1
|
Liu A, Ellis D, Mhatre A, Brahmankar S, Seto J, Nielsen DR, Varman AM. Biomanufacturing of value-added chemicals from lignin. Curr Opin Biotechnol 2024; 89:103178. [PMID: 39098292 DOI: 10.1016/j.copbio.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Lignin valorization faces persistent biomanufacturing challenges due to the heterogeneous and toxic carbon substrates derived from lignin depolymerization. To address the heterogeneous nature of aromatic feedstocks, plant cell wall engineering and 'lignin first' pretreatment methods have recently emerged. Next, to convert the resulting aromatic substrates into value-added chemicals, diverse microbial host systems also continue to be developed. This includes microbes that (1) lack aromatic metabolism, (2) metabolize aromatics but not sugars, and (3) co-metabolize both aromatics and sugars, each system presenting unique pros and cons. Considering the intrinsic complexity of lignin-derived substrate mixtures, emerging and non-model microbes with native metabolism for aromatics appear poised to provide the greatest impacts on lignin valorization via biomanufacturing.
Collapse
Affiliation(s)
- Arren Liu
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Dylan Ellis
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Sumant Brahmankar
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jong Seto
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - David R Nielsen
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Arul M Varman
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Matsuzawa M, Ito J, Danjo K, Fukui K. Vanillin production by Corynebacterium glutamicum using heterologous aromatic carboxylic acid reductases. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:58. [PMID: 38693567 PMCID: PMC11064420 DOI: 10.1186/s13068-024-02507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Vanillin is a flavoring substance derived from vanilla. We are currently developing a biotransformation method for vanillin production using glucose. This report describes the last step in vanillin production: the conversion of vanillic acid to vanillin. First, we selected Corynebacterium glutamicum as the host owing to its high vanillin resistance. The aromatic aldehyde reductase gene (NCgl0324) and vanillic acid demethylase protein subunits A and B gene (vanAB, NCgl2300-NCgl2301) were deleted in C. glutamicum genome to avoid vanillin degradation. Next, we searched for an aromatic carboxylic acid reductase (ACAR), which converts vanillic acid to vanillin. Seventeen ACAR homologs from various organisms were introduced into C. glutamicum. RESULTS In vivo conversion experiments showed that eight ACARs were successfully expressed and produced vanillin. In terms of conversion activity and substrate specificity, the ACARs from Gordonia effusa, Coccomyxa subellipsoidea, and Novosphingobium malaysiense are promising candidates for commercial production. CONCLUSIONS Corynebacterium glutamicum harboring Gordonia effusa ACAR produced 22 g/L vanillin, which is, to the best of our knowledge, the highest accumulation reported in the literature. At the same time, we discovered ACAR from Novosphingobium malaysiense and Coccomyxa subellipsoidea C-169 with high substrate specificity. These findings are useful for reducing the byproducts.
Collapse
Affiliation(s)
- Miku Matsuzawa
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, 210-8681, Japan
| | - Junko Ito
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, 210-8681, Japan
| | - Keiko Danjo
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, 210-8681, Japan
| | - Keita Fukui
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, 210-8681, Japan.
| |
Collapse
|
3
|
Kurpejović E, Wibberg D, Bastem GM, Burgardt A, Busche T, Kaya FEA, Dräger A, Wendisch VF, Akbulut BS. Can Genome Sequencing Coupled to Flux Balance Analyses Offer Precision Guidance for Industrial Strain Development? The Lessons from Carbon Trafficking in Corynebacterium glutamicum ATCC 21573. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:434-443. [PMID: 37707996 DOI: 10.1089/omi.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Systems biology tools offer new prospects for industrial strain selection. For bacteria that are significant for industrial applications, whole-genome sequencing coupled to flux balance analysis (FBA) can help unpack the complex relationships between genome mutations and carbon trafficking. This work investigates the l-tyrosine (l-Tyr) overproducing model system Corynebacterium glutamicum ATCC 21573 with an eye to more rational and precision strain development. Using genome-wide mutational analysis of C. glutamicum, we identified 27,611 single nucleotide polymorphisms and 479 insertion/deletion mutations. Mutations in the carbon uptake machinery have led to phosphotransferase system-independent routes as corroborated with FBA. Mutations within the central carbon metabolism of C. glutamicum impaired the carbon flux, as evidenced by the lower growth rate. The entry to and flow through the tricarboxylic acid cycle was affected by mutations in pyruvate and α-ketoglutarate dehydrogenase complexes, citrate synthase, and isocitrate dehydrogenase. FBA indicated that the estimated flux through the shikimate pathway became larger as the l-Tyr production rate increased. In addition, protocatechuate export was probabilistically impossible, which could have contributed to the l-Tyr accumulation. Interestingly, aroG and cg0975, which have received previous attention for aromatic amino acid overproduction, were not mutated. From the branch point molecule, prephenate, the change in the promoter region of pheA could be an influential contributor. In summary, we suggest that genome sequencing coupled with FBA is well poised to offer rational guidance for industrial strain development, as evidenced by these findings on carbon trafficking in C. glutamicum ATCC 21573.
Collapse
Affiliation(s)
- Eldin Kurpejović
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Arthur Burgardt
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Medical School East Westphalia-Lippe, Bielefeld University, Bielefeld, Germany
| | - Fatma Ece Altinisik Kaya
- Department of Bioengineering, Marmara University, Istanbul, Turkey
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Department of Computer Science, Eberhard Karl University of Tübingen, Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
4
|
Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics. Metab Eng 2023; 75:153-169. [PMID: 36563956 DOI: 10.1016/j.ymben.2022.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Lignin displays a highly challenging renewable. To date, massive amounts of lignin, generated in lignocellulosic processing facilities, are for the most part merely burned due to lacking value-added alternatives. Aromatic lignin monomers of recognized relevance are in particular vanillin, and to a lesser extent vanillate, because they are accessible at high yield from softwood-lignin using industrially operated alkaline oxidative depolymerization. Here, we metabolically engineered C. glutamicum towards cis, cis-muconate (MA) production from these key aromatics. Starting from the previously created catechol-based producer C. glutamicum MA-2, systems metabolic engineering first discovered an unspecific aromatic aldehyde reductase that formed aromatic alcohols from vanillin, protocatechualdehyde, and p- hydroxybenzaldehyde, and was responsible for the conversion up to 57% of vanillin into vanillyl alcohol. The alcohol was not re-consumed by the microbe later, posing a strong drawback on the producer. The identification and subsequent elimination of the encoding fudC gene completely abolished vanillyl alcohol formation. Second, the initially weak flux through the native vanillin and vanillate metabolism was enhanced up to 2.9-fold by implementing synthetic pathway modules. Third, the most efficient protocatechuate decarboxylase AroY for conversion of the midstream pathway intermediate protocatechuate into catechol was identified out of several variants in native and codon optimized form and expressed together with the respective helper proteins. Fourth, the streamlined modules were all genomically combined which yielded the final strain MA-9. MA-9 produced bio-based MA from vanillin, vanillate, and seven structurally related aromatics at maximum selectivity. In addition, MA production from softwood-based vanillin, obtained through alkaline depolymerization, was demonstrated.
