1
|
Gupta A, Pandey P, Gupta R, Tiwari S, Singh SP. Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1915-1930. [PMID: 38222287 PMCID: PMC10784256 DOI: 10.1007/s12298-023-01386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ancestors of chloroplast and perform oxygen-evolving photosynthesis similar to higher plants and algae. However, an obligatory requirement of photons for their growth results in the exposure of cyanobacteria to varying light conditions. Therefore, the light environment could act as a signal to drive the developmental processes, in addition to photosynthesis, in cyanobacteria. These Gram-negative prokaryotes exhibit characteristic light-dependent developmental processes that maximize their fitness and resource utilization. The development occurring in response to radiance (photomorphogenesis) involves fine-tuning cellular physiology, morphology and metabolism. The best-studied example of cyanobacterial photomorphogenesis is chromatic acclimation (CA), which allows a selected number of cyanobacteria to tailor their light-harvesting antenna called phycobilisome (PBS). The tailoring of PBS under existing wavelengths and abundance of light gives an advantage to cyanobacteria over another photoautotroph. In this work, we will provide a comprehensive update on light-sensing, molecular signaling and signal cascades found in cyanobacteria. We also include recent developments made in other aspects of CA, such as mechanistic insights into changes in the size and shape of cells, filaments and carboxysomes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Priyul Pandey
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Rinkesh Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Sapna Tiwari
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Shailendra Pratap Singh
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| |
Collapse
|
2
|
Springstein BL, Nürnberg DJ, Weiss GL, Pilhofer M, Stucken K. Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life (Basel) 2020; 10:E355. [PMID: 33348886 PMCID: PMC7766704 DOI: 10.3390/life10120355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.
Collapse
Affiliation(s)
- Benjamin L. Springstein
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J. Nürnberg
- Department of Physics, Biophysics and Biochemistry of Photosynthetic Organisms, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Gregor L. Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena 1720010, Chile;
| |
Collapse
|
3
|
Camargo S, Picossi S, Corrales-Guerrero L, Valladares A, Arévalo S, Herrero A. ZipN is an essential FtsZ membrane tether and contributes to the septal localization of SepJ in the filamentous cyanobacterium Anabaena. Sci Rep 2019; 9:2744. [PMID: 30808920 PMCID: PMC6391411 DOI: 10.1038/s41598-019-39336-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 11/23/2022] Open
Abstract
The organismic unit of heterocyst-forming cyanobacteria is a filament of communicating cells connected by septal junctions, proteinaceous structures bridging the cytoplasms of contiguous cells. This distinct bacterial organization is preserved during cell division. In Anabaena, deletion of the zipN gene could not be segregated. We generated strain CSL109 that expresses zipN from a synthetic regulatable promoter. Under conditions of ZipN depletion, cells progressively enlarged, reflecting restricted cell division, and showed drastic morphological alterations including cell detachment from the filaments, to finish lysing. In contrast to the wild-type localization in midcell Z-rings, FtsZ was found in delocalized aggregates in strain CSL109. Consistently, the proportion of membrane-associated to soluble FtsZ in fractionated cell extracts was lower in CSL109. Bacterial two-hybrid analysis showed that ZipN interacts with FtsZ and other cell-division proteins including cytoplasmic Ftn6 and SepF, and polytopic FtsW, FtsX, FtsQ and FtsI. Additionally, ZipN interacted with the septal protein SepJ, and in CSL109 depletion of ZipN was concomitant with a progressive loss of septal specificity of SepJ. Thus, in Anabaena ZipN represents an essential FtsZ membrane tether and an organizer of the divisome, and it contributes to the conformation of septal structures for filament integrity and intercellular communication.
Collapse
Affiliation(s)
- Sergio Camargo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Silvia Picossi
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | | | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain.
