1
|
Garrido-Palazuelos LI, Mukhtar M, Khan SA, Medrano-Félix JA, Ahmed-Khan H, M Alshabrmi F, López-Cuevas O, González-Torres B, Castro-Del Campo N, Chaidez C, Aguirre-Sánchez JR, Almohaimeed HM. Immunoinformatic approach for designing a multi-epitope vaccine against non-typhoidal salmonellosis using starvation-stress response proteins from Salmonella Oranienburg. J Biomol Struct Dyn 2025:1-19. [PMID: 40350747 DOI: 10.1080/07391102.2025.2500685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2025]
Abstract
Non-typhoidal Salmonella is responsible for gastrointestinal illnesses worldwide. Therefore, it is important to implement effective therapeutic interventions for preventing these diseases. Vaccines have proven highly efficacious in the treatment and prevention of several illnesses. Nevertheless, there is currently no authorized vaccine available for non-typhoidal salmonellosis. This study aimed to employ in silico techniques to develop a multi-epitope vaccine targeting non-typhoidal salmonellosis. Specifically, we focused on proteins associated with the starvation stress response (SSR) in Salmonella Oranienburg. The presence of these proteins is essential for the survival and disease of the host organism. The vaccine sequence was constructed utilizing B-cell and T-cell epitopes. Linkers, adjuvants and PADRE sequences were used to establish connections between epitopes. The vaccine exhibited no allergenicity, toxigenicity and a significantly high antigenicity score. Docking analysis conducted between the designed vaccine and the TLR-1, TLR-2 and TLR-4 receptors demonstrated favorable interactions and the potential to activate these receptors. In addition, it was found through immunological simulation testing that the vaccine elicits a robust immune response. The use of these proteins in the construction of a multi-epitope vaccine shows potential in terms of both safety and immunogenicity.
Collapse
Affiliation(s)
- Lennin Isaac Garrido-Palazuelos
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - Mamuna Mukhtar
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Salman Ali Khan
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - José Andrés Medrano-Félix
- Investigadoras e investigadores por México-Centro de Investigación en Alimentación y Desarrollo A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán, Sinaloa, México
| | - Haris Ahmed-Khan
- Department of Biotechnology, University of Mianwali, Punjab, Pakistan
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Osvaldo López-Cuevas
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - Berenice González-Torres
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - Cristóbal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - José Roberto Aguirre-Sánchez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo A.C (CIAD), Culiacán, Sinaloa, México
| | - Hailah M Almohaimeed
- Department of Biotechnology, University of Mianwali, Punjab, Pakistan
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Penicillin Binding Protein 7/8 Is a Potential Drug Target in Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2023; 67:e0103322. [PMID: 36475717 PMCID: PMC9872597 DOI: 10.1128/aac.01033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Limited therapeutic options dictate the need for new classes of antimicrobials active against carbapenem-resistant Acinetobacter baumannii. Presented data confirm and extend penicillin binding protein 7/8 (PBP 7/8) as a high-value target in the CR A. baumannii strain HUMC1. PBP 7/8 was essential for optimal growth/survival of HUMC1 in ex vivo human ascites and in a rat subcutaneous abscess model; in a mouse pneumonia model, the absence of PBP 7/8 decreased lethality 11-fold. The loss of PBP 7/8 resulted in increased permeability, sensitivity to complement, and lysozyme-mediated bactericidal activity. These changes did not appear to be due to alterations in the cellular fatty acid composition or capsule production. However, a decrease in lipid A and an increase in coccoidal cells and cell aggregation were noted. The compromise of the stringent permeability barrier in the PBP 7/8 mutant was reflected by an increased susceptibility to several antimicrobials. Importantly, expression of ampC was not significantly affected by the loss of PBP 7/8 and serial passage of the mutant strain in human ascites over 7 days did not yield revertants possessing a wild-type phenotype. In summary, these data and other features support PBP 7/8 as a high-value drug target for extensively drug-resistant and CR A. baumannii. Our results guide next-stage studies; the determination that the inactivation of PBP 7/8 results in an increased sensitivity to lysozyme enables the design of a high-throughput screening assay to identify small molecule compounds that can specifically inhibit PBP 7/8 activity.