Collapse
|
5
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Aromatic compounds are ubiquitous in nature; they are the building blocks of abundant lignin, and constitute a substantial proportion of synthetic chemicals and organic pollutants. Uptake and degradation of aromatic compounds by bacteria have relevance in bioremediation, bio-based plastic recycling, and microbial conversion of lignocellulosic biomass into high-value commodity chemicals. While remarkable progress has been achieved in understanding aromatic metabolism in biodegraders, the membrane transporter systems responsible for uptake and efflux of aromatic compounds and their degradation products are still poorly understood. Membrane transporters are responsible for the initial recognition, uptake, and efflux of aromatic compounds; thus, in addition to controlling influx and efflux, the transporter system also forms part of stress tolerance mechanisms through excreting toxic metabolites. This review discusses significant advancements in our understanding of the nature and identity of the bacterial membrane transporter systems for aromatics, the molecular and structural basis of substrate recognition, mechanisms of translocation, functional regulation, and biotechnological applications. Most of these developments were enabled through the availability of crystal structures, advancements in computational biophysics, genome sequencing, omics studies, bioinformatics, and synthetic biology. We provide a comprehensive overview of recently reported knowledge on aromatic transporter systems in bacteria, point gaps in our understanding of the underlying translocation mechanisms, highlight existing limitations in harnessing transporter systems in synthetic biology applications, and suggest future research directions.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
6
|
Siebert D, Altenbuchner J, Blombach B. A Timed Off-Switch for Dynamic Control of Gene Expression in Corynebacterium Glutamicum. Front Bioeng Biotechnol 2021; 9:704681. [PMID: 34395409 PMCID: PMC8358305 DOI: 10.3389/fbioe.2021.704681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Dynamic control of gene expression mainly relies on inducible systems, which require supplementation of (costly) inducer molecules. In contrast, synthetic regulatory circuits, which allow the timed shutdown of gene expression, are rarely available and therefore represent highly attractive tools for metabolic engineering. To achieve this, we utilized the VanR/P vanABK * regulatory system of Corynebacterium glutamicum, which consists of the transcriptional repressor VanR and a modified promoter of the vanABK operon (P vanABK *). VanR activity is modulated by one of the phenolic compounds ferulic acid, vanillin or vanillic acid, which are co-metabolized with d-glucose. Thus, gene expression in the presence of d-glucose is turned off if one of the effector molecules is depleted from the medium. To dynamically control the expression of the aceE gene, encoding the E1 subunit of the pyruvate dehydrogenase complex that is essential for growth on d-glucose, we replaced the native promoter by vanR/P vanABK * yielding C. glutamicum ΔP aceE ::vanR-P vanABK *. The biomass yield of this strain increased linearly with the supplemented amount of effector. After consumption of the phenolic compounds growth ceased, however, C. glutamicumΔP aceE ::vanR-P vanABK * continued to utilize the residual d-glucose to produce significant amounts of pyruvate, l-alanine, and l-valine. Interestingly, equimolar concentrations of the three phenolic compounds resulted in different biomass yields; and with increasing effector concentration, the product spectrum shifted from pyruvate over l-alanine to l-valine. To further test the suitability of the VanR/P vanABK * system, we overexpressed the l-valine biosynthesis genes ilvBNCE in C. glutamicum ΔP aceE ::vanR-P vanABK *, which resulted in efficient l-valine production with a yield of about 0.36 mol l-valine per mol d-glucose. These results demonstrate that the VanR/P vanABK * system is a valuable tool to control gene expression in C. glutamicum in a timed manner by the cheap and abundant phenolic compounds ferulic acid, vanillin, and vanillic acid.
Collapse
Affiliation(s)
- Daniel Siebert
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Josef Altenbuchner
- Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| |
Collapse
|
7
|
Biodegradation of aromatic pollutants meets synthetic biology. Synth Syst Biotechnol 2021; 6:153-162. [PMID: 34278013 PMCID: PMC8260767 DOI: 10.1016/j.synbio.2021.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 02/02/2023] Open
Abstract
Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.
Collapse
|
8
|
Wu P, Zhang Y, Zhao S, Li L. Comprehensive Analysis of Evolutionary Characterization and Expression for Monosaccharide Transporter Family Genes in Nelumbo nucifera. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.537398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sugar transporters, an important class of transporters for sugar function, regulate many processes associated with growth, maturation, and senescence processes in plants. In this study, a total of 35 NuMSTs were identified in the Nelumbo nucifera genome and grouped by conserved domains and phylogenetic analysis. Additionally, we identified 316 MST genes in 10 other representative plants and performed a comparative analysis with Nelumbo nucifera genes, including evolutionary trajectory, gene duplication, and expression pattern. A large number of analyses across plants and algae indicated that the MST family could have originated from STP and Glct, expanding to form STP and SFP by dispersed duplication. Finally, a quantitative real-time polymerase chain reaction and cis-element analysis showed that some of them may be regulated by plant hormones (e.g., abscisic acid), biotic stress factors, and abiotic factors (e.g., drought, excessive cold, and light). We found that under the four abiotic stress conditions, only NuSTP5 expression was upregulated, generating a stress response, and ARBE and LTR were present in NuSTP5. In summary, our findings are significant for understanding and exploring the molecular evolution and mechanisms of NuMSTs in plants.
Collapse
|
9
|
Wada A, Prates ÉT, Hirano R, Werner AZ, Kamimura N, Jacobson DA, Beckham GT, Masai E. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Metab Eng 2021; 64:167-179. [PMID: 33549838 DOI: 10.1016/j.ymben.2021.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 01/30/2021] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida KT2440 (hereafter KT2440) is a well-studied platform bacterium for the production of industrially valuable chemicals from heterogeneous mixtures of aromatic compounds obtained from lignin depolymerization. KT2440 can grow on lignin-related monomers, such as ferulate (FA), 4-coumarate (4CA), vanillate (VA), 4-hydroxybenzoate (4HBA), and protocatechuate (PCA). Genes associated with their catabolism are known, but knowledge about the uptake systems remains limited. In this work, we studied the KT2440 transporters of lignin-related monomers and their substrate selectivity. Based on the inhibition by protonophores, we focused on five genes encoding aromatic acid/H+ symporter family transporters categorized into major facilitator superfamily that uses the proton motive force. The mutants of PP_1376 (pcaK) and PP_3349 (hcnK) exhibited significantly reduced growth on PCA/4HBA and FA/4CA, respectively, while no change was observed on VA for any of the five gene mutants. At pH 9.0, the conversion of these compounds by hcnK mutant (FA/4CA) and vanK mutant (VA) was dramatically reduced, revealing that these transporters are crucial for the uptake of the anionic substrates at high pH. Uptake assays using 14C-labeled substrates in Escherichia coli and biosensor-based assays confirmed that PcaK, HcnK, and VanK have ability to take up PCA, FA/4CA, and VA/PCA, respectively. Additionally, analyses of the predicted protein structures suggest that the size and hydropathic properties of the substrate-binding sites of these transporters determine their substrate preferences. Overall, this study reveals that at physiological pH, PcaK and HcnK have a major role in the uptake of PCA/4HBA and FA/4CA, respectively, and VanK is a VA/PCA transporter. This information can contribute to the engineering of strains for the efficient conversion of lignin-related monomers to value-added chemicals.
Collapse
Affiliation(s)
- Ayumu Wada
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Érica T Prates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ryo Hirano
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan.
| |
Collapse
|
10
|
Physiological Response of Corynebacterium glutamicum to Indole. Microorganisms 2020; 8:microorganisms8121945. [PMID: 33302489 PMCID: PMC7764795 DOI: 10.3390/microorganisms8121945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
The aromatic heterocyclic compound indole is widely spread in nature. Due to its floral odor indole finds application in dairy, flavor, and fragrance products. Indole is an inter- and intracellular signaling molecule influencing cell division, sporulation, or virulence in some bacteria that synthesize it from tryptophan by tryptophanase. Corynebacterium glutamicum that is used for the industrial production of amino acids including tryptophan lacks tryptophanase. To test if indole is metabolized by C. glutamicum or has a regulatory role, the physiological response to indole by this bacterium was studied. As shown by RNAseq analysis, indole, which inhibited growth at low concentrations, increased expression of genes involved in the metabolism of iron, copper, and aromatic compounds. In part, this may be due to iron reduction as indole was shown to reduce Fe3+ to Fe2+ in the culture medium. Mutants with improved tolerance to indole were selected by adaptive laboratory evolution. Among the mutations identified by genome sequencing, mutations in three transcriptional regulator genes were demonstrated to be causal for increased indole tolerance. These code for the regulator of iron homeostasis DtxR, the regulator of oxidative stress response RosR, and the hitherto uncharacterized Cg3388. Gel mobility shift analysis revealed that Cg3388 binds to the intergenic region between its own gene and the iolT2-rhcM2D2 operon encoding inositol uptake system IolT2, maleylacetate reductase, and catechol 1,2-dioxygenase. Increased RNA levels of rhcM2 in a cg3388 deletion strain indicated that Cg3388 acts as repressor. Indole, hydroquinone, and 1,2,4-trihydroxybenzene may function as inducers of the iolT2-rhcM2D2 operon in vivo as they interfered with DNA binding of Cg3388 at physiological concentrations in vitro. Cg3388 was named IhtR.