| |
Collapse
|
4
|
Rohnke BA, Singh SP, Pattanaik B, Montgomery BL. RcaE-Dependent Regulation of Carboxysome Structural Proteins Has a Central Role in Environmental Determination of Carboxysome Morphology and Abundance in Fremyella diplosiphon. mSphere 2018; 3:e00617-17. [PMID: 29404416 PMCID: PMC5784247 DOI: 10.1128/msphere.00617-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Carboxysomes are central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation in cyanobacteria. Although the structure is well understood, roles of environmental cues in the synthesis, positioning, and functional tuning of carboxysomes have not been systematically studied. Fremyella diplosiphon is a model cyanobacterium for assessing impacts of environmental light cues on photosynthetic pigmentation and tuning of photosynthetic efficiency during complementary chromatic acclimation (CCA), which is controlled by the photoreceptor RcaE. Given the central role of carboxysomes in photosynthesis, we investigated roles of light-dependent RcaE signaling in carboxysome structure and function. A ΔrcaE mutant exhibits altered carboxysome size and number, ccm gene expression, and carboxysome protein accumulation relative to the wild-type (WT) strain. Several Ccm proteins, including carboxysome shell proteins and core-nucleating factors, overaccumulate in ΔrcaE cells relative to WT cells. Additionally, levels of carboxysome cargo RuBisCO in the ΔrcaE mutant are lower than or unchanged from those in the WT strain. This shift in the ratios of carboxysome shell and nucleating components to the carboxysome cargo appears to drive carboxysome morphology and abundance dynamics. Carboxysomes are also occasionally mislocalized spatially to the periphery of spherical mutants within thylakoid membranes, suggesting that carboxysome positioning is impacted by cell shape. The RcaE photoreceptor links perception of external light cues to regulating carboxysome structure and function and, thus, to the cellular capacity for carbon fixation. IMPORTANCE Carboxysomes are proteinaceous subcellular compartments, or bacterial organelles, found in cyanobacteria that consist of a protein shell surrounding a core primarily composed of the enzyme ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) that is central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation. Whereas significant insights have been gained regarding the structure and synthesis of carboxysomes, limited attention has been given to how their size, abundance, and protein composition are regulated to ensure optimal carbon fixation in dynamic environments. Given the centrality of carboxysomes in photosynthesis, we provide an analysis of the role of a photoreceptor, RcaE, which functions in matching photosynthetic pigmentation to the external environment during complementary chromatic acclimation and thereby optimizing photosynthetic efficiency, in regulating carboxysome dynamics. Our data highlight a role for RcaE in perceiving external light cues and regulating carboxysome structure and function and, thus, in the cellular capacity for carbon fixation and organismal fitness.
Collapse
Affiliation(s)
- Brandon A. Rohnke
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Shailendra P. Singh
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
| | - Bagmi Pattanaik
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
| | - Beronda L. Montgomery
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Characterization of Seven Species of Cyanobacteria for High-Quality Biomass Production. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2666-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Shrivastava AK, Pandey S, Yadav S, Mishra Y, Singh PK, Rai R, Singh S, Rai S, Rai LC. Comparative proteomics of wild type, An+ahpC and An∆ahpC strains of Anabaena sp. PCC7120 demonstrates AhpC mediated augmentation of photosynthesis, N2-fixation and modulation of regulatory network of antioxidative proteins. J Proteomics 2016; 140:81-99. [PMID: 27102494 DOI: 10.1016/j.jprot.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED Alkylhydroperoxide reductase (AhpC), a 1-Cys peroxiredoxin is well known for maintaining the cellular homeostasis. Present study employs proteome approach to analyze and compare alterations in proteome of Anabaena PCC7120 in overexpressing (An+ahpC), deletion (An∆ahpC) and its wild type. 2-DE based analysis revealed that the major portion of identified protein belongs to energy metabolism, protein folding, modification and stress related proteins and carbohydrate metabolism. The two major traits discernible from An+ahpC were (i) augmentation of photosynthesis and nitrogen fixation (ii) modulation of regulatory network of antioxidative proteins. Increased accumulation of proteins of light reaction, dark reaction, pentose phosphate pathway and electron transfer agent FDX for nitrogenase in An+ahpC and their simultaneous downregulation in AnΔahpC demonstrates its role in augmenting photosynthesis and nitrogen fixation. Proteomic data was nicely corroborated with physiological, biochemical parameters displaying upregulation of nitrogenase (1.6 fold) PSI (1.08) and PSII (2.137) in An+ahpC. Furthermore, in silico analysis not only attested association of AhpC with peroxiredoxins but also with other players of antioxidative defense system viz. thioredoxin and thioredoxin reductase. Above mentioned findings are in agreement with 33-40% and 40-60% better growth performance of An+ahpC over wild type and An∆ahpC respectively under abiotic stresses, suggesting its role in maintenance of metabolic machinery under stress. SIGNIFICANCE Present work explores key role of AhpC in mitigating stress in Anabaena PCC7120 through combined proteomic, biochemical and in silico investigations. This study is the first attempt to analyze and compare alterations in proteome of Anabaena PCC7120 following addition (overexpressing strain An+ahpC) and deletion (mutant An∆ahpC) of AhpC against its wild type. The effort resulted in two major traits in An+ahpC as (i) augmentation of photosynthesis and nitrogen fixation (ii) modulation of regulatory network of antioxidative proteins.