Collapse
|
3
|
González-López I, Medrano-Félix JA, Castro-Del Campo N, López-Cuevas O, Ibarra Rodríguez JR, Martinez-Rodríguez C, Valdez-Torres JB, Chaidez C. Metabolic plasticity of Salmonella enterica as adaptation strategy in river water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1529-1541. [PMID: 33706620 DOI: 10.1080/09603123.2021.1896682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The survival of Salmonella in subtropical river water depends on genetic and metabolic reorganization for the expression of alternative metabolic pathways in response to starvation, which allows Salmonella to use environmental carbon sources (C-sources). However, knowledge regarding the metabolic plasticity of Salmonella serotypes for C-source utilization when exposed to these conditions remains unclear. The aim of this study was to evaluate the metabolic response and level of environmental C-source consumption by environmental Salmonella (Oranienburg and Saintpaul) and clinical Salmonella (Typhi) serotypes by comparing laboratory growth against exposure to river water conditions. Metabolic characterization was performed using a Biolog® EcoPlateTM containing 31 C-sources. The results obtained under laboratory growth conditions showed that environmental serotypes used 74.1% of the C-sources, whereas the clinical serotype used 45.1%. In contrast, in river water, all strains used up to 96.7% of the C-sources. Salmonella exposure to river water increases its capacity to use environmental C-sources.
Collapse
Affiliation(s)
- Irvin González-López
- Environmental Microbiology, Laboratorio Nacional Para La Investigación En Inocuidad Alimentaria, Centro De Investigación En Alimentación Y Desarrollo A.C, Culiacán, Sinaloa, México
| | - José Andrés Medrano-Félix
- Environmental Microbiology, Laboratorio Nacional Para La Investigación En Inocuidad Alimentaria, CONACYT-Centro De Investigación En Alimentación Y Desarrollo A.C, Culiacán, Sinaloa, México
| | - Nohelia Castro-Del Campo
- Environmental Microbiology, Laboratorio Nacional Para La Investigación En Inocuidad Alimentaria, Centro De Investigación En Alimentación Y Desarrollo A.C, Culiacán, Sinaloa, México
| | - Osvaldo López-Cuevas
- Environmental Microbiology, Laboratorio Nacional Para La Investigación En Inocuidad Alimentaria, Centro De Investigación En Alimentación Y Desarrollo A.C, Culiacán, Sinaloa, México
| | | | - Celida Martinez-Rodríguez
- Environmental Microbiology, Laboratorio Nacional Para La Investigación En Inocuidad Alimentaria, Centro De Investigación En Alimentación Y Desarrollo A.C, Culiacán, Sinaloa, México
| | - José Benigno Valdez-Torres
- Environmental Microbiology, Laboratorio Nacional Para La Investigación En Inocuidad Alimentaria, Centro De Investigación En Alimentación Y Desarrollo A.C, Culiacán, Sinaloa, México
| | - Cristóbal Chaidez
- Environmental Microbiology, Laboratorio Nacional Para La Investigación En Inocuidad Alimentaria, Centro De Investigación En Alimentación Y Desarrollo A.C, Culiacán, Sinaloa, México
| |
Collapse
|
4
|
Chakroun I, Fedhila K, Mahdhi A, Mzoughi R, Saidane D, Esteban MÁ, Bakhrouf A. Atypical Salmonella Typhimurium persistence in the pacific oyster, Crassostrea gigas, and its effect on the variation of gene expression involved in the oyster's immune system. Microb Pathog 2021; 160:105185. [PMID: 34520817 DOI: 10.1016/j.micpath.2021.105185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
Salmonella is one of the most important pathogens involved in food intoxication outbreaks, and in many cases, the intoxication has been linked to shellfish which is typically consumed raw. While much is understood about the interactions between Salmonella and vertebrates, much less is known about its relationships with invertebrates, which could be an overlooked and important aspect to better understand the Salmonella interaction with its diversified hosts. The aim of this study was to investigate the effect of preadaptation in seawater microcosms during 12 months on Salmonella Typhimurium by determining its survival capacity within this mollusk over a period of 30 days. The results showed that the stressed bacteria are able to survive in this mollusk at a higher concentration even after thirty days of infection compared to bacteria in the normal state. In order to minimize the effect of an experimental device for one month on the survival of Salmonella, we carried out an in vitro study to determine the number of viable Salmonella in the hemocytes of oysters. Interestingly, we evaluated the effect of the antibacterial activity of different extracts of C. gigas using the solvents (Methanol, Ethanol and acetic acid) specifically against stressed and unstressed Salmonella. Furthermore, we compared the expression of three genes in the oyster Cg-big-def1, timp and sod in response to experimental infections of this mollusk with Vibrio splendidus kb133 and S. Typhimurium LT2DT104 in normal and stressed states. These findings are very important to contribute to explaining several questions about the persistence of S. Typhimurium for a long time in C. gigas and the host's immune response to this microorganism which is considered to be non-virulent for molluscs.
