumi Kunitake
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Takahiro Hiramatsu
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Kenji Arakawa
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| |
Collapse
|
20
|
A Complex Signaling Cascade Governs Pristinamycin Biosynthesis in Streptomyces pristinaespiralis. Appl Environ Microbiol 2015; 81:6621-36. [PMID: 26187956 DOI: 10.1128/aem.00728-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023] Open
Abstract
Pristinamycin production in Streptomyces pristinaespiralis Pr11 is tightly regulated by an interplay between different repressors and activators. A γ-butyrolactone receptor gene (spbR), two TetR repressor genes (papR3 and papR5), three SARP (Streptomyces antibiotic regulatory protein) genes (papR1, papR2, and papR4), and a response regulator gene (papR6) are carried on the large 210-kb pristinamycin biosynthetic gene region of Streptomyces pristinaespiralis Pr11. A detailed investigation of all pristinamycin regulators revealed insight into a complex signaling cascade, which is responsible for the fine-tuned regulation of pristinamycin production in S. pristinaespiralis.
Collapse
|
21
|
Biarnes-Carrera M, Breitling R, Takano E. Butyrolactone signalling circuits for synthetic biology. Curr Opin Chem Biol 2015; 28:91-8. [PMID: 26164547 DOI: 10.1016/j.cbpa.2015.06.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 06/20/2015] [Indexed: 01/14/2023]
Abstract
Signalling circuits based on quorum sensing mechanisms have been popular tools for synthetic biology. Recent advances in our understanding of the analogous systems regulating antibiotics production in soil bacteria suggest that these might provide useful complementary tools to increase the complexity of possible circuit designs. Here we discuss the diversity of these natural circuits, which use γ-butyrolactones (GBLs) as their main inter-cellular signal, highlighting the range of new building blocks they could provide, as well as a number of exciting recent applications of GBL-based circuits in heterologous systems. We conclude by presenting examples of the novel circuit complexity that could become accessible through the use of GBL-based designs.
Collapse
Affiliation(s)
- Marc Biarnes-Carrera
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
22
|
Blockage of the early step of lankacidin biosynthesis caused a large production of pentamycin, citreodiol and epi-citreodiol in Streptomyces rochei. J Antibiot (Tokyo) 2014; 68:328-33. [PMID: 25464973 DOI: 10.1038/ja.2014.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/23/2014] [Accepted: 11/06/2014] [Indexed: 01/07/2023]
Abstract
In our effort to find the key intermediates of lankacidin biosynthesis in Streptomyces rochei, three UV-active compounds were isolated from mutant FS18, a gene disruptant of lkcA encoding a non-ribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) hybrid enzyme. Their structures were elucidated on the basis of spectroscopic data of NMR and MS. Two compounds of a higher mobile spot on silica gel TLC (Rf=0.45 in CHCl3-MeOH=20:1) were determined to be an epimeric mixture of citreodiol and epi-citreodiol at the C-6 position in the ratio of 2:1. In contrast, the compound of a lower mobile spot (Rf=~0 in CHCl3-MeOH=20:1) was identical to a 28-membered polyene macrolide pentamycin. The yields of citreodiols and pentamycin in FS18 were 5- and 250-fold higher compared with the parent strain. Introduction of a second mutation of srrX, coding a biosynthetic gene of the signaling molecules SRBs, into mutant FS18 did not affect the production of three metabolites. Thus, their production was not regulated by the SRB signaling molecules in contrast to lankacidin or lankamycin.