Collapse
Affiliation(s)
- Alok K Shrivastava
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sarita Pandey
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Yogesh Mishra
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prashant K Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Snigdha Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Montgomery BL. Light-dependent governance of cell shape dimensions in cyanobacteria. Front Microbiol 2015; 6:514. [PMID: 26074902 PMCID: PMC4443024 DOI: 10.3389/fmicb.2015.00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ, Pakrasi HB. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO₂. Sci Rep 2015; 5:8132. [PMID: 25633131 PMCID: PMC5389031 DOI: 10.1038/srep08132] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/08/2015] [Indexed: 11/20/2022] Open
Abstract
Photosynthetic microbes are of emerging interest as production organisms in biotechnology because they can grow autotrophically using sunlight, an abundant energy source, and CO2, a greenhouse gas. Important traits for such microbes are fast growth and amenability to genetic manipulation. Here we describe Synechococcuselongatus UTEX 2973, a unicellular cyanobacterium capable of rapid autotrophic growth, comparable to heterotrophic industrial hosts such as yeast. Synechococcus UTEX 2973 can be readily transformed for facile generation of desired knockout and knock-in mutations. Genome sequencing coupled with global proteomics studies revealed that Synechococcus UTEX 2973 is a close relative of the widely studied cyanobacterium Synechococcuselongatus PCC 7942, an organism that grows more than two times slower. A small number of nucleotide changes are the only significant differences between the genomes of these two cyanobacterial strains. Thus, our study has unraveled genetic determinants necessary for rapid growth of cyanobacterial strains of significant industrial potential.
Collapse
Affiliation(s)
- Jingjie Yu
- Department of Biology, Washington University, St. Louis, MO 63130
| | | | - Paul F Cliften
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard D Head
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Jon M Jacobs
- Pacific Northwest National Laboratory, Richland, WA 99352
| | | | | | - Jerry J Brand
- UTEX The Culture Collection of Algae, University of Texas at Austin, TX 78712
| | | |
Collapse
|
9
|
Matallana-Surget S, Derock J, Leroy B, Badri H, Deschoenmaeker F, Wattiez R. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005. PLoS One 2014; 9:e99076. [PMID: 24914774 PMCID: PMC4051694 DOI: 10.1371/journal.pone.0099076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.
Collapse
Affiliation(s)
- Sabine Matallana-Surget
- Department of Proteomics and Microbiology, Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons, Belgium
| | - Jérémy Derock
- Department of Proteomics and Microbiology, Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons, Belgium
| | - Hanène Badri
- Department of Proteomics and Microbiology, Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons, Belgium
- Unit of Microbiology, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Frédéric Deschoenmaeker
- Department of Proteomics and Microbiology, Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons, Belgium
- * E-mail:
| |
Collapse
|
10
|
Singh SP, Montgomery BL. Morphogenes bolA and mreB mediate the photoregulation of cellular morphology during complementary chromatic acclimation in Fremyella diplosiphon. Mol Microbiol 2014; 93:167-82. [PMID: 24823920 DOI: 10.1111/mmi.12649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 11/29/2022]
Abstract
Photoregulation of pigmentation during complementary chromatic acclimation (CCA) is well studied in Fremyella diplosiphon; however, mechanistic insights into the CCA-associated morphological changes are still emerging. F. diplosiphon cells are rectangular under green light (GL), whereas cells are smaller and spherical under red light (RL). Here, we investigate the role of morphogenes bolA and mreB during CCA using gene expression and gene function analyses. The F. diplosiphon bolA gene is essential as its complete removal from the genome was unsuccessful. Depletion of bolA resulted in slow growth, morphological defects and the accumulation of high levels of reactive oxygen species in a partially segregated ΔbolA strain. Higher expression of bolA was observed under RL and was correlated with lower expression of mreB and mreC genes in wild type. In a ΔrcaE strain that lacks the red-/green-responsive RcaE photoreceptor, the expression of bolA and mre genes was altered under both RL and GL. Observed gene expression relationships suggest that mreB and mreC expression is controlled by RcaE-dependent photoregulation of bolA expression. Expression of F. diplosiphon bolA and mreB homologues in Escherichia coli demonstrated functional conservation of the encoded proteins. Together, these studies establish roles for bolA and mreB in RcaE-dependent regulation of cellular morphology.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Energy - Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 106, East Lansing, MI, 48824-1312, USA
| | | |
Collapse
|
11
|
Characterization of gamma radiation inducible thioredoxin h from Spirogyra varians. Enzyme Microb Technol 2013; 53:136-42. [PMID: 23830452 DOI: 10.1016/j.enzmictec.2013.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/22/2022]
Abstract
In this study, thioredoxin h (Trxh) was isolated and characterized from the fresh water green alga Spirogyra varians, which was one amongst the pool of proteins induced upon gamma radiation treatment. cDNA clones encoding S. varians thioredoxin h were isolated from a pre-constructed S. varians cDNA library. Trxh had a molecular mass of 13.5kDa and contained the canonical WCGPC active site. Recombinant Trxh showed the disulfide reduction activity, and exhibited insulin reduction activity. Also, Trxh had higher 5,5'-dithiobis(2-nitrobenzoic acid) reduction activity with Arabidopsis thioredoxin reductase (TR) than with Escherichia coli TR. Specific expression of the Trxh gene was further analyzed at mRNA and protein levels and was found to increase by gamma irradiation upto the absorbed dose of 3kGy, suggesting that Trxh may have potential functions in protection of biomolecules from gamma irradiation.