Collapse
Affiliation(s)
- Ibtissem Chakroun
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia.
| | - Kais Fedhila
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia
| | - Abdelkarim Mahdhi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia
| | - Ridha Mzoughi
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia
| | - Dalila Saidane
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia
| | - Ma Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100. Murcia, Spain
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, 5000. Tunisia
| |
Collapse
|
5
|
Amin SV, Roberts JT, Patterson DG, Coley AB, Allred JA, Denner JM, Johnson JP, Mullen GE, O'Neal TK, Smith JT, Cardin SE, Carr HT, Carr SL, Cowart HE, DaCosta DH, Herring BR, King VM, Polska CJ, Ward EE, Wise AA, McAllister KN, Chevalier D, Spector MP, Borchert GM. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium. RNA Biol 2016; 13:331-42. [PMID: 26853797 DOI: 10.1080/15476286.2016.1144010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Small RNAs (sRNAs) are short (∼50-200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from "gene-empty" regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands.
Collapse
Affiliation(s)
- Shivam V Amin
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Justin T Roberts
- a Department of Biology , University of South Alabama , Mobile , AL
| | | | | | | | - Jason M Denner
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Justin P Johnson
- a Department of Biology , University of South Alabama , Mobile , AL
| | | | - Trenton K O'Neal
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Jason T Smith
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Sara E Cardin
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Hank T Carr
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Stacie L Carr
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Holly E Cowart
- a Department of Biology , University of South Alabama , Mobile , AL
| | - David H DaCosta
- a Department of Biology , University of South Alabama , Mobile , AL
| | | | - Valeria M King
- a Department of Biology , University of South Alabama , Mobile , AL
| | | | - Erin E Ward
- a Department of Biology , University of South Alabama , Mobile , AL
| | - Alice A Wise
- a Department of Biology , University of South Alabama , Mobile , AL
| | | | - David Chevalier
- c Department of Biology , East Georgia State College , Swainsboro , GA
| | - Michael P Spector
- b Department of Biomedical Sciences , University of South Alabama , Mobile , AL
| | - Glen M Borchert
- a Department of Biology , University of South Alabama , Mobile , AL.,d Department of Pharmacology , USA College of Medicine , Mobile , AL
| |
Collapse
|
6
|
Hernández SB, Cava F, Pucciarelli MG, García-Del Portillo F, de Pedro MA, Casadesús J. Bile-induced peptidoglycan remodelling in Salmonella enterica. Environ Microbiol 2014; 17:1081-9. [PMID: 24762004 DOI: 10.1111/1462-2920.12491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/11/2014] [Accepted: 04/20/2014] [Indexed: 02/02/2023]
Abstract
Changes in the peptidoglycan (PG) structure of Salmonella enterica are detected in the presence of a sublethal concentration of sodium deoxycholate (DOC): (i) lower proportions of Braun lipoprotein (Lpp)-bound muropeptides; (ii) reduced levels of muropeptides cross-linked by L(meso)-diaminopimelyl-D(meso)-diaminopimelic acid (L-D) peptide bridges (3-3 cross-links). Similar structural changes are found in S. enterica cultures adapted to grow in the presence of a lethal concentration of DOC, suggesting that reduced anchoring of Braun protein to PG and low occurrence of 3-3 cross-links may increase S. enterica resistance to bile. This view is further supported by additional observations: (i) A triple mutant lacking L,D-transpeptidases YbiS, ErfK, and YcfS, which does not contain Lpp anchored to PG, is hyper-resistant to bile; (ii) enhanced 3-3 cross-linking upon overexpression of YnhG transpeptidase causes a decrease in bile resistance. These observations suggest that remodelling of the cell wall may be added to the list of adaptive responses that permit survival of S. enterica in the presence of bile.