Collapse
|
23
|
Vaz Jauri P, Kinkel LL. Nutrient overlap, genetic relatedness and spatial origin influence interaction-mediated shifts in inhibitory phenotype amongStreptomycesspp. FEMS Microbiol Ecol 2014; 90:264-75. [DOI: 10.1111/1574-6941.12389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Patricia Vaz Jauri
- Department of Plant Pathology; University of Minnesota; Twin Cities MN USA
| | - Linda L. Kinkel
- Department of Plant Pathology; University of Minnesota; Twin Cities MN USA
| |
Collapse
|
24
|
Arakawa K. Genetic and biochemical analysis of the antibiotic biosynthetic gene clusters on the Streptomyces linear plasmid. Biosci Biotechnol Biochem 2014; 78:183-9. [PMID: 25036669 DOI: 10.1080/09168451.2014.882761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We extensively analyzed the giant linear plasmid pSLA2-L in Streptomyces rochei 7434AN4, a producer of two structurally unrelated polyketide antibiotics, lankacidin and lankamycin. It was found that amine oxidase LkcE oxidizes an acyclic amine to an imine, which is in turn converted to the 17-membered carbocyclic lankacidin. Heterologous expression and translational fusion experiments indicated the modular-iterative mixed polyketide biosynthesis of lankacidin. Concerning to lankamycin biosynthesis, starter unit biosynthesis and the post-PKS modification pathway were elucidated by feeding and gene inactivation experiments. It was shown that pSLA2-L contains many regulatory genes, which constitute the signaling molecule/receptor system for antibiotic production and morphological differentiation in this strain. Two signaling molecules, SRB1 and SRB2, that induce production of lankacidin and lankamycin were further isolated and their structures were elucidated. Each contains a 2,3-disubstituted butenolide skeleton, and the stereochemistry at C-1' position is crucial for inducing activity.
Collapse
Affiliation(s)
- Kenji Arakawa
- a Department of Molecular Biotechnology , Graduate School of Advanced Sciences of Matter, Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
25
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
26
|
Salehi-Najafabadi Z, Barreiro C, Rodríguez-García A, Cruz A, López GE, Martín JF. The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Appl Microbiol Biotechnol 2014; 98:4919-36. [PMID: 24562179 DOI: 10.1007/s00253-014-5595-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022]
Abstract
Streptomyces tsukubaensis is a well-established industrial tacrolimus producer strain, but its molecular genetics is very poorly known. This information shortage prevents the development of tailored mutants in the regulatory pathways. A region (named bul) contains several genes involved in the synthesis and control of the gamma-butyrolactone autoregulator molecules. This region contains ten genes (bulA, bulZ, bulY, bulR2, bulS2, bulR1, bulW, bluB, bulS1, bulC) including two γ-butyrolactone receptor homologues (bulR1, bulR2), two putative gamma-butyrolactone synthetase homologues (bulS1, bulS2) and two SARP regulatory genes (bulY, bulZ). Analysis of the autoregulatory element (ARE)-like sequences by electrophoretic mobility shift assays and footprinting using the purified BulR1 and BulR2 recombinant proteins revealed six ARE regulatory sequences distributed along the bul cluster. These sequences showed specific binding of both BulR1 (the gamma-butyrolactone receptor) and BulR2, a possible pseudo γ-butyrolactone receptor. The protected region in all cases covered a 28-nt sequence with a palindromic structure. Optimal docking area analysis of BulR1 proved that this protein can be presented as either monomer or dimer but not oligomers and that it binds to the conserved ARE sequence in both strands. The effect on tacrolimus production was analysed by deletion of the bulR1 gene, which resulted in a strong decrease of tacrolimus production. Meanwhile, the ΔbulR2 mutation did not affect the biosynthesis of this immunosuppressant.
Collapse
Affiliation(s)
- Zahra Salehi-Najafabadi
- Área de Microbiología, Departamento de Biología Molecular, Fac. CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Kormanec J, Novakova R, Mingyar E, Feckova L. Intriguing properties of the angucycline antibiotic auricin and complex regulation of its biosynthesis. Appl Microbiol Biotechnol 2013; 98:45-60. [PMID: 24265028 DOI: 10.1007/s00253-013-5373-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
Streptomyces bacteria are major producers of bioactive natural products, including many antibiotics. We identified a gene cluster, aur1, in a large linear plasmid of Streptomyces aureofaciens CCM3239. The cluster is responsible for the production of a new angucycline polyketide antibiotic auricin. Several tailoring biosynthetic genes were scatted in rather distant aur1 flanking regions. Auricin was produced in a very narrow growth phase interval of several hours after entry into stationary phase, after which it was degraded to non-active metabolites because of its instability at the high pH values reached after the production stage. Strict transcriptional regulation of the auricin biosynthetic gene cluster has been demonstrated, including feed-forward and feedback control by auricin intermediates via several of the huge number of regulatory genes present in the aur1 cluster. The complex mechanism may ensure strict confinement of auricin production to a specific growth stage.
