1
|
Li C, Yu H, Chen S, Song L, Yuan A, Wei F, Sun D, Wang M, Xu L, He D, Liu J, Li H, Zhao J, Shen Y, Bao X. Quantification and Molecular Analysis of Antagonism between Xylose Utilization and Acetic Acid Tolerance in Glucose/Xylose Cofermentation Saccharomyces cerevisiae Strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6758-6771. [PMID: 40048248 DOI: 10.1021/acs.jafc.4c12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
For bioethanol production from lignocellulosic materials, an ideal microorganism must possess both excellent xylose utilization and a high tolerance to inhibitory compounds. However, these two traits often exhibit antagonism in recombinant xylose-utilizing Saccharomyces cerevisiae strains. In this study, we developed a quantitative metric using an aggregated parameter to evaluate the degree of this antagonism and applied it to evaluate the antagonism of three strains (LF1, LF1-6M, and 6M-15), which had been iteratively evolved in xylose and hydrolyzate environments. Transcriptomic analysis revealed that the yeast strain elevates the alert level to stresses related to DNA replication, unfolded protein, starvation, and hyperosmosis, and reduces the uptake of unimportant nutrients to have a higher acetic acid tolerance during adaptive evolution in hydrolyzate. Additionally, the Snf1p-Mig1p signaling pathway was reprogrammed, enabling the strain to utilize xylose more efficiently during adaptive evolution in xylose. We also confirmed that disruption of the glyceraldehyde-3-phosphate dehydrogenase gene TDH1 significantly shortened the time required for glucose and/or xylose cofermentation under acetic acid stress by reducing reactive oxygen species accumulation and increasing ATP production. This study offers valuable insights for developing robust and efficient S. cerevisiae strains capable of glucose/xylose cofermentation.
Collapse
Affiliation(s)
- Chenhao Li
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Hengsong Yu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Shichao Chen
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Liyun Song
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Ai Yuan
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Fangqing Wei
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Dongming Sun
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Ming Wang
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Lili Xu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Deyun He
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Jiao Liu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Hongxing Li
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Jianzhi Zhao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoming Bao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| |
Collapse
|
2
|
Ndukwe JK, Aliyu GO, Onwosi CO, Chukwu KO, Ezugworie FN. Mechanisms of weak acid-induced stress tolerance in yeasts: Prospects for improved bioethanol production from lignocellulosic biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Lin GY, Chang CF, Lan CY. The interaction Between Carbohydrates and the Antimicrobial Peptide P-113Tri is Involved in the Killing of Candida albicans. Microorganisms 2020; 8:microorganisms8020299. [PMID: 32098211 PMCID: PMC7074873 DOI: 10.3390/microorganisms8020299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of drug resistance to Candida albicans is problematic in the clinical setting. Therefore, developing new antifungal drugs is in high demand. Our previous work indicated that the antimicrobial peptide P-113Tri exhibited higher antifungal activity against planktonic cells, biofilm cells, and clinical isolates of Candida species compared to its parental peptide P-113. In this study, we further investigated the difference between these two peptides in their mechanisms against C. albicans. Microscopic examination showed that P-113 rapidly gained access to C. albicans cells. However, most of the P-113Tri remained on the cell surface. Moreover, using a range of cell wall-defective mutants and competition assays, the results indicated that phosphomannan and N-linked mannan in the cell wall are important for peptide binding to C. albicans cells. Furthermore, the addition of exogenous phosphosugars reduced the efficacy of the peptide, suggesting that negatively charged phosphosugars also contributed to the peptide binding to the cell wall polysaccharides. Finally, using a glycan array, P-113Tri, but not P-113, can bind to other glycans commonly present on other microbial and mammalian cells. Together, these results suggest that P-113 and P-113Tri have fundamental differences in their interaction with C. albicans and candidacidal activities.