Collapse
Affiliation(s)
- Sara B Hernández
- Facultad de Biología, Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Novel members of the phosphate regulon in Escherichia coli O157:H7 identified using a whole-genome shotgun approach. Gene 2012; 502:27-35. [PMID: 22504029 DOI: 10.1016/j.gene.2012.03.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/16/2012] [Accepted: 03/22/2012] [Indexed: 11/21/2022]
Abstract
Escherichia coli PhoB protein is the transcriptional activator of the phosphate (pho) regulon genes involved in phosphate utilization. To gain further insight into the potential roles of PhoB in the phosphate starvation response, we attempted to identify PhoB-regulated promoters using a random shotgun library of E. coli O157:H7 genomic fragments that were fused to a promoterless lacZ reporter gene on a low-copy-number plasmid. Using this approach, numerous chromosomal regions containing phosphate-starvation-inducible (psi) promoters, including nearly all known pho regulon promoters, were identified. β-Galactosidase and electrophoretic mobility shift assays showed that transcription from the 22 identified psi promoters was directly regulated by PhoB. PhoB-binding sites within the promoter regions were identified by DNase I footprinting. The genes for yoaI, rpsG, galP, rnr, udp, sstT, ybiM, and vgrE were located downstream of these promoters, indicating that these genes are members of the pho regulon. Surprisingly, the other 14 promoters were located within sense or antisense strands of open reading frames (ORFs), and/or at a distance from ORFs. Our results suggest that PhoB has broader roles in gene regulation and RNA expression in E. coli strains than was previously supposed. Our shotgun-library cloning approach represents a powerful tool for identifying promoters activated or repressed by transcriptional regulators that respond to environmental stimuli.
Collapse
|
8
|
|
9
|
Deletion and overexpression studies on DacB2, a putative low molecular mass penicillin binding protein from Mycobacterium tuberculosis H(37)Rv. Microb Pathog 2011; 52:109-16. [PMID: 22138550 DOI: 10.1016/j.micpath.2011.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 11/20/2022]
Abstract
Mycobacterium tuberculosis genome encodes several high and low molecular mass penicillin binding proteins. One such low molecular mass protein is DacB2 encoded by open reading frame Rv2911 of M. tuberculosis which is predicted to play a role in peptidoglycan synthesis. In this study we have tried to gain an insight into the role of this accessory cell division protein in mycobacterial physiology by performing overexpression and deletion studies. The overproduction of DacB2 in non-pathogenic, fast growing mycobacterium Mycobacterium smegmatis mc(2)155 resulted in reduced growth, an altered colony morphology, a defect in sliding motility and biofilm formation. A point mutant of DacB2 was made wherein the active site serine residue was mutated to cysteine to abolish the penicillin binding function of protein. The overexpression of mutant protein showed similar results indicating that the effects produced were independent of protein's penicillin binding function. The gene encoding DacB2 was deleted in M. tuberculosis by specialized transduction method. The deletion mutant showed reduced growth in Sauton's medium under acidic and low oxygen availability. The in vitro infection studies with THP-1 cells showed increased intracellular survival of dacB2 mutant compared to parent and complemented strains. The colony morphology and antibiotic sensitivity of mutant and wild-type strains were similar.