Collapse
|
12
|
Gorelova OA, Baulina OI, Rasmussen U, Koksharova OA. The pleiotropic effects of ftn2 and ftn6 mutations in cyanobacterium Synechococcus sp. PCC 7942: an ultrastructural study. PROTOPLASMA 2013; 250:931-942. [PMID: 23306433 DOI: 10.1007/s00709-012-0479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/24/2012] [Indexed: 06/01/2023]
Abstract
Two cell division mutants (Ftn2 and Ftn6) of the cyanobacterium Synechococcus sp. PCC 7942 were studied using scanning electron microscopy and transmission electron microscopy methods. This included negative staining and ultrathin section analysis. Different morphological and ultrastructural features of mutant cells were identified. Ftn2 and Ftn6 mutants exhibited particularly elongated cells characterized by significantly changed shape in comparison with the wild type. There was irregular bending, curving, spiralization, and bulges as well as cell branching. Elongated mutant cells were able to initiate cytokinesis simultaneously in several division sites which were localized irregularly along the cell. Damaged rigidity of the cell wall was typical of many cells for both mutants. Thylakoids of mutants showed modified arrangement and ultrastructural organization. Carboxysome-like structures without a shell and/or without accurate polyhedral packing protein particles were often detected in the mutants. However, in the case of Ftn2 and Ftn6, the average number of carboxysomes per section was less than in the wild type by a factor of 4 and 2, respectively. These multiple morphological and ultrastructural changes in mutant cells evinced pleiotropic responses which were induced by mutations in cell division genes ftn2 and ftn6. Ultrastructural abnormalities of Ftn2 and Ftn6 mutants were consistent with differences in their proteomes. These results could support the significance of FTN2 and FTN6 proteins for both cyanobacterial cell division and cellular physiology.
Collapse
Affiliation(s)
- O A Gorelova
- Biological Faculty, Moscow State University, 119992 Moscow, Russia.
| | | | | | | |
Collapse
|
13
|
Das PK, Bagchi SN. Role of bacterioferritin comigratory protein and glutathione peroxidase-reductase system in promoting bentazone tolerance in a mutant of Synechococcus elongatus PCC7942. PROTOPLASMA 2012; 249:65-74. [PMID: 21267607 DOI: 10.1007/s00709-011-0262-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 01/10/2011] [Indexed: 05/11/2023]
Abstract
In this article, we describe the modifications in the antioxidant system of Synechococcus elongatus PCC7942 mutant Mu2 capable of growing at five times higher concentration of bentazone than wild type. Nevertheless, in both the strains, bentazone almost identically induced light-dependent H(2)O(2) production and its extracellular release. However unlike the wild type, peroxide produced upon prolong bentazone incubation was immediately degraded in Mu2. Consequently, the lipid peroxidation activity was also kept low. With prolong incubation of bentazone the mutant displayed a steady increase in glutathione peroxidase-reductase enzyme activities and reduced glutathione content, respectively, by 60% and 130%, favoring an efficient detoxification of bentazone-produced H(2)O(2). Catalase-peroxidase and glutathione S-transferase, though present, remained ineffective in rendering bentazone tolerance. In-gel assays of glutathione S-transferase and glutathione reductase revealed presence of between four and five oligomeric states with mobility shifts. One oligomeric form each enzyme in wild-type strain disappeared upon bentazone treatment. Upon two-dimensional electrophoresis and MALDI-TOF/TOF, a bacterioferritin comigratory protein (peroxiredoxin Q) was found to be already highly expressed in Mu2; whereas in wild type, its level increased only upon bentazone exposure. The bcp transcript pool in WT was relatively low but increased with bentazone, whereas Mu2 exhibited high bcp mRNA even without herbicide. Bacterioferritin comigratory protein and glutathione peroxidase-reductase appear to be responsible for detoxification of bentazone-derived peroxide in Mu2.