Collapse
Affiliation(s)
- Guan-Yu Lin
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Chuan-Fa Chang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-574-2473; Fax: +886-3-571-5934
| |
Collapse
|
4
|
Nguyen TD, Walker ME, Gardner JM, Jiranek V. Appropriate vacuolar acidification in Saccharomyces cerevisiae is associated with efficient high sugar fermentation. Food Microbiol 2017; 70:262-268. [PMID: 29173635 DOI: 10.1016/j.fm.2017.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/05/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023]
Abstract
Vacuolar acidification serves as a homeostatic mechanism to regulate intracellular pH, ion and chemical balance, as well as trafficking and recycling of proteins and nutrients, critical for normal cellular function. This study reports on the importance of vacuole acidification during wine-like fermentation. Ninety-three mutants (homozygous deletions in lab yeast strain, BY4743), which result in protracted fermentation when grown in a chemically defined grape juice with 200 g L-1 sugar (pH 3.5), were examined to determine whether fermentation protraction was in part due to a dysfunction in vacuolar acidification (VA) during the early stages of fermentation, and whether VA was responsive to the initial sugar concentration in the medium. Cells after 24 h growth were dual-labelled with propidium iodide and vacuolar specific probe 6-carboxyfluorescein diacetate (6-CFDA) and examined with a FACS analyser for viability and impaired VA, respectively. Twenty mutants showed a greater than two-fold increase in fluorescence intensity; the experimental indicator for vacuolar dysfunction; 10 of which have not been previously annotated to this process. With the exception of Δhog1, Δpbs2 and Δvph1 mutants, where dysfunction was directly related to osmolality; the remainder exhibited increased CF-fluorescence, independent of sugar concentration at 20 g L-1 or 200 g L-1. These findings offer insight to the importance of VA to cell growth in high sugar media.
Collapse
Affiliation(s)
- Trung D Nguyen
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia
| | - Michelle E Walker
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia
| | - Jennifer M Gardner
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia
| | - Vladimir Jiranek
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia; Wine Innovation Cluster, Adelaide, South Australia, Australia; Australian Research Council Training Centre for Innovative Wine Production, Australia.
| |
Collapse
|
5
|
Windram OPF, Rodrigues RTL, Lee S, Haines M, Bayer TS. Engineering microbial phenotypes through rewiring of genetic networks. Nucleic Acids Res 2017; 45:4984-4993. [PMID: 28369627 PMCID: PMC5416768 DOI: 10.1093/nar/gkx197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/13/2017] [Indexed: 11/12/2022] Open
Abstract
The ability to program cellular behaviour is a major goal of synthetic biology, with applications in health, agriculture and chemicals production. Despite efforts to build 'orthogonal' systems, interactions between engineered genetic circuits and the endogenous regulatory network of a host cell can have a significant impact on desired functionality. We have developed a strategy to rewire the endogenous cellular regulatory network of yeast to enhance compatibility with synthetic protein and metabolite production. We found that introducing novel connections in the cellular regulatory network enabled us to increase the production of heterologous proteins and metabolites. This strategy is demonstrated in yeast strains that show significantly enhanced heterologous protein expression and higher titers of terpenoid production. Specifically, we found that the addition of transcriptional regulation between free radical induced signalling and nitrogen regulation provided robust improvement of protein production. Assessment of rewired networks revealed the importance of key topological features such as high betweenness centrality. The generation of rewired transcriptional networks, selection for specific phenotypes, and analysis of resulting library members is a powerful tool for engineering cellular behavior and may enable improved integration of heterologous protein and metabolite pathways.
Collapse
Affiliation(s)
- Oliver P F Windram
- Centre for Synthetic Biology and Innovation and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Rui T L Rodrigues
- Centre for Synthetic Biology and Innovation and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sangjin Lee
- Centre for Synthetic Biology and Innovation and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Matthew Haines
- Centre for Synthetic Biology and Innovation and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Travis S Bayer
- Centre for Synthetic Biology and Innovation and Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
6
|
Huang CW, Walker ME, Fedrizzi B, Gardner RC, Jiranek V. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation. FEMS Yeast Res 2017; 17:3934655. [PMID: 28810701 DOI: 10.1093/femsyr/fox046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential.