Collapse
|
10
|
Evolution of the RpoS regulon: origin of RpoS and the conservation of RpoS-dependent regulation in bacteria. J Mol Evol 2010; 70:557-71. [PMID: 20506020 DOI: 10.1007/s00239-010-9352-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
The RpoS sigma factor in proteobacteria regulates genes in stationary phase and in response to stress. Although of conserved function, the RpoS regulon may have different gene composition across species due to high genomic diversity and to known environmental conditions that select for RpoS mutants. In this study, the distribution of RpoS homologs in prokaryotes and the differential dependence of regulon members on RpoS for expression in two gamma-proteobacteria (Escherichia coli and Pseudomonas aeruginosa) were examined. Using a maximum-likelihood phylogeny and reciprocal best hits analysis, we show that the RpoS sigma factor is conserved within gamma-, beta-, and delta-proteobacteria. Annotated RpoS of Borrelia and the enteric RpoS are postulated to have separate evolutionary origins. To determine the conservation of RpoS-dependent gene expression across species, reciprocal best hits analysis was used to identify orthologs of the E. coli RpoS regulon in the RpoS regulon of P. aeruginosa. Of the 186 RpoS-dependent genes of E. coli, 50 proteins have an ortholog within the P. aeruginosa genome. Twelve genes of the 50 orthologs are RpoS-dependent in both species, and at least four genes are regulated by RpoS in other gamma-proteobacteria. Despite RpoS conservation in gamma-, beta-, and delta-proteobacteria, RpoS regulon composition is subject to modification between species. Environmental selection for RpoS mutants likely contributes to the evolutionary divergence and specialization of the RpoS regulon within different bacterial genomes.
Collapse
|
11
|
Periplasmic peptidyl-prolyl isomerases SurA and FkpA play an important role in the starvation-stress response (SSR) of Salmonella enterica serovar Typhimurium. Antonie van Leeuwenhoek 2010; 98:51-63. [PMID: 20232248 DOI: 10.1007/s10482-010-9428-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
Carbon-energy source (C)-starved cells of Salmonella enterica serovar Typhimurium (S. Typhimurium) are remarkably more resistant to stress than actively growing ones. Carbon-starved S. Typhimurium is capable of withstanding extended periods of starvation and assault from a number of different stresses that rapidly kill growing cells. These unique properties of the C-starved cell are the direct result of a series of genetic and physiological adaptations referred to as the starvation-stress response (SSR). Previous work established that the SSR of S. Typhimurium is partially regulated by the extracytoplasmic function sigma factor sigma(E). As part of an effort to identify sigma(E)-regulated SSR genes, we investigated surA and fkpA, encoding two different classes of peptidyl-prolyl isomerase that function in folding cell envelope proteins. Both surA and fkpA are members of the heat-shock-inducible sigma(E) regulon of Escherichia coli. Although both genes are expressed in C-starved Salmonella cells, evidence indicates that surA and fkpA are not C-starvation-inducible. Furthermore, their expression during C-starvation does not appear to be sigma(E)-dependent. Nonetheless, surA and fkpA proved to be important, to differing degrees, for long-term C-starvation survival and for the cross-resistance of C-starved cells to high temperature, acidic pH, and the antimicrobial peptide polymyxin B, but neither were required for cross-resistance to oxidative stress. These results point to fundamental differences between heat-shock-inducible and C-starvation-inducible genes regulated by sigma(E) and suggest that genes other than surA and fkpA are involved in the sigma(E)-regulated branch of the SSR in Salmonella.