Collapse
|
11
|
Kogure T, Suda M, Hiraga K, Inui M. Protocatechuate overproduction by Corynebacterium glutamicum via simultaneous engineering of native and heterologous biosynthetic pathways. Metab Eng 2020; 65:232-242. [PMID: 33238211 DOI: 10.1016/j.ymben.2020.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
Protocatechuic acid (3, 4-dihydroxybenzoic acid, PCA) is a natural bioactive phenolic acid potentially valuable as a pharmaceutical raw material owing to its diverse pharmacological activities. Corynebacterium glutamicum forms PCA as a key intermediate in a native pathway to assimilate shikimate/quinate through direct conversion of the shikimate pathway intermediate 3-dehydroshikimate (DHS), which is catalyzed by qsuB-encoded DHS dehydratase (the DHS pathway). PCA can also be formed via an alternate pathway extending from chorismate by introducing heterologous chorismate pyruvate lyase that converts chorismate into 4-hydroxybenzoate (4-HBA), which is then converted into PCA catalyzed by endogenous 4-HBA 3-hydroxylase (the 4-HBA pathway). In this study, we generated three plasmid-free C. glutamicum strains overproducing PCA based on the markerless chromosomal recombination by engineering each or both of the above mentioned two PCA-biosynthetic pathways combined with engineering of the host metabolism to enhance the shikimate pathway flux and to block PCA consumption. Aerobic growth-arrested cell reactions were performed using the resulting engineered strains, which revealed that strains dependent on either the DHS or 4-HBA pathway as the sole PCA-biosynthetic route produced 43.8 and 26.2 g/L of PCA from glucose with a yield of 35.3% and 10.0% (mol/mol), respectively, indicating that PCA production through the DHS pathway is significantly efficient compared to that produced through the 4-HBA pathway. Remarkably, a strain simultaneously using both DHS and 4-HBA pathways achieved the highest reported PCA productivity of 82.7 g/L with a yield of 32.8% (mol/mol) from glucose in growth-arrested cell reaction. These results indicated that simultaneous engineering of both DHS and 4-HBA pathways is an efficient method for PCA production. The generated PCA-overproducing strain is plasmid-free and does not require supplementation of aromatic amino acids and vitamins due to the intact shikimate pathway, thereby representing a promising platform for the industrial bioproduction of PCA and derived chemicals from renewable sugars.
Collapse
Affiliation(s)
- Takahisa Kogure
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.
| | - Kazumi Hiraga
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.
| |
Collapse
|
12
|
Yadav M, Pandey R, Chauhan NS. Catabolic Machinery of the Human Gut Microbes Bestow Resilience Against Vanillin Antimicrobial Nature. Front Microbiol 2020; 11:588545. [PMID: 33193247 PMCID: PMC7605359 DOI: 10.3389/fmicb.2020.588545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Vanillin is a phenolic food additive commonly used for flavor, antimicrobial, and antioxidant properties. Though it is one of the widely used food additives, strategies of the human gut microbes to evade its antimicrobial activity await extensive elucidation. The current study explores the human gut microbiome with a multi-omics approach to elucidate its composition and metabolic machinery to counter vanillin bioactivity. A combination of SSU rRNA gene diversity, metagenomic RNA features diversity, phylogenetic affiliation of metagenome encoded proteins, uniformly (R = 0.99) indicates the abundance of Bacteroidetes followed by Firmicutes and Proteobacteria. Manual curation of metagenomic dataset identified gene clusters specific for the vanillin metabolism (ligV, ligK, and vanK) and intermediary metabolic pathways (pca and cat operon). Metagenomic dataset comparison identified the omnipresence of vanillin catabolic features across diverse populations. The metabolomic analysis brings forth the functionality of the vanillin catabolic pathway through the Protocatechuate branch of the beta-ketoadipate pathway. These results highlight the human gut microbial features and metabolic bioprocess involved in vanillin catabolism to overcome its antimicrobial activity. The current study advances our understanding of the human gut microbiome adaption toward changing dietary habits.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
13
|
Phale PS, Malhotra H, Shah BA. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:1-65. [PMID: 32762865 DOI: 10.1016/bs.aambs.2020.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or lower operons has allowed microbes to funnel multiple compounds into common key aromatic intermediates which are further metabolized through central carbon pathway. Various proteins belonging to diverse families have evolved to regulate the transcription of individual operons participating in aromatic catabolism. These proteins, complemented with global regulatory mechanisms, carry out the regulation of aromatic compound metabolic pathways in a concerted manner. Additionally, characteristics like chemotaxis, preferential utilization, pathway compartmentalization and biosurfactant production confer an advantage to the microbe, thus making bioremediation of the aromatic pollutants more efficient and effective.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
14
|
Abstract
Lignin is an abundant aromatic polymer found in plant secondary cell walls. In recent years, lignin has attracted renewed interest as a feedstock for bio-based chemicals via catalytic and biological approaches and has emerged as a target for genetic engineering to improve lignocellulose digestibility by altering its composition. In lignin biosynthesis and microbial conversion, small phenolic lignin precursors or degradation products cross membrane bilayers through an unidentified translocation mechanism prior to incorporation into lignin polymers (synthesis) or catabolism (bioconversion), with both passive and transporter-assisted mechanisms postulated. To test the passive permeation potential of these phenolics, we performed molecular dynamics simulations for 69 monomeric and dimeric lignin-related phenolics with 3 model membranes to determine the membrane partitioning and permeability coefficients for each compound. The results support an accessible passive permeation mechanism for most compounds, including monolignols, dimeric phenolics, and the flavonoid, tricin. Computed lignin partition coefficients are consistent with concentration enrichment near lipid carbonyl groups, and permeability coefficients are sufficient to keep pace with cellular metabolism. Interactions between methoxy and hydroxy groups are found to reduce membrane partitioning and improve permeability. Only carboxylate-modified or glycosylated lignin phenolics are predicted to require transporters for membrane translocation. Overall, the results suggest that most lignin-related compounds can passively traverse plant and microbial membranes on timescales commensurate with required biological activities, with any potential transport regulation mechanism in lignin synthesis, catabolism, or bioconversion requiring compound functionalization.
Collapse
|
15
|
Brink DP, Ravi K, Lidén G, Gorwa-Grauslund MF. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 2019; 103:3979-4002. [PMID: 30963208 PMCID: PMC6486533 DOI: 10.1007/s00253-019-09692-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
Abstract
Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database ( www.elignindatabase.com ), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings.
Collapse
Affiliation(s)
- Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| | - Krithika Ravi
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
16
|
Kwak YM, Park SC, Na H, Kang SG, Lee G, Ko H, Kim P, Oh B, Yoon S. Crystal structure of the VanR transcription factor and the role of its unique α‐helix in effector recognition. FEBS J 2018; 285:3786-3800. [DOI: 10.1111/febs.14629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/03/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yun Mi Kwak
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Sun Cheol Park
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Hye‐won Na
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
| | - Geun‐Shik Lee
- College of Veterinary Medicine Kangwon National University Chuncheon Korea
| | - Hyun‐Jeong Ko
- Laboratory of Microbiology and Immunology College of Pharmacy Kangwon National University Chuncheon Korea
| | - Pyeung‐Hyeun Kim
- Department of Molecular Bioscience School of Biomedical Science Kangwon National University Chuncheon Korea
| | - Byung‐Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute College of Medicine Gachon University Incheon Korea
| | - Sung‐il Yoon
- Division of Biomedical Convergence College of Biomedical Science Kangwon National University Chuncheon Korea
- Institute of Bioscience and Biotechnology Kangwon National University Chuncheon Korea
| |
Collapse
|
17
|
Mori K, Kamimura N, Masai E. Identification of the protocatechuate transporter gene in Sphingobium sp. strain SYK-6 and effects of overexpression on production of a value-added metabolite. Appl Microbiol Biotechnol 2018; 102:4807-4816. [DOI: 10.1007/s00253-018-8988-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 11/28/2022]
|
18
|
Choudhary A, Purohit H, Phale PS. Benzoate transport in Pseudomonas putida CSV86. FEMS Microbiol Lett 2018; 364:3861963. [PMID: 28591829 DOI: 10.1093/femsle/fnx118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas putida strain CSV86 metabolizes variety of aromatic compounds as the sole carbon source. Genome analysis revealed the presence of genes encoding putative transporters for benzoate, p-hydroxybenzoate, phenylacetate, p-hydroxyphenylacetate and vanillate. Bioinformatic analysis revealed that benzoate transport and metabolism genes are clustered at the ben locus as benK-catA-benE-benF. Protein topology prediction suggests that BenK (aromatic acid-H+ symporter of major facilitator superfamily) has 12 transmembrane α-helices with the conserved motif LADRXGRKX in loop 2, while BenE (benzoate-H+ symporter protein) has 11 predicted transmembrane α-helices. benF and catA encode benzoate specific porin, OprD and catechol 1,2-dioxygenase, respectively. Biochemical studies suggest that benzoate was transported by an inducible and active process. Inhibition (90%-100%) in the presence of dinitrophenol suggests that the energy for the transport process is derived from the proton motive force. The maximum rate of benzoate transport was 484 pmole min-1 mg-1 cells with an affinity constant, Kmof 4.5 μM. Transcriptional analysis of the benzoate and glucose-grown cells showed inducible expression of benF, benK and benE, suggesting that besides outer membrane porin, both inner membrane transporters probably contribute for the benzoate transport in P. putida strain CSV86.