Collapse
Affiliation(s)
- Chien-Wei Huang
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Michelle E Walker
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Bruno Fedrizzi
- Wine Science Programme, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Richard C Gardner
- Wine Science Programme, School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| |
Collapse
|
7
|
Henriques SF, Mira NP, Sá-Correia I. Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:96. [PMID: 28428821 PMCID: PMC5395885 DOI: 10.1186/s13068-017-0781-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/11/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Formic acid is an inhibitory compound present in lignocellulosic hydrolysates. Understanding the complex molecular mechanisms underlying Saccharomyces cerevisiae tolerance to this weak acid at the system level is instrumental to guide synthetic pathway engineering for robustness improvement of industrial strains envisaging their use in lignocellulosic biorefineries. RESULTS This study was performed to identify, at a genome-wide scale, genes whose expression confers protection or susceptibility to formic acid, based on the screening of a haploid deletion mutant collection to search for these phenotypes in the presence of 60, 70 and 80 mM of this acid, at pH 4.5. This chemogenomic analysis allowed the identification of 172 determinants of tolerance and 41 determinants of susceptibility to formic acid. Clustering of genes required for maximal tolerance to this weak acid, based on their biological function, indicates an enrichment of those involved in intracellular trafficking and protein synthesis, cell wall and cytoskeleton organization, carbohydrate metabolism, lipid, amino acid and vitamin metabolism, response to stress, chromatin remodelling, transcription and internal pH homeostasis. Among these genes is HAA1 encoding the main transcriptional regulator of yeast transcriptome reprograming in response to acetic acid and genes of the Haa1-regulon; all demonstrated determinants of acetic acid tolerance. Among the genes that when deleted lead to increased tolerance to formic acid, TRK1, encoding the high-affinity potassium transporter and a determinant of resistance to acetic acid, was surprisingly found. Consistently, genes encoding positive regulators of Trk1 activity were also identified as formic acid susceptibility determinants, while a negative regulator confers protection. At a saturating K+ concentration of 20 mM, the deletion mutant trk1Δ was found to exhibit a much higher tolerance compared with the parental strain. Given that trk1Δ accumulates lower levels of radiolabelled formic acid, compared to the parental strain, it is hypothesized that Trk1 facilitates formic acid uptake into the yeast cell. CONCLUSIONS The list of genes resulting from this study shows a few marked differences from the list of genes conferring protection to acetic acid and provides potentially valuable information to guide improvement programmes for the development of more robust strains against formic acid.
Collapse
Affiliation(s)
- Sílvia F. Henriques
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nuno P. Mira
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
8
|
Carmona L, Varela J, Godoy L, Ganga MA. Comparative proteome analysis of Brettanomyces bruxellensis under hydroxycinnamic acid growth. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
9
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
10
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
11
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
12
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
13
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
14
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
15
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014. [DOI: 10.1186/1471-2164-15-552 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
16
|
Sakihama Y, Hasunuma T, Kondo A. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. J Biosci Bioeng 2014; 119:297-302. [PMID: 25282639 DOI: 10.1016/j.jbiosc.2014.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/22/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
The hydrolysis of lignocellulosic biomass liberates sugars, primarily glucose and xylose, which are subsequently converted to ethanol by microbial fermentation. The rapid and efficient fermentation of xylose by recombinant Saccharomyces cerevisiae strains is limited by weak acids generated during biomass pretreatment processes. In particular, acetic acid negatively affects cell growth, xylose fermentation rate, and ethanol production. The ability of S. cerevisiae to efficiently utilize xylose in the presence of acetic acid is an essential requirement for the cost-effective production of ethanol from lignocellulosic hydrolysates. Here, an acetic acid-responsive transcriptional activator, HAA1, was overexpressed in a recombinant xylose-fermenting S. cerevisiae strain to yield BY4741X/HAA1. This strain exhibited improved cell growth and ethanol production from xylose under aerobic and oxygen limited conditions, respectively, in the presence of acetic acid. The HAA1p regulon enhanced transcript levels in BY4741X/HAA1. The disruption of PHO13, a p-nitrophenylphosphatase gene, in BY4741X/HAA1 led to further improvement in both yeast growth and the ability to ferment xylose, indicating that HAA1 overexpression and PHO13 deletion act by different mechanisms to enhance ethanol production.