Collapse
|
12
|
Russo TA, MacDonald U, Beanan JM, Olson R, MacDonald IJ, Sauberan SL, Luke NR, Schultz LW, Umland TC. Penicillin-binding protein 7/8 contributes to the survival of Acinetobacter baumannii in vitro and in vivo. J Infect Dis 2009; 199:513-21. [PMID: 19143563 DOI: 10.1086/596317] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is a bacterial pathogen of increasing medical importance. Little is known about genes important for its survival in vivo. METHODS AND RESULTS Screening of random transposon mutants of the model pathogen AB307-0294 identified the mutant AB307.27. AB307.27 contained its transposon insertion in pbpG, which encodes the putative low-molecular-mass penicillin-binding protein 7/8 (PBP-7/8). AB307.27 was significantly killed in ascites (P<.001), but its growth in Luria-Bertani broth was similar to that of its parent, AB307-0294 (P=.13). The survival of AB307.27 was significantly decreased in a rat soft-tissue infection model (P<.001) and a rat pneumonia model (P=.002), compared with AB307-0294. AB307.27 was significantly killed in 90% human serum in vitro, compared with AB307-0294 (P<.001). Electron microscopy demonstrated more coccobacillary forms of AB307.27, compared with AB307-0294, suggesting a possible modulation in the peptidoglycan, which may affect susceptibility to host defense factors. CONCLUSIONS These findings demonstrate that PBP-7/8 contributes to the pathogenesis of A. baumannii. PBP-7/8 either directly or indirectly contributes to the resistance of AB307-0294 to complement-mediated bactericidal activity. An understanding of how PBP-7/8 contributes to serum resistance will lend insight into the role of this low-molecular-mass PBP whose function is poorly understood.
Collapse
Affiliation(s)
- Thomas A Russo
- Veterans Administration Western New York Healthcare System, The Witebsky Center for Microbial Pathogenesis, Department of Medicine, State University of New York-Buffalo, Buffalo, New York 14214, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pianetti A, Battistelli M, Citterio B, Parlani C, Falcieri E, Bruscolini F. Morphological changes of Aeromonas hydrophila in response to osmotic stress. Micron 2009; 40:426-33. [PMID: 19264494 DOI: 10.1016/j.micron.2009.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
Abstract
The adaptive response of bacteria to stressful environmental situations may lead to a modification of physiological and phenotypical characteristics, including morphology. The aim of this study was the analysis of the ultrastructural changes in Aeromonas hydrophila exposed to different NaCl concentrations (1.7%, 3.4%, 6%) at 4 and 24 degrees C for 188 days. Bacterial cultures were processed for scanning and transmission electron microscopy, and specimens were analysed at different times during osmotic stress. SEM reveals the presence of three predominant morphotypes: rod, filamentous and spherical forms, depending on the time and culture conditions. Normal rod cells prevail in 1.7% NaCl growth conditions, maintaining high rates until the end of the trial at 4 degrees C. The most favourable conditions for the elongated morphotype are 3.4% NaCl at 4 degrees C. Spherical forms appear later, increase with time and are the prevalent population at the end of the trial at 24 degrees C, in all culture conditions. TEM reveals the presence of normal, necrotic-like and apoptotic-like forms; these latter forms increase with time according to salt concentration and temperature. Initially, a detachment of the external membrane appears, with cytoplasmic clumping into small, dense masses; as the process continues, both these features become more evident with increasing salt concentrations. This behaviour has been compared to that of eukaryotic cells undergoing growth factor deprivation-induced apoptosis. Occasionally, surface blebs are observed. In conclusion, the study suggests that the exposure of A. hydrophila to stressful conditions (osmolarity, temperature and nutrients) leads to the generation of varying morphotypes, which promote cell survival in adverse conditions and a rapid repopulation in post-stress environments.
Collapse
Affiliation(s)
- A Pianetti
- Dip. di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Italy.
| | | | | | | | | | | |
Collapse
|