1
|
Ruman H, Kawaharada Y. A New Classification of Lysin Motif Receptor-Like Kinases in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2023; 64:176-190. [PMID: 36334262 DOI: 10.1093/pcp/pcac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Lysin motif receptor-like kinases (LysM-RLKs) are a plant-specific receptor protein family that sense components from soil microorganisms, regulating innate immunity and symbiosis. Every plant species possesses multiple LysM-RLKs in order to interact with a variety of soil microorganisms; however, most receptors have not been characterized yet. Therefore, we tried to identify LysM-RLKs from diverse plant species and proposed a new classification to indicate their evolution and characteristics, as well as to predict new functions. In this study, we have attempted to explore and update LysM-RLKs in Lotus japonicus using the latest genome sequencing and divided 20 LysM-RLKs into 11 clades based on homolog identity and phylogenetic analysis. We further identified 193 LysM-RLKs from 16 Spermatophyta species including L. japonicus and divided these receptors into 14 clades and one out-group special receptor based on the classification of L. japonicus LysM-RLKs. All plant species not only have clade I receptors such as Nod factor or chitin receptors but also have clade III receptors where most of the receptors are uncharacterized. We also identified dicotyledon- and monocotyledon-specific clades and predicted evolutionary trends in LysM-RLKs. In addition, we found a strong correlation between plant species that did not possess clade II receptors and those that lost symbiosis with arbuscular mycorrhizal fungi. A clade II receptor in L. japonicus Lys8 was predicted to express during arbuscular mycorrhizal symbiosis. Our proposed new inventory classification suggests the evolutionary pattern of LysM-RLKs and might help in elucidating novel receptor functions in various plant species.
Collapse
Affiliation(s)
- Hafijur Ruman
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
| | - Yasuyuki Kawaharada
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
| |
Collapse
|
2
|
Chiba Y, Sasaki M, Masuda S, Shibata A, Shirasu K, Kawaharada Y. A Novel Rhizobium sp. Chiba-1 Strain Exhibits a Host Range for Nodule Symbiosis in Lotus Species. Microbes Environ 2023; 38:ME23056. [PMID: 38044128 PMCID: PMC10728632 DOI: 10.1264/jsme2.me23056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/16/2023] [Indexed: 12/05/2023] Open
Abstract
Rhizobia are soil bacteria that induce the formation of nodules in the roots of leguminous plants for mutualistic establishment. Although the symbiotic mechanism between Lotus japonicus and its major symbiotic rhizobia, Mesorhizobium loti, has been extensively characterized, our understanding of symbiotic mechanisms, such as host specificity and host ranges, remains limited. In the present study, we isolated a novel Rhizobium strain capable of forming nodules on L. burttii from agricultural soil at Iwate prefecture in Japan. We conducted genomic and host range ana-lyses of various Lotus species. The results obtained revealed that the novel isolated Rhizobium sp. Chiba-1 was closely related to R. leguminosarum and had a wide host range that induced nodule development, including L. burttii and several L. japonicus wild-type accessions. However, L. japonicus Gifu exhibited an incompatible nodule phenotype. We also identified the formation of an epidermal infection threads that was dependent on the Lotus species and independent of nodule organ development. In conclusion, this newly isolated Rhizobium strain displays a distinct nodulation phenotype from Lotus species, and the results obtained herein provide novel insights into the functional mechanisms underlying host specificity and host ranges.