Collapse
Affiliation(s)
- Yuri Sakihama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
17
|
Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, Gardner JM, Jiranek V. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 2014; 15:552. [PMID: 24993029 PMCID: PMC4099481 DOI: 10.1186/1471-2164-15-552] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/27/2014] [Indexed: 12/21/2022] Open
Abstract
Background Wine fermentation is a harsh ecological niche to which wine yeast are well adapted. The initial high osmotic pressure and acidity of grape juice is followed by nutrient depletion and increasing concentrations of ethanol as the fermentation progresses. Yeast’s adaptation to these and many other environmental stresses, enables successful completion of high-sugar fermentations. Earlier transcriptomic and growth studies have tentatively identified genes important for high-sugar fermentation. Whilst useful, such studies did not consider extended growth (>5 days) in a temporally dynamic multi-stressor environment such as that found in many industrial fermentation processes. Here, we identify genes whose deletion has minimal or no effect on growth, but results in failure to achieve timely completion of the fermentation of a chemically defined grape juice with 200 g L−1 total sugar. Results Micro- and laboratory-scale experimental fermentations were conducted to identify 72 clones from ~5,100 homozygous diploid single-gene yeast deletants, which exhibited protracted fermentation in a high-sugar medium. Another 21 clones (related by gene function, but initially eliminated from the screen because of possible growth defects) were also included. Clustering and numerical enrichment of genes annotated to specific Gene Ontology (GO) terms highlighted the vacuole’s role in ion homeostasis and pH regulation, through vacuole acidification. Conclusion We have identified 93 genes whose deletion resulted in the duration of fermentation being at least 20% longer than the wild type. An extreme phenotype, ‘stuck’ fermentation, was also observed when DOA4, NPT1, PLC1, PTK2, SIN3, SSQ1, TPS1, TPS2 or ZAP1 were deleted. These 93 Fermentation Essential Genes (FEG) are required to complete an extended high-sugar (wine-like) fermentation. Their importance is highlighted in our Fermentation Relevant Yeast Genes (FRYG) database, generated from literature and the fermentation-relevant phenotypic characteristics of null mutants described in the Saccharomyces Genome Database. The 93-gene set is collectively referred to as the ‘Fermentome’. The fact that 10 genes highlighted in this study have not previously been linked to fermentation-related stresses, supports our experimental rationale. These findings, together with investigations of the genetic diversity of industrial strains, are crucial for understanding the mechanisms behind yeast’s response and adaptation to stresses imposed during high-sugar fermentations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-552) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vladimir Jiranek
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
18
|
Hasegawa S, Ogata T, Tanaka K, Ando A, Takagi H, Shima J. Overexpression of vacuolar H+-ATPase-related genes in bottom-fermenting yeast enhances ethanol tolerance and fermentation rates during high-gravity fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/jib.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sonoko Hasegawa
- Research Division of Microbial Sciences; Kyoto University; Kyoto; Japan
| | - Tomoo Ogata
- Research Laboratories for Brewing; Asahi Breweries Ltd; Ibaraki; Japan
| | - Koichi Tanaka
- Research Division of Microbial Sciences; Kyoto University; Kyoto; Japan
| | - Akira Ando
- NARO Food Research Institute; Ibaraki; Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Nara; Japan
| | - Jun Shima
- Research Division of Microbial Sciences; Kyoto University; Kyoto; Japan
| |
Collapse
|
19
|
Mollapour M, Piper PW. Activity of the yeast zinc-finger transcription factor War1 is lost with alanine mutation of two putative phosphorylation sites in the activation domain. Yeast 2011; 29:39-44. [DOI: 10.1002/yea.1915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 10/10/2011] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mehdi Mollapour
- Department of Molecular Biology and Biotechnology; University of Sheffield; UK
| | - Peter W. Piper
- Department of Molecular Biology and Biotechnology; University of Sheffield; UK
| |
Collapse
|
20
|
Dos Santos SC, Sá-Correia I. A genome-wide screen identifies yeast genes required for protection against or enhanced cytotoxicity of the antimalarial drug quinine. Mol Genet Genomics 2011; 286:333-46. [PMID: 21960436 DOI: 10.1007/s00438-011-0649-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/16/2011] [Indexed: 11/28/2022]
Abstract
Quinine is used in the treatment of Plasmodium falciparum severe malaria. However, both the drug's mode of action and mechanisms of resistance are still poorly understood and subject to debate. In an effort to clarify these questions, we used the yeast Saccharomyces cerevisiae as a model for pharmacological studies with quinine. Following on a previous work that examined the yeast genomic expression program in response to quinine, we now explore a genome-wide screen for altered susceptibility to quinine using the EUROSCARF collection of yeast deletion strains. We identified 279 quinine-susceptible strains, among which 112 conferred a hyper-susceptibility phenotype. The expression of these genes, mainly involved in carbohydrate metabolism, iron uptake and ion homeostasis functions, is required for quinine resistance in yeast. Sixty-two genes whose deletion leads to increased quinine resistance were also identified in this screen, including several genes encoding ribosome protein subunits. These well-known potential drug targets in Plasmodium are associated with quinine action for the first time in this study. The suggested involvement of phosphate signaling and transport in quinine tolerance was also studied, and activation of phosphate starvation-responsive genes was observed under a mild-induced quinine stress. Finally, P. falciparum homology searches were performed for a selected group of 41 genes. Thirty-two encoded proteins possess homologs in the parasite, including subunits of a parasitic vacuolar H(+)-ATPase complex, ion and phosphate importers, and several ribosome protein subunits, suggesting that the results obtained in yeast are good candidates to be transposed and explored in a P. falciparum context.