Collapse
Affiliation(s)
- Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic,
| | | | | | | |
Collapse
|
28
|
Arakawa K, Tsuda N, Taniguchi A, Kinashi H. The Butenolide Signaling Molecules SRB1 and SRB2 Induce Lankacidin and Lankamycin Production in Streptomyces rochei. Chembiochem 2012; 13:1447-57. [DOI: 10.1002/cbic.201200149] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Indexed: 11/05/2022]
|
29
|
Characterization of a new ScbR-like γ-butyrolactone binding regulator (SlbR) in Streptomyces coelicolor. Appl Microbiol Biotechnol 2012; 96:113-21. [PMID: 22246527 DOI: 10.1007/s00253-011-3803-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/27/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
Abstract
γ-Butyrolactones in Streptomyces are well recognized as bacterial hormones, and they affect secondary metabolism of Streptomyces. γ-Butyrolactone receptors are considered important regulatory proteins, and various γ-butyrolactone synthases and receptors have been reported in Streptomyces. Here, we characterized a new regulator, SCO0608, that interacted with SCB1 (γ-butyrolactone of Streptomyces coelicolor) and bound to the scbR/A and adpA promoters. The SCO0608 protein sequences are not similar to those of any known γ-butyrolactone binding proteins in Streptomyces such as ScbR from S. coelicolor or ArpA from Streptomyces griseus. Interestingly, SCO0608 functions as a repressor of antibiotic biosynthesis and spore formation in R5 complex media. We showed the existence of another type of γ-butyrolactone receptor in Streptomyces, and this SCO0608 was named ScbR-like γ-butyrolactone binding regulator (SlbR) in S. coelicolor.
Collapse
|
30
|
Wang J, Wang W, Wang L, Zhang G, Fan K, Tan H, Yang K. A novel role of ‘pseudo’γ-butyrolactone receptors in controlling γ-butyrolactone biosynthesis in Streptomyces. Mol Microbiol 2011; 82:236-50. [DOI: 10.1111/j.1365-2958.2011.07811.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Isolation, structural elucidation, and biosynthesis of 15-norlankamycin derivatives produced by a type-II thioesterase disruptant of Streptomyces rochei. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
pSLA2-M of Streptomyces rochei is a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L. Biosci Biotechnol Biochem 2011; 75:1147-53. [PMID: 21670526 DOI: 10.1271/bbb.110054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 113,463-bp nucleotide sequence of the linear plasmid pSLA2-M of Streptomyces rochei 7434AN4 was determined. pSLA2-M had a 69.7% overall GC content, 352-bp terminal inverted repeats with 91% (321/352) identity at both ends, and 121 open reading frames. The rightmost 14.6-kb sequence was almost (14,550/14,555) identical to that of the coexisting 211-kb linear plasmid pSLA2-L. Adjacent to this homologous region an 11.8-kb CRISPR cluster was identified, which is known to function against phage infection in prokaryotes. This cluster region as well as another one containing two large membrane protein genes (orf78 and orf79) were flanked by direct repeats of 194 and 566 bp respectively. Hence the insertion of circular DNAs containing each cluster by homologous recombination was suggested. In addition, the orf71 encoded a Ku70/Ku80-like protein, known to function in the repair of double-strand DNA breaks in eukaryotes, but disruption of it did not affect the radiation sensitivity of the mutant. A pair of replication initiation genes (orf1-orf2) were identified at the extreme left end. Thus, pSLA2-M proved to be a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L that might have been generated by multiple recombination events.