Collapse
Affiliation(s)
- Yuhei Chiba
- United Graduate School of Agricultural Sciences, Iwate University, 3–18–8, Ueda, Morioka, Iwate 020–8550, Japan
| | - Mao Sasaki
- Graduate School of Arts and Sciences, Iwate University, 3–18–8 Ueda, Morioka, Iwate 020–8550, Japan
| | - Sachiko Masuda
- RIKEN Center for Sustainable Resource Science, Yokohama, 230–0045, Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, 230–0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, 230–0045, Japan
| | - Yasuyuki Kawaharada
- United Graduate School of Agricultural Sciences, Iwate University, 3–18–8, Ueda, Morioka, Iwate 020–8550, Japan
- Graduate School of Arts and Sciences, Iwate University, 3–18–8 Ueda, Morioka, Iwate 020–8550, Japan
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3–18–8, Ueda, Morioka, 020–8550, Iwate, Japan
| |
Collapse
|
3
|
Liu H, Sandal N, Andersen KR, James EK, Stougaard J, Kelly S, Kawaharada Y. A genetic screen for plant mutants with altered nodulation phenotypes in response to rhizobial glycan mutants. THE NEW PHYTOLOGIST 2018; 220:526-538. [PMID: 29959893 DOI: 10.1111/nph.15293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/24/2018] [Indexed: 05/08/2023]
Abstract
Nodule primordia induced by rhizobial glycan mutants often remain uninfected. To identify processes involved in infection and organogenesis we used forward genetics to identify plant genes involved in perception and responses to bacterial glycans. To dissect the mechanisms underlying the negative plant responses to the Mesorhizobium loti R7AexoU and ML001cep mutants, a screen for genetic suppressors of the nodulation phenotypes was performed on a chemically mutagenized Lotus population. Two mutant lines formed infected nitrogen-fixing pink nodules, while five mutant lines developed uninfected large white nodules, presumably altered in processes controlling organogenesis. Genetic mapping identified a mutation in the cytokinin receptor Lhk1 resulting in an alanine to valine substitution adjacent to a coiled-coil motif in the juxta-membrane region of LHK1. This results in a spontaneous nodulation phenotype and increased ethylene production. The allele was renamed snf5, and segregation studies of snf5 together with complementation studies suggest that snf5 is a gain-of-function allele. This forward genetic approach to investigate the role of glycans in the pathway synchronizing infection and organogenesis shows that a combination of plant and bacterial genetics opens new possibilities to study glycan responses in plants as well as identification of mutant alleles affecting nodule organogenesis.
Collapse
Affiliation(s)
- Huijun Liu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8-Ueda, Morioka, Iwate, Japan
| |
Collapse
|
4
|
Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Perea JF, Gil-Serrano A, Jin H, An Q, Rodríguez-Carvajal MA, Andersen SU, Sandal N, Stougaard J, Vinardell JM, Ruiz-Sainz JE. Sinorhizobium fredii HH103 Invades Lotus burttii by Crack Entry in a Nod Factor-and Surface Polysaccharide-Dependent Manner. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:925-937. [PMID: 27827003 DOI: 10.1094/mpmi-09-16-0195-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sinorhizobium fredii HH103-Rifr, a broad host range rhizobial strain, induces nitrogen-fixing nodules in Lotus burttii but ineffective nodules in L. japonicus. Confocal microscopy studies showed that Mesorhizobium loti MAFF303099 and S. fredii HH103-Rifr invade L. burttii roots through infection threads or epidermal cracks, respectively. Infection threads in root hairs were not observed in L. burttii plants inoculated with S. fredii HH103-Rifr. A S. fredii HH103-Rifr nodA mutant failed to nodulate L. burttii, demonstrating that Nod factors are strictly necessary for this crack-entry mode, and a noeL mutant was also severely impaired in L. burttii nodulation, indicating that the presence of fucosyl residues in the Nod factor is symbiotically relevant. However, significant symbiotic impacts due to the absence of methylation or to acetylation of the fucosyl residue were not detected. In contrast S. fredii HH103-Rifr mutants showing lipopolysaccharide alterations had reduced symbiotic capacity, while mutants affected in production of either exopolysaccharides, capsular polysaccharides, or both were not impaired in nodulation. Mutants unable to produce cyclic glucans and purine or pyrimidine auxotrophic mutants formed ineffective nodules with L. burttii. Flagellin-dependent bacterial mobility was not required for crack infection, since HH103-Rifr fla mutants nodulated L. burttii. None of the S. fredii HH103-Rifr surface-polysaccharide mutants gained effective nodulation with L. japonicus.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| | | | - Yasuyuki Kawaharada