Collapse
Affiliation(s)
- Sandra C Dos Santos
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | | |
Collapse
|
21
|
Mira NP, Becker JD, Sá-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:587-601. [PMID: 20955010 DOI: 10.1089/omi.2010.0048] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The alterations occurring in yeast genomic expression during early response to acetic acid and the involvement of the transcription factor Haa1p in this transcriptional reprogramming are described in this study. Haa1p was found to regulate, directly or indirectly, the transcription of approximately 80% of the acetic acid-activated genes, suggesting that Haa1p is the main player in the control of yeast response to this weak acid. The genes identified in this work as being activated in response to acetic acid in a Haa1p-dependent manner include protein kinases, multidrug resistance transporters, proteins involved in lipid metabolism, in nucleic acid processing, and proteins of unknown function. Among these genes, the expression of SAP30 and HRK1 provided the strongest protective effect toward acetic acid. SAP30 encode a subunit of a histone deacetylase complex and HRK1 encode a protein kinase belonging to a family of protein kinases dedicated to the regulation of plasma membrane transporters activity. The deletion of the HRK1 gene was found to lead to the increase of the accumulation of labeled acetic acid into acid-stressed yeast cells, suggesting that the role of both HAA1 and HRK1 in providing protection against acetic acid is, at least partially, related with their involvement in the reduction of intracellular acetate concentration.
Collapse
Affiliation(s)
- Nuno P Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | | | | |
Collapse
|
22
|
Mira NP, Teixeira MC, Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:525-40. [PMID: 20955006 DOI: 10.1089/omi.2010.0072] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted.
Collapse
Affiliation(s)
- Nuno P Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | | | | |
Collapse
|
23
|
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 2010; 9:79. [PMID: 20973990 PMCID: PMC2972246 DOI: 10.1186/1475-2859-9-79] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022] Open
Abstract
Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5). Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to this weak acid. These are novel candidate genes for genetic engineering to obtain more robust yeast strains against acetic acid toxicity. Among these genes there are number of transcription factors that are documented regulators of a large percentage of the genes found to exert protection against acetic acid thus being considered interesting targets for subsequent genetic engineering. The increase of potassium concentration in the growth medium was found to improve the expression of maximal tolerance to acetic acid, consistent with the idea that the adequate manipulation of nutrient concentration of industrial growth medium can be an interesting strategy to surpass the deleterious effects of this weak acid in yeast cells.
Collapse
|
24
|
Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Appl Microbiol Biotechnol 2010; 88:277-82. [DOI: 10.1007/s00253-010-2758-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 11/27/2022]
|
25
|
The NDR kinase DBF-2 is involved in regulation of mitosis, conidial development, and glycogen metabolism in Neurospora crassa. EUKARYOTIC CELL 2009; 9:502-13. [PMID: 19966031 DOI: 10.1128/ec.00230-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurospora crassa dbf-2 encodes an NDR (nuclear Dbf2-related) protein kinase, homologous to LATS1, a core component of the Hippo pathway. This pathway plays important roles in restraining cell proliferation and promoting apoptosis in differentiating cells. Here, we demonstrate that DBF-2 is involved in three fundamental processes in a filamentous fungus: cell cycle regulation, glycogen biosynthesis, and conidiation. DBF-2 is predominantly localized to the nucleus, and most (approximately 60%) dbf-2 null mutant nuclei are delayed in mitosis, indicating that DBF-2 activity is required for properly completing the cell cycle. The dbf-2 mutant exhibits reduced basal hyphal extension rates accompanied by a carbon/nitrogen ratio-dependent bursting of hyphal tips, vast glycogen leakage, defects in aerial hypha formation, and impairment of all three asexual conidiation pathways in N. crassa. Our findings also indicate that DBF-2 is essential for sexual reproduction in a filamentous fungus. Defects in other Hippo and glycogen metabolism pathway components (mob-1, ccr-4, mst-1, and gsk-3) share similar phenotypes such as mitotic delay and decreased CDC-2 (cell division cycle 2) protein levels, massive hyphal swellings, hyphal tip bursting, glycogen leakage, and impaired conidiation. We propose that DBF-2 functions as a link between Hippo and glycogen metabolism pathways.