Collapse
|
33
|
Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of Kinamycins. J Bacteriol 2010; 193:1142-53. [PMID: 21193612 DOI: 10.1128/jb.01269-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of Streptomyces ambofaciens, a species known to produce the congocidine and spiramycin antibiotics, has revealed the presence of numerous gene clusters predicted to be involved in the biosynthesis of secondary metabolites. Among them, the type II polyketide synthase-encoding alp cluster was shown to be responsible for the biosynthesis of a compound with antibacterial activity. Here, by means of a deregulation approach, we gained access to workable amounts of the antibiotics for structure elucidation. These compounds, previously designated as alpomycin, were shown to be known members of kinamycin family of antibiotics. Indeed, a mutant lacking AlpW, a member of the TetR regulator family, was shown to constitutively produce kinamycins. Comparative transcriptional analyses showed that expression of alpV, the essential regulator gene required for activation of the biosynthetic genes, is strongly maintained during the stationary growth phase in the alpW mutant, a stage at which alpV transcripts and thereby transcripts of the biosynthetic genes normally drop off. Recombinant AlpW displayed DNA binding activity toward specific motifs in the promoter region of its own gene and that of alpV and alpZ. These recognition sequences are also targets for AlpZ, the γ-butyrolactone-like receptor involved in the regulation of the alp cluster. However, unlike that of AlpZ, the AlpW DNA-binding ability seemed to be insensitive to the signaling molecules controlling antibiotic biosynthesis. Together, the results presented in this study reveal S. ambofaciens to be a new producer of kinamycins and AlpW to be a key late repressor of the cellular control of kinamycin biosynthesis.
Collapse
|
34
|
Giant linear plasmids in Streptomyces: a treasure trove of antibiotic biosynthetic clusters. J Antibiot (Tokyo) 2010; 64:19-25. [DOI: 10.1038/ja.2010.146] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Willey JM, Gaskell AA. Morphogenetic Signaling Molecules of the Streptomycetes. Chem Rev 2010; 111:174-87. [DOI: 10.1021/cr1000404] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joanne M. Willey
- Department of Biology, Hofstra University, Hempstead, New York 11549, United States, and Hofstra University-North Shore-Long Island Jewish School of Medicine, Hempstead, New York 11549, United States
| | - Alisa A. Gaskell
- Department of Biology, Hofstra University, Hempstead, New York 11549, United States, and Hofstra University-North Shore-Long Island Jewish School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|
36
|
Abstract
This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
37
|
Control of secondary metabolism by farX, which is involved in the γ-butyrolactone biosynthesis of Streptomyces lavendulae FRI-5. Arch Microbiol 2010; 192:211-20. [DOI: 10.1007/s00203-010-0550-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/22/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
38
|
The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics. Proc Natl Acad Sci U S A 2010; 107:1983-8. [PMID: 20080686 PMCID: PMC2804743 DOI: 10.1073/pnas.0914100107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, the streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.
Collapse
|
39
|
Gene disruption analysis of two glycosylation steps in lankamycin biosynthesis in Streptomyces rochei. ACTA ACUST UNITED AC 2008. [DOI: 10.3209/saj.saj220202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
|
41
|
Gamma-butyrolactone-dependent expression of the Streptomyces antibiotic regulatory protein gene srrY plays a central role in the regulatory cascade leading to lankacidin and lankamycin production in Streptomyces rochei. J Bacteriol 2007; 190:1308-16. [PMID: 18083808 DOI: 10.1128/jb.01383-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies revealed that the srrX and srrA genes carried on the large linear plasmid pSLA2-L constitute a gamma-butyrolactone-receptor system in Streptomyces rochei. Extensive transcriptional analysis has now showed that the Streptomyces antibiotic regulatory protein gene srrY, which is also carried on pSLA2-L, is a target of the receptor/repressor SrrA and plays a central role in lankacidin and lankamycin production. The srrY gene was expressed in a growth-dependent manner, slightly preceding antibiotic production. The expression of srrY was undetectable in the srrX mutant but was restored in the srrX srrA double mutant. In addition, SrrA was bound specifically to the promoter region of srrY, and this binding was prevented by the addition of the S. rochei gamma-butyrolactone fraction, while the W119A mutant receptor SrrA was kept bound even in the presence of S. rochei gamma-butyrolactone. Furthermore, the introduction of an intact srrY gene under the control of a foreign promoter into the srrX or srrA(W119A) mutant restored antibiotic production. All of these results confirmed the signaling pathway from srrX through srrA to srrY, leading to lankacidin and lankamycin production.
Collapse
|