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Juan Fernández Perea
- 2 IFAPA, Centro Las Torres-Tomejil, Apartado Oficial 41200, Alcalá del Río, Sevilla, Spain
| | - Antonio Gil-Serrano
- 4 Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P. 41012, Sevilla, Spain
| | - Haojie Jin
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Qi An
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| | - Miguel A Rodríguez-Carvajal
- 4 Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P. 41012, Sevilla, Spain
| | - Stig U Andersen
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Niels Sandal
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - Jens Stougaard
- 3 Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark; and
| | - José-María Vinardell
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| | - José E Ruiz-Sainz
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain
| |
Collapse
|
5
|
Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 2015; 523:308-12. [DOI: 10.1038/nature14611] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 06/03/2015] [Indexed: 02/06/2023]
|
6
|
Ghobakhlou AF, Johnston A, Harris L, Antoun H, Laberge S. Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genomics 2015; 16:383. [PMID: 25975821 PMCID: PMC4432818 DOI: 10.1186/s12864-015-1611-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/01/2015] [Indexed: 11/29/2022] Open
Abstract
Background Arctic Mesorhizobium strain N33 was isolated from nodules of the legume Oxytropis arctobia in Canada’s eastern Arctic. This symbiotic bacterium can grow at temperatures ranging from 0 to 30 °C, fix nitrogen at 10 °C, and is one of the best known cold-adapted rhizobia. Despite the economic potential of this bacterium for northern regions, the key molecular mechanisms of its cold adaptation remain poorly understood. Results Using a microarray printed with 5760 Arctic Mesorhizobium genomic clones, we performed a partial transcriptome analysis of strain N33 grown under eight different temperature conditions, including both sustained and transient cold treatments, compared with cells grown at room temperature. Cells treated under constant (4 and 10 °C) low temperatures expressed a prominent number of induced genes distinct from cells treated to short-term cold-exposure (<60 min), but exhibited an intermediate expression profile when exposed to a prolonged cold exposure (240 min). The most prominent up-regulated genes encode proteins involved in metabolite transport, transcription regulation, protein turnover, oxidoreductase activity, cryoprotection (mannitol, polyamines), fatty acid metabolism, and membrane fluidity. The main categories of genes affected in N33 during cold treatment are sugar transport and protein translocation, lipid biosynthesis, and NADH oxidoreductase (quinone) activity. Some genes were significantly down-regulated and classified in secretion, energy production and conversion, amino acid transport, cell motility, cell envelope and outer membrane biogenesis functions. This might suggest growth cessation or reduction, which is an important strategy to adjust cellular function and save energy under cold stress conditions. Conclusion Our analysis revealed a complex series of changes associated with cold exposure adaptation and constant growth at low temperatures. Moreover, it highlighted some of the strategies and different physiological states that Mesorhizobium strain N33 has developed to adapt to the cold environment of the Canadian high Arctic and has revealed candidate genes potentially involved in cold adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1611-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdollah-Fardin Ghobakhlou
- Graduate Programs in Agri-Food Microbiology, Faculty of Agriculture and Food Sciences, Laval University, Quebec City, Quebec, G1V 0A6, Canada.
| | - Anne Johnston
- Eastern Cereal & Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada.
| | - Linda Harris
- Eastern Cereal & Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada.
| | - Hani Antoun
- Department of Soils and Agri-Food Engineering, Laval University, Quebec City, Quebec, G1V 0A6, Canada.
| | - Serge Laberge
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, Quebec City, Quebec, G1V 2 J3, Canada.