Collapse
Affiliation(s)
- Alpa Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| | - Hemant Purohit
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020; India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
19
|
Okai N, Masuda T, Takeshima Y, Tanaka K, Yoshida KI, Miyamoto M, Ogino C, Kondo A. Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase. AMB Express 2017; 7:130. [PMID: 28641405 PMCID: PMC5479773 DOI: 10.1186/s13568-017-0427-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/12/2017] [Indexed: 11/10/2022] Open
Abstract
Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a lignin-derived phenolic compound abundant in plant biomass. The utilization of FA and its conversion to valuable compounds is desired. Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a precursor of polymers and plastics and a constituent of food. A microbial conversion system to produce PCA from FA was developed in this study using a PCA-producing strain of Corynebacterium glutamicum F (ATCC 21420). C. glutamicum strain F grown at 30 °C for 48 h utilized 2 mM each of FA and vanillic acid (4-hydroxy-3-methoxybenzoic acid, VA) to produce PCA, which was secreted into the medium. FA may be catabolized by C. glutamicum through proposed (I) non-β-oxidative, CoA-dependent or (II) β-oxidative, CoA-dependent phenylpropanoid pathways. The conversion of VA to PCA is the last step in each pathway. Therefore, the vanillate O-demethylase gene (vanAB) from Corynebacterium efficiens NBRC 100395 was expressed in C. glutamicum F (designated strain FVan) cultured at 30 °C in AF medium containing FA. Strain C. glutamicum FVan converted 4.57 ± 0.07 mM of FA into 2.87 ± 0.01 mM PCA after 48 h with yields of 62.8% (mol/mol), and 6.91 mM (1064 mg/L) of PCA was produced from 16.0 mM of FA after 12 h of fed-batch biotransformation. Genomic analysis of C. glutamicum ATCC 21420 revealed that the PCA-utilization genes (pca cluster) were conserved in strain ATCC 21420 and that mutations were present in the PCA importer gene pcaK.
Collapse
Affiliation(s)
- Naoko Okai
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
| | - Takaya Masuda
- Raw Materials and Polymers Division, Raw Materials and Polymers Technology Department, Teijin Limited, 2345 Nishihabu-cho, Matsuyama, Ehime 791-8536 Japan
| | - Yasunobu Takeshima
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
| | - Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
| | - Ken-ichi Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
| | - Masanori Miyamoto
- Raw Materials and Polymers Division, Raw Materials and Polymers Technology Department, Teijin Limited, 2345 Nishihabu-cho, Matsuyama, Ehime 791-8536 Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Kobe, 657-8501 Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| |
Collapse
|
20
|
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:679-705. [PMID: 29052962 DOI: 10.1111/1758-2229.12597] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
Lignin is the most abundant phenolic polymer; thus, its decomposition by microorganisms is fundamental to carbon cycling on earth. Lignin breakdown is initiated by depolymerization catalysed by extracellular oxidoreductases secreted by white-rot basidiomycetous fungi. On the other hand, bacteria play a predominant role in the mineralization of lignin-derived heterogeneous low-molecular-weight aromatic compounds. The outline of bacterial catabolic pathways for lignin-derived bi- and monoaryls are typically composed of the following sequential steps: (i) funnelling of a wide variety of lignin-derived aromatics into vanillate and syringate, (ii) O demethylation of vanillate and syringate to form catecholic derivatives and (iii) aromatic ring-cleavage of the catecholic derivatives to produce tricarboxylic acid cycle intermediates. Knowledge regarding bacterial catabolic systems for lignin-derived aromatic compounds is not only important for understanding the terrestrial carbon cycle but also valuable for promoting the shift to a low-carbon economy via biological lignin valorisation. This review summarizes recent progress in bacterial catabolic systems for lignin-derived aromatic compounds, including newly identified catabolic pathways and genes for decomposition of lignin-derived biaryls, transcriptional regulation and substrate uptake systems. Recent omics approaches on catabolism of lignin-derived aromatic compounds are also described.
Collapse
Affiliation(s)
- Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kenji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kosuke Mori
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Takuma Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Fujita
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yudai Higuchi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
21
|
Kallscheuer N, Vogt M, Marienhagen J. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism. ACS Synth Biol 2017; 6:410-415. [PMID: 27936616 DOI: 10.1021/acssynbio.6b00291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Numerous plant polyphenols have potential applications as pharmaceuticals or nutraceuticals. Stilbenes and flavonoids as most abundant polyphenols are synthesized from phenylpropanoids, which are exclusively derived from aromatic amino acids in nature. Several microorganisms were engineered for the synthesis of biotechnologically interesting plant polyphenols; however, low activity of heterologous ammonia lyases, linking endogenous microbial aromatic amino acid biosynthesis to phenylpropanoid synthesis, turned out to be the limiting step during microbial synthesis. We here developed an alternative strategy for polyphenol production from cheap benzoic acids by reversal of a β-oxidative phenylpropanoid degradation pathway avoiding any ammonia lyase activity. The synthetic pathway running in the non-natural direction is feasible with respect to thermodynamics and involved reaction mechanisms. Instantly, product titers of 5 mg/L resveratrol could be achieved in recombinant Corynebacterium glutamicum strains indicating that phenylpropanoid synthesis from 4-hydroxybenzoic acid can in principle be implemented independently from aromatic amino acids and ammonia lyase activity.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Michael Vogt
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
22
|
Du L, Ma L, Qi F, Zheng X, Jiang C, Li A, Wan X, Liu SJ, Li S. Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum. J Biol Chem 2016; 291:6583-94. [PMID: 26817843 DOI: 10.1074/jbc.m115.695320] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
4-Cresol is not only a significant synthetic intermediate for production of many aromatic chemicals, but also a priority environmental pollutant because of its toxicity to higher organisms. In our previous studies, a gene cluster implicated to be involved in 4-cresol catabolism, creCDEFGHIR, was identified in Corynebacterium glutamicum and partially characterized in vivo. In this work, we report on the discovery of a novel 4-cresol biodegradation pathway that employs phosphorylated intermediates. This unique pathway initiates with the phosphorylation of the hydroxyl group of 4-cresol, which is catalyzed by a novel 4-methylbenzyl phosphate synthase, CreHI. Next, a unique class I P450 system, CreJEF, specifically recognizes phosphorylated intermediates and successively oxidizes the aromatic methyl group into carboxylic acid functionality via alcohol and aldehyde intermediates. Moreover, CreD (phosphohydrolase), CreC (alcohol dehydrogenase), and CreG (aldehyde dehydrogenase) were also found to be required for efficient oxidative transformations in this pathway. Steady-state kinetic parameters (Km and kcat) for each catabolic step were determined, and these results suggest that kinetic controls serve a key role in directing the metabolic flux to the most energy effective route.