Collapse
Affiliation(s)
- Palash Kumar Das
- Department of Biological Sciences, Rani Durgavati University, Jabalpur, Madhya Pradesh, India
| | | |
Collapse
|
14
|
Goclaw-Binder H, Sendersky E, Shimoni E, Kiss V, Reich Z, Perelman A, Schwarz R. Nutrient-associated elongation and asymmetric division of the cyanobacterium Synechococcus PCC 7942. Environ Microbiol 2011; 14:680-90. [DOI: 10.1111/j.1462-2920.2011.02620.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol 2011; 19:278-85. [PMID: 21458273 DOI: 10.1016/j.tim.2011.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 02/04/2023]
Abstract
Similar to other bacteria, cyanobacteria exist in a wide-ranging diversity of shapes and sizes. However, three general shapes are observed most frequently: spherical, rod and spiral. Bacteria can also grow as filaments of cells. Some filamentous cyanobacteria have differentiated cell types that exhibit distinct morphologies: motile hormogonia, nitrogen-fixing heterocysts, and spore-like akinetes. Cyanobacterial cell shapes, which are largely controlled by the cell wall, can be regulated by developmental and/or environmental cues, although the mechanisms of regulation and the selective advantage(s) of regulating cellular shape are still being elucidated. In this review, recent insights into developmental and environmental regulation of cell shape in cyanobacteria and the relationship(s) of cell shape and differentiation to organismal fitness are discussed.
Collapse
|
16
|
Koksharova OA, Babykin MM. Cyanobacterial cell division: Genetics and comparative genomics of cyanobacterial cell division. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411030070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Koksharova OA. Application of molecular genetic and microbiological techniques in ecology and biotechnology of cyanobacteria. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710060020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Marbouty M, Saguez C, Chauvat F. The cyanobacterial cell division factor Ftn6 contains an N-terminal DnaD-like domain. BMC STRUCTURAL BIOLOGY 2009; 9:54. [PMID: 19698108 PMCID: PMC2736966 DOI: 10.1186/1472-6807-9-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/21/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND DNA replication and cell cycle as well as their relationship have been extensively studied in the two model organisms E. coli and B. subtilis. By contrast, little is known about these processes in cyanobacteria, even though they are crucial to the biosphere, in utilizing solar energy to renew the oxygenic atmosphere and in producing the biomass for the food chain. Recent studies have allowed the identification of several cell division factors that are specifics to cyanobacteria. Among them, Ftn6 has been proposed to function in the recruitment of the crucial FtsZ proteins to the septum or the subsequent Z-ring assembly and possibly in chromosome segregation. RESULTS In this study, we identified an as yet undescribed domain located in the conserved N-terminal region of Ftn6. This 77 amino-acids-long domain, designated here as FND (Ftn6 N-Terminal Domain), exhibits striking sequence and structural similarities with the DNA-interacting module, listed in the PFAM database as the DnaD-like domain (pfam04271). We took advantage of the sequence similarities between FND and the DnaD-like domains to construct a homology 3D-model of the Ftn6 FND domain from the model cyanobacterium Synechocystis PCC6803. Mapping of the conserved residues exposed onto the FND surface allowed us to identify a highly conserved area that could be engaged in Ftn6-specific interactions. CONCLUSION Overall, similarities between FND and DnaD-like domains as well as previously reported observations on Ftn6 suggest that FND may function as a DNA-interacting module thereby providing an as yet missing link between DNA replication and cell division in cyanobacteria. Consistently, we also showed that Ftn6 is involved in tolerance to DNA damages generated by UV rays.
Collapse
Affiliation(s)
- Martial Marbouty
- CEA, iBiTec-S, SBIGeM, LBI, Bat 142 CEA-Saclay, F-91191 Gif sur Yvette CEDEX, France.
| | | | | |
Collapse
|