| |
Collapse
|
7
|
Saeki K, Ronson CW. Genome Sequence and Gene Functions in Mesorhizobium loti and Relatives. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-662-44270-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Involvement of the smeAB multidrug efflux pump in resistance to plant antimicrobials and contribution to nodulation competitiveness in Sinorhizobium meliloti. Appl Environ Microbiol 2011; 77:2855-62. [PMID: 21398477 DOI: 10.1128/aem.02858-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The contributions of multicomponent-type multidrug efflux pumps to antimicrobial resistance and nodulation ability in Sinorhizobium meliloti were comprehensively analyzed. Computational searches identified genes in the S. meliloti strain 1021 genome encoding 1 pump from the ATP-binding cassette family, 3 pumps from the major facilitator superfamily, and 10 pumps from the resistance-nodulation-cell division family, and subsequently, these genes were deleted either individually or simultaneously. Antimicrobial susceptibility tests demonstrated that deletion of the smeAB pump genes resulted in increased susceptibility to a range of antibiotics, dyes, detergents, and plant-derived compounds and, further, that specific deletion of the smeCD or smeEF genes in a ΔsmeAB background caused a further increase in susceptibility to certain antibiotics. Competitive nodulation experiments revealed that the smeAB mutant was defective in competing with the wild-type strain for nodulation. The introduction of a plasmid carrying smeAB into the smeAB mutant restored antimicrobial resistance and nodulation competitiveness. These findings suggest that the SmeAB pump, which is a major multidrug efflux system of S. meliloti, plays an important role in nodulation competitiveness by mediating resistance toward antimicrobial compounds produced by the host plant.
Collapse
|
9
|
Borjigin N, Furukawa K, Shimoda Y, Tabata S, Sato S, Eda S, Minamisawa K, Mitsui H. Identification of Mesorhizobium loti Genes Relevant to Symbiosis by Using Signature-Tagged Mutants. Microbes Environ 2011; 26:165-71. [DOI: 10.1264/jsme2.me10213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | | | | | | | - Shima Eda
- Graduate School of Life Sciences, Tohoku University
| | | | | |
Collapse
|
10
|
Bek AS, Sauer J, Thygesen MB, Duus JØ, Petersen BO, Thirup S, James E, Jensen KJ, Stougaard J, Radutoiu S. Improved characterization of nod factors and genetically based variation in LysM Receptor domains identify amino acids expendable for nod factor recognition in Lotus spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:58-66. [PMID: 19958139 DOI: 10.1094/mpmi-23-1-0058] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Formation of functional nodules is a complex process depending on host-microsymbiont compatibility in all developmental stages. This report uses the contrasting symbiotic phenotypes of Lotus japonicus and L. pedunculatus, inoculated with Mesorhizobium loti or the Bradyrhizobium sp. (Lotus), to investigate the role of Nod factor structure and Nod factor receptors (NFR) for rhizobial recognition, infection thread progression, and bacterial persistence within nodule cells. A key contribution was the use of 800 MHz nuclear magnetic resonance spectroscopy and ultrahigh-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry for Nod factor analysis. The Nod factor decorations at the nonreducing end differ between Bradyrhizobium sp. (Lotus) and M. loti, and the NFR1/NFR5 extracellular regions of L. pedunculatus and L. japonicus were found to vary in amino acid composition. Genetic transformation experiments using chimeric and wild-type receptors showed that both receptor variants recognize the structurally different Nod factors but the later symbiotic phenotype remained unchanged. These results highlight the importance of additional checkpoints during nitrogen-fixing symbiosis and define several amino acids in the LysM domains as expendable for perception of the two differentially carbamoylated Nod factors.