Collapse
Affiliation(s)
- Lei Du
- From the CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology and the University of the Chinese Academy of Sciences, Beijing 100049, China, and
| | - Li Ma
- From the CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology and
| | - Feifei Qi
- From the CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology and
| | - Xianliang Zheng
- From the CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology and the University of the Chinese Academy of Sciences, Beijing 100049, China, and
| | - Chengying Jiang
- the State Key Laboratory of Microbial Resources, and Environmental Microbiology and Biotechnology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ailei Li
- the CAS Key Laboratory of Bio-based Materials at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiaobo Wan
- the CAS Key Laboratory of Bio-based Materials at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Shuang-Jiang Liu
- the State Key Laboratory of Microbial Resources, and Environmental Microbiology and Biotechnology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengying Li
- From the CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology and
| |
Collapse
|
23
|
A functional 4-hydroxybenzoate degradation pathway in the phytopathogen Xanthomonas campestris is required for full pathogenicity. Sci Rep 2015; 5:18456. [PMID: 26672484 PMCID: PMC4682078 DOI: 10.1038/srep18456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/17/2015] [Indexed: 11/23/2022] Open
Abstract
Plants contain significant levels of natural phenolic compounds essential for reproduction and growth, as well as defense mechanisms against pathogens. Xanthomonas campestris pv. campestris (Xcc) is the causal agent of crucifers black rot. Here we showed that genes required for the synthesis, utilization, transportation, and degradation of 4-hydroxybenzoate (4-HBA) are present in Xcc. Xcc rapidly degrades 4-HBA, but has no effect on 2-hydroxybenzoate and 3-hydroxybenzoate when grown in XOLN medium. The genes for 4-HBA degradation are organized in a superoperonic cluster. Bioinformatics, biochemical, and genetic data showed that 4-HBA is hydroxylated by 4-HBA 3-hydroxylase (PobA), which is encoded by Xcc0356, to yield PCA. The resulting PCA is further metabolized via the PCA branches of the β-ketoadipate pathway, including Xcc0364, Xcc0365, and PcaFHGBDCR. Xcc0364 and Xcc0365 encode a new form of β-ketoadipate succinyl-coenzyme A transferase that is required for 4-HBA degradation. pobA expression was induced by 4-HBA via the transcriptional activator, PobR. Radish and cabbage hydrolysates contain 2-HBA, 3-HBA, 4-HBA, and other phenolic compounds. Addition of radish and cabbage hydrolysates to Xcc culture significantly induced the expression of pobA via PobR. The 4-HBA degradation pathway is required for full pathogenicity of Xcc in radish.
Collapse
|
24
|
Solyanikova IP, Emelyanova EV, Borzova OV, Golovleva LA. Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 51:182-191. [PMID: 26669259 DOI: 10.1080/03601234.2015.1108814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The process of benzoate degradation by strain Rhodococcus opacus 1CP after a five-year dormancy was investigated and its peculiarities were revealed. The strain was shown to be capable of growth on benzoate at a concentration of up to 10 g L(-1). The substrate specificity of benzoate dioxygenase (BDO) during the culture growth on a medium with a low (200-250 mg L(-1)) and high (4 g L(-1)) concentration of benzoate was assessed. BDO of R. opacus 1CP was shown to be an extremely narrow specificity enzyme. Out of 31 substituted benzoates, only with one, 3-chlorobenzoate, its activity was higher than 9% of that of benzoate. Two dioxygenases, catechol 1,2-dioxygenase (Cat 1,2-DO) and protocatechuate 3,4-dioxygenase (PCA 3,4-DO), were identified in a cell-free extract, purified and characterized. The substrate specificity of Cat 1,2-DO isolated from cells of strain 1CP after the dormancy was found to differ significantly from that of Cat 1,2-DO isolated earlier from cells of this strain grown on benzoate. By its substrate specificity, the described Cat 1,2-DO was close to the Cat 1,2-DO from strain 1CP grown on 4-methylbenzoate. Neither activity nor inhibition by protocatechuate was observed during the reaction of Cat 1,2-DO with catechol, and catechol had no inhibitory effect on the reaction of PCA 3,4-DO with protocatechuate.
Collapse
Affiliation(s)
- Inna P Solyanikova
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
| | - Elena V Emelyanova
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
| | - Oksana V Borzova
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
- b Pushchino State Natural Science Institute , Pushchino , Russia
| | - Ludmila A Golovleva
- a FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences , Pushchino , Russia
- b Pushchino State Natural Science Institute , Pushchino , Russia
| |
Collapse
|
25
|
Luu RA, Kootstra JD, Nesteryuk V, Brunton CN, Parales JV, Ditty JL, Parales RE. Integration of chemotaxis, transport and catabolism inPseudomonas putidaand identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 2015; 96:134-47. [DOI: 10.1111/mmi.12929] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Rita A. Luu
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Joshua D. Kootstra
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Vasyl Nesteryuk
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Ceanne N. Brunton
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Juanito V. Parales
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| | - Jayna L. Ditty
- Department of Biology; University of St. Thomas; St. Paul MN USA
| | - Rebecca E. Parales
- Department of Microbiology and Molecular Genetics; College of Biological Sciences; University of California; Davis CA USA
| |
Collapse
|
26
|
Kubota T, Tanaka Y, Takemoto N, Hiraga K, Yukawa H, Inui M. Identification and expression analysis of a gene encoding a shikimate transporter of Corynebacterium glutamicum. Microbiology (Reading) 2015; 161:254-263. [DOI: 10.1099/mic.0.083733-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Takeshi Kubota
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Yuya Tanaka
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Norihiko Takemoto
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Kazumi Hiraga
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| |
Collapse
|
27
|
Cao J, Lai Q, Yuan J, Shao Z. Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73T. Sci Rep 2015; 5:7741. [PMID: 25582347 PMCID: PMC4291564 DOI: 10.1038/srep07741] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/20/2014] [Indexed: 01/22/2023] Open
Abstract
Celeribacter indicus P73(T), isolated from deep-sea sediment from the Indian Ocean, is capable of degrading a wide range of polycyclic aromatic hydrocarbons (PAHs) and is the first fluoranthene-degrading bacterium within the family Rhodobacteraceae. Here, the complete genome sequence of strain P73(T) is presented and analyzed. Besides a 4.5-Mb circular chromosome, strain P73(T) carries five plasmids, and encodes 4827 predicted protein-coding sequences. One hundred and thirty-eight genes, including 14 dioxygenase genes, were predicted to be involved in the degradation of aromatic compounds, and most of these genes are clustered in four regions. P73_0346 is the first fluoranthene 7,8-dioxygenase to be discovered and the first fluoranthene dioxygenase within the toluene/biphenyl family. The degradative genes in regions B and D in P73(T) are absent in Celeribacter baekdonensis B30, which cannot degrade PAHs. Four intermediate metabolites [acenaphthylene-1(2H)-one, acenaphthenequinone, 1,2-dihydroxyacenaphthylene, and 1,8-naphthalic anhydride] of fluoranthene degradation by strain P73(T) were detected as the main intermediates, indicating that the degradation of fluoranthene in P73(T) was initiated by dioxygenation at the C-7,8 positions. Based on the genomic and metabolitic results, we propose a C-7,8 dioxygenation pathway in which fluoranthene is mineralized to TCA cycle intermediates.
Collapse
Affiliation(s)
- Junwei Cao
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Key Laboratory of Marine Genetic Resources of Fujian Province; Collaborative Innovation Center of Deep Sea Biology; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Qiliang Lai
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Key Laboratory of Marine Genetic Resources of Fujian Province; Collaborative Innovation Center of Deep Sea Biology; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Jun Yuan
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Key Laboratory of Marine Genetic Resources of Fujian Province; Collaborative Innovation Center of Deep Sea Biology; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Key Laboratory of Marine Genetic Resources of Fujian Province; Collaborative Innovation Center of Deep Sea Biology; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| |
Collapse
|
28
|
Transcriptional regulation of the vanillate utilization genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-like repressor. J Bacteriol 2014; 197:959-72. [PMID: 25535273 DOI: 10.1128/jb.02431-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum is able to utilize vanillate, the product of lignin degradation, as the sole carbon source. The vanillate utilization components are encoded by the vanABK operon. The vanA and vanB genes encode the subunits of vanillate O-demethylase, converting vanillate to protocatechuate, while VanK is the specific vanillate transporter. The vanABK operon is regulated by a PadR-type repressor, VanR. Heterologous gene expression and variations of the vanR open reading frame revealed that the functional VanR contains 192 residues (21 kDa) and forms a dimer, as analyzed by size exclusion chromatography. In vivo, ferulate, vanillin, and vanillate induced PvanABK in C. glutamicum, while only vanillate induced the activity of PvanABK in Escherichia coli lacking the ferulate catabolic system. Differential scanning fluorimetry verified that vanillate is the only effector of VanR. Interaction between the PvanABK DNA fragment and the VanR protein had an equilibrium dissociation constant (KD) of 15.1 ± 1.7 nM. The VanR-DNA complex had a dissociation rate constant (Kd) of (267 ± 23) × 10(-6) s(-1), with a half-life of 43.5 ± 3.6 min. DNase I footprinting localized the VanR binding site at PvanABK, extending from +9 to +45 on the coding strand. Deletion of the nucleotides +18 to +27 inside the VanR binding site rendered PvanABK constitutive. Fusion of the T7 promoter and the wild-type VanR operator, as well as its shortened versions, indicated that the inverted repeat AACTAACTAA(N4)TTAGGTATTT is the specific VanR binding site. It is proposed that the VanR-DNA complex contains two VanR dimers at the VanR operator.