Collapse
Affiliation(s)
- Anita S Bek
- Centre for Carbohydrate Recognition and signalling, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, Aarhus 8000 C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kawaharada Y, Kiyota H, Eda S, Minamisawa K, Mitsui H. Identification of the Mesorhizobium loti gene responsible for glycerophosphorylation of periplasmic cyclic beta-1,2-glucans. FEMS Microbiol Lett 2009; 302:131-7. [PMID: 19951365 DOI: 10.1111/j.1574-6968.2009.01843.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Periplasmic cyclic beta-1,2-glucans play a crucial role in symbiosis as well as in hypo-osmotic adaptation for rhizobia. These glucans are modified in many species by anionic substituents such as glycerophosphoryl and succinyl ones, but their role remains to be examined. In this work, the cgmA homolog is shown to be responsible for glycerophosphorylation of cyclic beta-1,2-glucans in Mesorhizobium loti. The mutation in cgmA converted most anionic glucans into neutral ones, leaving a small amount of succinylated ones. An additional mutation in opgC, which encodes a succinyltransferase homolog, abolished the residual succinyl substituents in the cgmA-mutant background. The double mutant in cgmA and opgC did not show any significant phenotypic differences from the wild type during both vegetative growth and symbiosis. It is concluded that the anionic substituents make a minor contribution, if any, to the effectiveness of cyclic beta-1,2-glucans in M. loti.
Collapse
|
12
|
Generation of Bradyrhizobium japonicum mutants with increased N2O reductase activity by selection after introduction of a mutated dnaQ gene. Appl Environ Microbiol 2008; 74:7258-64. [PMID: 18849448 DOI: 10.1128/aem.01850-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We obtained two beneficial mutants of Bradyrhizobium japonicum USDA110 with increased nitrous oxide (N(2)O) reductase (N(2)OR) activity by introducing a plasmid containing a mutated B. japonicum dnaQ gene (pKQ2) and performing enrichment culture under selection pressure for N(2)O respiration. Mutation of dnaQ, which encodes the epsilon subunit of DNA polymerase III, gives a strong mutator phenotype in Escherichia coli. pKQ2 introduction into B. japonicum USDA110 increased the frequency of occurrence of colonies spontaneously resistant to kanamycin. A series of repeated cultivations of USDA110 with and without pKQ2 was conducted in anaerobic conditions under 5% (vol/vol) or 20% (vol/vol) N(2)O atmosphere. At the 10th cultivation cycle, cell populations of USDA110(pKQ2) showed higher N(2)OR activity than the wild-type strains. Four bacterial mutants lacking pKQ2 obtained by plant passage showed 7 to 12 times the N(2)OR activity of the wild-type USDA110. Although two mutants had a weak or null fix phenotype for symbiotic nitrogen fixation, the remaining two (5M09 and 5M14) had the same symbiotic nitrogen fixation ability and heterotrophic growth in culture as wild-type USDA110.
Collapse
|
13
|
Kawaharada Y, Kiyota H, Eda S, Minamisawa K, Mitsui H. Structural characterization of neutral and anionic glucans from Mesorhizobium loti. Carbohydr Res 2008; 343:2422-7. [DOI: 10.1016/j.carres.2008.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 01/25/2023]
|
14
|
Suzuki A, Hara H, Kinoue T, Abe M, Uchiumi T, Kucho KI, Higashi S, Hirsch AM, Arima S. Split-root study of autoregulation of nodulation in the model legume Lotus japonicus. JOURNAL OF PLANT RESEARCH 2008; 121:245-9. [PMID: 18202823 DOI: 10.1007/s10265-007-0145-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 12/14/2007] [Indexed: 05/07/2023]
Abstract
We used a split-root system to determine the timing for induction of the autoregulation of nodulation (AUT) in Lotus japonicus (Regel) Larsen after inoculation with Mesorhizobium loti. The signal took at least five days for full induction of AUT and inhibition of infection thread formation. Strain ML108 (able to nodulate but unable to fix nitrogen) induced full AUT, but ML101 (unable to nodulate or to fix nitrogen) did not induce autoregulation. These results indicate that Nod factor-producing strains induce AUT, but that the nitrogen fixed by rhizobia and supplied to the plant as ammonia does not elicit the AUT in L. japonicus.
Collapse
Affiliation(s)
- Akihiro Suzuki
- Department of Environmental Sciences, Faculty of Agriculture, Saga University, 1 Honjyo-machi, Saga, 840-8502, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|