Collapse
|
29
|
Peters-Wendisch P, Götker S, Heider S, Komati Reddy G, Nguyen A, Stansen K, Wendisch V. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production. J Biotechnol 2014; 192 Pt B:346-54. [DOI: 10.1016/j.jbiotec.2014.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/21/2013] [Accepted: 01/03/2014] [Indexed: 11/17/2022]
|
30
|
Characterization of p-hydroxycinnamate catabolism in a soil Actinobacterium. J Bacteriol 2014; 196:4293-303. [PMID: 25266382 DOI: 10.1128/jb.02247-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
p-Hydroxycinnamates, such as ferulate and p-coumarate, are components of plant cell walls and have a number of commercial applications. Rhodococcus jostii RHA1 (RHA1) catabolizes ferulate via vanillate and the β-ketoadipate pathway. Here, we used transcriptomics to identify genes in RHA1 that are upregulated during growth on ferulate versus benzoate. The upregulated genes included three transcriptional units predicted to encode the uptake and β-oxidative deacetylation of p-hydroxycinnamates: couHTL, couNOM, and couR. Neither ΔcouL mutants nor ΔcouO mutants grew on p-hydroxycinnamates, but they did grow on vanillate. Among several p-hydroxycinnamates, CouL catalyzed the thioesterification of p-coumarate and caffeate most efficiently (k(cat)/K(m) = ∼ 400 mM(-1) s(-1)). p-Coumarate was also RHA1's preferred growth substrate, suggesting that CouL is a determinant of the pathway's specificity. CouL did not catalyze the activation of sinapate, in similarity to two p-coumaric acid:coenzyme A (CoA) ligases from plants, and contains the same bulged loop that helps determine substrate specificity in the plant homologues. The couO mutant accumulated 4-hydroxy-3-methoxyphenyl-β-ketopropionate in the culture supernatant when incubated with ferulate, supporting β-oxidative deacetylation. This phenotype was not complemented with a D257N variant of CouO, consistent with the predicted role of Asp257 as a metal ligand in this amidohydrolase superfamily member. These data suggest that CouO functionally replaces the β-ketothiolase and acyl-CoA thioesterase that occur in canonical β-oxidative pathways. Finally, the transcriptomics data suggest the involvement of two distinct formaldehyde detoxification pathways in vanillate catabolism and identify a eugenol catabolic pathway. The results of this study augment our understanding of the bacterial catabolism of aromatics from renewable feedstocks.
Collapse
|
31
|
Pernstich C, Senior L, MacInnes KA, Forsaith M, Curnow P. Expression, purification and reconstitution of the 4-hydroxybenzoate transporter PcaK from Acinetobacter sp. ADP1. Protein Expr Purif 2014; 101:68-75. [PMID: 24907408 PMCID: PMC4148202 DOI: 10.1016/j.pep.2014.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022]
Abstract
The aromatic acid transporter PcaK was recombinantly expressed and purified. PcaK is a stable homotrimer in n-dodecyl-β-d-maltoside. A reconstituted assay shows asymmetric transport. The electrical component of the proton gradient drives transport. Unexpectedly, PcaK is active in transporting 2-hydroxybenzoates.
The aromatic acid:H+ symporter family of integral membrane proteins play an important role in the microbial metabolism of aromatic compounds. Here, we show that the 4-hydroxybenzoate transporter from Acinetobacter sp. ADP1, PcaK, can be successfully overexpressed in Escherichia coli and purified by affinity chromatography. Affinity-purified PcaK is a stable, monodisperse homotrimer in the detergent n-dodecyl-β-d-maltopyranoside supplemented with cholesteryl hemisuccinate. The purified protein has α-helical secondary structure and can be reconstituted to a functional state in synthetic proteoliposomes. Asymmetric substrate transport was observed when proteoliposomes were energized by applying an electrochemical proton gradient (Δμ‾H+) or a membrane potential (ΔΨ) but not by ΔpH alone. PcaK was selective in transporting 4-hydroxybenzoate and 3,4-dihydroxybenzoate over closely related compounds, confirming previous reports on substrate specificity. However, PcaK also showed an unexpected preference for transporting 2-hydroxybenzoates. These results provide the basis for further detailed studies of the structure and function of this family of transporters.
Collapse
Affiliation(s)
| | - Laura Senior
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1TD, UK
| | | | - Marc Forsaith
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Curnow
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
32
|
Zhou L, Huang TW, Wang JY, Sun S, Chen G, Poplawsky A, He YW. The rice bacterial pathogen Xanthomonas oryzae pv. oryzae produces 3-hydroxybenzoic acid and 4-hydroxybenzoic acid via XanB2 for use in xanthomonadin, ubiquinone, and exopolysaccharide biosynthesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1239-48. [PMID: 23718125 DOI: 10.1094/mpmi-04-13-0112-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Xanthomonas oryzae pv. oryzae, the causal agent of rice bacterial blight, produces membrane-bound yellow pigments, referred to as xanthomonadins. Xanthomonadins protect the pathogen from photodamage and host-induced perioxidation damage. They are also required for epiphytic survival and successful host plant infection. Here, we show that XanB2 encoded by PXO_3739 plays a key role in xanthomonadin and coenzyme Q8 biosynthesis in X. oryzae pv. oryzae PXO99A. A xanB2 deletion mutant exhibits a pleiotropic phenotype, including xanthomonadin deficiency, producing less exopolysaccharide (EPS), lower viability and H2O2 resistance, and lower virulence. We further demonstrate that X. oryzae pv. oryzae produces 3-hydroxybenzoic acid (3-HBA) and 4-hydroxybenzoic acid (4-HBA) via XanB2. 3-HBA is associated with xanthomonadin biosynthesis while 4-HBA is mainly used as a precursor for coenzyme Q (CoQ)8 biosynthesis. XanB2 is the alternative source of 4-HBA for CoQ8 biosynthesis in PXO99A. These findings suggest that the roles of XanB2 in PXO99A are generally consistent with those in X. campestris pv. campestris. The present study also demonstrated that X. oryzae pv. oryzae PXO99A has evolved several specific features in 3-HBA and 4-HBA signaling. First, our results showed that PXO99A produces less 3-HBA and 4-HBA than X. campestris pv. campestris and this is partially due to a degenerated 4-HBA efflux pump. Second, PXO99A has evolved unique xanthomonadin induction patterns via 3-HBA and 4-HBA. Third, our results showed that 3-HBA or 4-HBA positively regulates the expression of gum cluster to promote EPS production in PXO99A. Taken together, the results of this study indicate that XanB2 is a key metabolic enzyme linking xanthomonadin, CoQ, and EPS biosynthesis, which are collectively essential for X. oryzae pv. oryzae pathogenesis.
Collapse
|
33
|
Deangelis KM, Sharma D, Varney R, Simmons B, Isern NG, Markilllie LM, Nicora C, Norbeck AD, Taylor RC, Aldrich JT, Robinson EW. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol 2013; 4:280. [PMID: 24065962 PMCID: PMC3777014 DOI: 10.3389/fmicb.2013.00280] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/29/2013] [Indexed: 01/05/2023] Open
Abstract
Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping with poor carbon availability.
Collapse
Affiliation(s)
- Kristen M Deangelis
- Department of Microbiology, University of Massachusetts Amherst Amherst, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
mhpT encodes an active transporter involved in 3-(3-hydroxyphenyl)propionate catabolism by Escherichia coli K-12. Appl Environ Microbiol 2013; 79:6362-8. [PMID: 23934492 DOI: 10.1128/aem.02110-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K-12 utilizes 3-(3-hydroxyphenyl)propionate (3HPP) as a sole carbon and energy source. Among the genes in its catabolic cluster in the genome, mhpT was proposed to encode a hypothetical transporter. Since no transporter for 3HPP uptake has been identified, we investigated whether MhpT is responsible for 3HPP uptake. MhpT fused with green fluorescent protein was found to be located at the periphery of cells by confocal microscopy, consistent with localization to the cytoplasmic membrane. Gene knockout and complementation studies clearly indicated that mhpT is essential for 3HPP catabolism in E. coli K-12 W3110 at pH 8.2. Uptake assays with (14)C-labeled substrates demonstrated that strain W3110 and strain W3110ΔmhpT containing recombinant MhpT specifically transported 3HPP but not benzoate, 3-hydroxybenzoate, or gentisate into cells. Energy dependence assays suggested that MhpT-mediated 3HPP transport was driven by the proton motive force. The change of Ala-272 of MhpT to a histidine, surprisingly, resulted in enhanced transport activity, and strain W3110ΔmhpT containing the MhpT A272H mutation had a slightly higher growth rate than the wild-type strain at pH 8.2. Hence, we demonstrated that MhpT is a specific 3HPP transporter and vital for E. coli K-12 W3110 growth on this substrate under basic conditions.
Collapse
|
35
|
Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol 2013; 167:75-84. [DOI: 10.1016/j.jbiotec.2012.07.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/07/2012] [Accepted: 07/13/2012] [Indexed: 11/23/2022]
|
36
|
Tan K, Chang C, Cuff M, Osipiuk J, Landorf E, Mack JC, Zerbs S, Joachimiak A, Collart FR. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids. Proteins 2013; 81:1709-26. [PMID: 23606130 DOI: 10.1002/prot.24305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/12/2013] [Accepted: 03/28/2013] [Indexed: 11/10/2022]
Abstract
Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins.
Collapse
Affiliation(s)
- Kemin Tan
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois, 60439; The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, Illinois, 60439; Structural Biology Center, Argonne National Laboratory, Lemont, Illinois, 60439
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wells T, Ragauskas AJ. Biotechnological opportunities with the β-ketoadipate pathway. Trends Biotechnol 2012; 30:627-37. [DOI: 10.1016/j.tibtech.2012.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 01/18/2023]
|
38
|
Michalska K, Chang C, Mack JC, Zerbs S, Joachimiak A, Collart FR. Characterization of transport proteins for aromatic compounds derived from lignin: benzoate derivative binding proteins. J Mol Biol 2012; 423:555-75. [PMID: 22925578 PMCID: PMC3836681 DOI: 10.1016/j.jmb.2012.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/27/2012] [Accepted: 08/20/2012] [Indexed: 10/28/2022]
Abstract
In vitro growth experiments have demonstrated that aromatic compounds derived from lignin can be metabolized and represent a major carbon resource for many soil bacteria. However, the proteins that mediate the movement of these metabolites across the cell membrane have not been thoroughly characterized. To address this deficiency, we used a library representative of lignin degradation products and a thermal stability screen to determine ligand specificity for a set of solute-binding proteins (SBPs) from ATP-binding cassette (ABC) transporters. The ligand mapping process identified a set of proteins from Alphaproteobacteria that recognize various benzoate derivatives. Seven high-resolution crystal structures of these proteins in complex with four different aromatic compounds were obtained. The protein-ligand complexes provide details of molecular recognition that can be used to infer binding specificity. This structure-function characterization provides new insight for the biological roles of these ABC transporters and their SBPs, which had been previously annotated as branched-chain amino-acid-binding proteins. The knowledge derived from the crystal structures provides a foundation for development of sequence-based methods to predict the ligand specificity of other uncharacterized transporters. These results also demonstrate that Alphaproteobacteria possess a diverse set of transport capabilities for lignin-derived compounds. Characterization of this new class of transporters improves genomic annotation projects and provides insight into the metabolic potential of soil bacteria.
Collapse
Affiliation(s)
- Karolina Michalska
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Changsoo Chang
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jamey C. Mack
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Andrzej Joachimiak
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- The Midwest Center for Structural Genomics, Argonne National Laboratory, Lemont, IL 60439, USA
- Structural Biology Center, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Frank R. Collart
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
39
|
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Krämer R, Wendisch VF, Seibold GM, Marin K. Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol Biotechnol 2012; 97:1679-87. [PMID: 22854894 DOI: 10.1007/s00253-012-4313-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022]
Abstract
Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source. Glucosamine also served as a combined source of carbon, energy and nitrogen for the mutant strain. Characterisation of the M4 mutant revealed a significantly increased expression of the nagB gene encoding the glucosamine-6P deaminase NagB involved in degradation of glucosamine, as a consequence of a single mutation in the promoter region of the nagAB-scrB operon. Ectopic nagB overexpression verified that the activity of the NagB enzyme is in fact the growth limiting factor under these conditions. In addition, glucosamine uptake was studied, which proved to be unchanged in the wild-type and M4 mutant strains. Using specific deletion strains, we identified the PTS(Glc) transport system to be responsible for glucosamine uptake in C. glutamicum. The affinity of this uptake system for glucosamine was about 40-fold lower than that for its major substrate glucose. Because of this difference in affinity, glucosamine is efficiently taken up only if external glucose is absent or present at low concentrations. C. glutamicum was also examined for its suitability to use glucosamine as substrate for biotechnological purposes. Upon overexpression of the nagB gene in suitable C. glutamicum producer strains, efficient production of both the amino acid L-lysine and the diamine putrescine from glucosamine was demonstrated.
Collapse
Affiliation(s)
- Andreas Uhde
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
MhbT is a specific transporter for 3-hydroxybenzoate uptake by Gram-negative bacteria. Appl Environ Microbiol 2012; 78:6113-20. [PMID: 22729544 DOI: 10.1128/aem.01511-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae M5a1 is capable of utilizing 3-hydroxybenzoate via gentisate, and the 6.3-kb gene cluster mhbRTDHIM conferred the ability to grow on 3-hydroxybenzoate to Escherichia coli and Pseudomonas putida PaW340. Four of the six genes (mhbDHIM) encode enzymes converting 3-hydroxybenzoate to pyruvate and fumarate via gentisate. MhbR is a gene activator, and MhbT is a hypothetical protein belonging to the transporter of the aromatic acid/H(+) symporter family. Since a transporter for 3-hydrxybenzoate uptake has not been characterized to date, we investigated whether MhbT is responsible for the uptake of 3-hydroxybenzoate, its metabolic intermediate gentisate, or both. The MhbT-green fluorescent protein (GFP) fusion protein was located on the cytoplasmic membrane. P. putida PaW340 containing mhbRΔTDHIM could not grow on 3-hydroxybenzoate; however, supplying mhbT in trans allowed the bacterium to grow on the substrate. K. pneumoniae M5a1 and P. putida PaW340 containing recombinant MhbT transported (14)C-labeled 3-hydroxybenzoate but not (14)C-labeled gentisate and benzoate into the cells. Site-directed mutagenesis of two conserved amino acid residues (Asp-82 and Asp-314) and a less-conserved residue (Val-311) among the members of the symporter family in the hydrophilic cytoplasmic loops resulted in the loss of 3-hydroxybenzoate uptake by P. putida PaW340 carrying the mutant proteins. Hence, we demonstrated that MhbT is a specific 3-hydroxybenzoate transporter.
Collapse
|
41
|
Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 2012; 95:77-89. [DOI: 10.1007/s00253-012-4139-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
|
42
|
Haussmann U, Poetsch A. Global proteome survey of protocatechuate- and glucose-grown Corynebacterium glutamicum reveals multiple physiological differences. J Proteomics 2012; 75:2649-59. [PMID: 22450470 DOI: 10.1016/j.jprot.2012.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/21/2012] [Accepted: 03/10/2012] [Indexed: 12/16/2022]
Abstract
Corynebacterium glutamicum can utilize various monocyclic aromatic carbon sources, including protocatechuate, which is catabolized via the β-ketoadipate pathway. In order to obtain a global survey of occurring physiological adaptations on the proteome level, cytoplasmic and membrane fraction from cells grown on protocatechuate or glucose as sole carbon and energy source were compared. Shotgun proteomics and relative protein quantification with metabolic isotope labeling and spectral counting were employed. Altogether, 139 proteins were found to change their abundance during growth on protocatechuate. A general adaptation of energy metabolism to meet increased energy production by oxidative phosphorylation and a stress response occurred. Adjustments of carbon and amino acid metabolism in the cytoplasmic and membrane proteome were indicative of a starvation response. The different regulation of porins and cell wall biosynthesis proteins suggests a change in its architecture upon assimilation of the aromatic carbon source. Some of the observed changes could be explained by an involvement of the GlxR and McbR regulons.
Collapse
Affiliation(s)
- Ute Haussmann
- Lehrstuhl fuer Biochemie der Pflanzen, Ruhr Universitaet Bochum, Bochum, Germany
| | | |
Collapse
|
43
|
MacLean AM, Haerty W, Golding GB, Finan TM. The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti. Microbiology (Reading) 2011; 157:2522-2533. [DOI: 10.1099/mic.0.050542-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The LysR protein PcaQ regulates the expression of genes encoding products relevant to the degradation of the aromatic acid protocatechuate (3,4-dihydroxybenzoate), and we have previously defined a PcaQ DNA-binding site located upstream of the target pcaDCHGB operon in Sinorhizobium meliloti. In this work, we show that PcaQ also regulates the expression of the S. meliloti smb20568-smb20787-smb20786-smb20785-smb20784 gene cluster, which is predicted to encode an ABC transport system. ABC transport systems have not been shown before to transport protocatechuate, and we have designated this gene cluster pcaMNVWX. The transcriptional start site of pcaM was mapped, and the predicted PcaQ DNA-binding site was located at −73 to −58 relative to this site. Results from electrophoretic mobility shift assays with purified PcaQ and from expression assays indicated that PcaQ activates expression of the transport system in the presence of protocatechuate. To investigate this transport system further, we generated a pcaM deletion mutant (predicted to encode the substrate-binding protein) and introduced a polar insertion mutation into pcaN, a gene that is predicted to encode a permease. These mutants grew poorly on protocatechuate, presumably because they fail to transport protocatechuate. Genome analyses revealed PcaQ-like DNA-binding sites encoded upstream of ABC transport systems in other members of the α-proteobacteria, and thus it appears likely that these systems are involved in the uptake of protocatechuate.
Collapse
Affiliation(s)
- Allyson M. MacLean
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| | - Wilfried Haerty
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| | - G. Brian Golding
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| | - Turlough M. Finan
- Center for Environmental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Canada
| |
Collapse
|
44
|
Zhao Z, Ding JY, Li T, Zhou NY, Liu SJ. The ncgl1108 (PheP
Cg) gene encodes a new l-Phe transporter in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2011; 90:2005-13. [DOI: 10.1007/s00253-011-3245-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/05/2011] [Accepted: 03/06/2011] [Indexed: 10/18/2022]
|
45
|
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiol 2010; 10:321. [PMID: 21159175 PMCID: PMC3022706 DOI: 10.1186/1471-2180-10-321] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/15/2010] [Indexed: 02/01/2023] Open
Abstract
Background Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032. Results Here, the gene cg1027 was shown to encode the quinone-dependent D-lactate dehydrogenase (Dld) by enzymatic analysis of the protein purified from recombinant E. coli. The absorption spectrum of purified Dld indicated the presence of FAD as bound cofactor. Inactivation of dld resulted in the loss of the ability to grow with D-lactate, which could be restored by plasmid-borne expression of dld. Heterologous expression of dld from C. glutamicum ATCC 13032 in C. efficiens enabled this species to grow with D-lactate as sole carbon source. Homologs of dld of C. glutamicum ATCC 13032 are not encoded in the sequenced genomes of other corynebacteria and mycobacteria. However, the dld locus of C. glutamicum ATCC 13032 shares 2367 bp of 2372 bp identical nucleotides with the dld locus of Propionibacterium freudenreichii subsp. shermanii, a bacterium used in Swiss-type cheese making. Both loci are flanked by insertion sequences of the same family suggesting a possible event of horizontal gene transfer. Conclusions Cg1067 encodes quinone-dependent D-lactate dehydrogenase Dld of Corynebacterium glutamicum. Dld is essential for growth with D-lactate as sole carbon source. The genomic region of dld likely has been acquired by horizontal gene transfer.
Collapse
|
46
|
Schröder J, Tauch A. Transcriptional regulation of gene expression inCorynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 2010; 34:685-737. [DOI: 10.1111/j.1574-6976.2010.00228.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
47
|
PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum. J Bacteriol 2010; 192:1565-72. [PMID: 20081038 DOI: 10.1128/jb.01338-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a new regulator, PcaO, which is involved in regulation of the protocatechuate (PCA) branch of the beta-ketoadipate pathway in Corynebacterium glutamicum. PcaO is an atypical large ATP-binding LuxR family (LAL)-type regulator and does not have a Walker A motif. A mutant of C. glutamicum in which pcaO was disrupted (RES167DeltapcaO) was unable to grow on PCA, and growth on PCA was restored by complementation with pcaO. Both an enzymatic assay of PCA 3,4-dioxygenase activity (encoded by pcaHG) and transcriptional analysis of pcaHG by reverse transcription-PCR revealed that PcaO positively regulated pcaHG. A promoter-LacZ transcriptional fusion assay suggested that PcaO interacted with the sequence upstream of pcaHG. Electrophoretic mobility shift assay (EMSA) analysis indicated that an imperfect palindromic sequence ((-78)AACCCCTGACCTTCGGGGTT(-59)) that was located upstream of the -35 region of the pcaHG promoter was essential for PcaO regulation. DNase I footprinting showed that this imperfect palindrome was protected from DNase I digestion. Site-directed mutation and EMSA tests revealed that this palindrome sequence was essential for PcaO binding to the DNA fragment. In vitro EMSA results showed that ATP weakened the binding between PcaO and its target sequence but ADP strengthened this binding, while the effect of protocatechuate on PcaO binding was dependent on the protocatechuate concentration.
Collapse
|
48
|
Haussmann U, Qi SW, Wolters D, Rögner M, Liu SJ, Poetsch A. Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view. Proteomics 2009; 9:3635-51. [PMID: 19639586 DOI: 10.1002/pmic.200900025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ability of microorganisms to assimilate aromatic substances as alternative carbon sources is the basis of biodegradation of natural as well as industrial aromatic compounds. In this study, Corynebacterium glutamicum was grown on benzoate as sole carbon and energy source. To extend the scarce knowledge about physiological adaptation processes occurring in this cell compartment, the membrane proteome was investigated under quantitative and qualitative aspects by applying shotgun proteomics to reach a comprehensive survey. Membrane proteins were relatively quantified using an internal standard metabolically labeled with (15)N. Altogether, 40 proteins were found to change their abundance during growth on benzoate in comparison to glucose. A global adaptation was observed in the membrane of benzoate-grown cells, characterized by increased abundance of proteins of the respiratory chain, by a starvation response, and by changes in sulfur metabolism involving the regulator McbR. Additional to the relative quantification, stable isotope-labeled synthetic peptides were used for the absolute quantification of the two benzoate transporters of C. glutamicum, BenK and BenE. It was found that both transporters were expressed during growth on benzoate, suggesting that both contribute substantially to benzoate uptake.
Collapse
Affiliation(s)
- Ute Haussmann
- Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Liu SJ, Liu L, Chaudhry MT, Wang L, Chen YG, Zhou Q, Liu H, Chen J. Environmental Biotechnology in China. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 122:151-88. [DOI: 10.1007/10_2008_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol 2008; 190:6458-66. [PMID: 18658264 PMCID: PMC2566012 DOI: 10.1128/jb.00780-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/21/2008] [Indexed: 11/20/2022] Open
Abstract
Many bacteria can utilize C(4)-carboxylates as carbon and energy sources. However, Corynebacterium glutamicum ATCC 13032 is not able to use tricarboxylic acid cycle intermediates such as succinate, fumarate, and l-malate as sole carbon sources. Upon prolonged incubation, spontaneous mutants which had gained the ability to grow on succinate, fumarate, and l-malate could be isolated. DNA microarray analysis showed higher mRNA levels of cg0277, which subsequently was named dccT, in the mutants than in the wild type, and transcriptional fusion analysis revealed that a point mutation in the promoter region of dccT was responsible for increased expression. The overexpression of dccT was sufficient to enable the C. glutamicum wild type to grow on succinate, fumarate, and l-malate as the sole carbon sources. Biochemical analyses revealed that DccT, which is a member of the divalent anion/Na(+) symporter family, catalyzes the effective uptake of dicarboxylates like succinate, fumarate, L-malate, and likely also oxaloacetate in a sodium-dependent manner.
Collapse
Affiliation(s)
- Jung-Won Youn
- Institute of Molecular Microbiology and Biotechnology, Westfalian Wilhelms University Muenster, Corrensstr. 3, D-48149 Muenster, Germany
| | | | | | | | | |
Collapse
|