Collapse
|
26
|
Harris M, Mora-Montes HM, Gow NAR, Coote PJ. Loss of mannosylphosphate from Candida albicans cell wall proteins results in enhanced resistance to the inhibitory effect of a cationic antimicrobial peptide via reduced peptide binding to the cell surface. MICROBIOLOGY-SGM 2009; 155:1058-1070. [PMID: 19332808 DOI: 10.1099/mic.0.026120-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The outermost layer of the Candida albicans cell wall is enriched with mannosylated glycoproteins. We have used a range of isogenic glycosylation mutants of C. albicans, which are defective to varying degrees in cell wall protein mannosylation, to investigate the role of the outermost layer of the yeast cell wall in mediating the fungicidal action of the cationic, alpha-helical antimicrobial peptide dermaseptin S3(1-16) [DsS3(1-16)]. The degree of phosphomannan loss, and concomitant reduction in surface negative charge, from the series of glycosylation mutants correlated with reduced levels of peptide binding to the cells. In turn, the reduced peptide binding correlated with enhanced resistance to DsS3(1-16). To ascertain whether DsS3(1-16) binds to negatively charged phosphate, we studied the effect of exogenous glucosamine 6-phosphate, and glucosamine hydrochloride as a negative control, on the antifungal efficacy of DsS3(1-16). Glucosamine 6-phosphate retarded the efficacy of DsS3(1-16), and this was attributed to the presence of phosphate, because addition of identical concentrations of glucosamine hydrochloride had little detrimental effect on peptide efficacy. Fluorescence microscopy with DsS3(1-16) tagged with fluorescein revealed that the peptide binds to the outer surface of the yeast cell, supporting our previous conclusion that the presence of exterior phosphomannan is a major determinant of the antifungal potency of DsS3(1-16). The binding of the peptide to the cell surface was a transient event that was followed by apparent localization of DsS3(1-16) in the vacuole or dissemination throughout the entire cytosol. The presence of glucosamine 6-phosphate clearly reduced the proportion of cells in the population that showed complete cytosolic staining, implying that the binding and entry of the peptide into the cytosol is significantly reduced due to the exogenous phosphate sequestering the peptide and reducing the amount of peptide able to bind to the surface phosphomannan. In conclusion, we present evidence that an antimicrobial peptide, similar to those employed by cells of the human immune system, has evolved to recognize molecular patterns on the surface of pathogens in order to maximize efficacy.
Collapse
Affiliation(s)
- Mark Harris
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, The North Haugh, St Andrews KY16 9ST, UK
| | - Héctor M Mora-Montes
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil A R Gow
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter J Coote
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, The North Haugh, St Andrews KY16 9ST, UK
| |
Collapse
|
27
|
Mira NP, Lourenço AB, Fernandes AR, Becker JD, Sá-Correia I. The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. FEMS Yeast Res 2009; 9:202-16. [PMID: 19220866 DOI: 10.1111/j.1567-1364.2008.00473.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The physiological function of the Saccharomyces cerevisiae RIM101 signaling pathway is extended in this study beyond alkaline pH-induced responses. The transcription factor Rim101p is demonstrated to be required for maximal tolerance to weak acid-induced stress, at pH 4.0, but does not exert protection against low pH itself (range 4.5-2.5), when a strong acid is used as the acidulant. The Rim101p-dependent alterations of the yeast transcriptome following exposure to propionic acid stress (at pH 4.0) include genes of the previously described Rim101p regulon but also new target genes, in particular KNH1, involved in cell wall beta-1,6-glucan synthesis and the uncharacterized ORF YIL029c, both required for maximal propionic acid resistance. Clustering of the genes that provide resistance to propionic acid reveals the enrichment of those involved in protein catabolism through the multivesicular body pathway and in the homeostasis of internal pH and vacuolar function. The analysis of the network of interactions established among all the identified propionic acid resistance determinants shows an enrichment of interactions around the RIM101 gene and highlights the role of proteins involved in Rim101p proteolytic processing. RIM101 expression is shown to be required to counteract propionic acid-induced cytosolic acidification and for proper vacuolar acidification and cell wall structure, these having positive implications for a robust adaptive response and resistance to stress promoted by this food preservative.
Collapse
Affiliation(s)
- Nuno P Mira
- IBB, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
28
|
Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. MICROBIOLOGY-SGM 2009; 155:268-278. [PMID: 19118367 DOI: 10.1099/mic.0.022038-0] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The specific pH values of cellular compartments affect virtually all biochemical processes, including enzyme activity, protein folding and redox state. Accurate, sensitive and compartment-specific measurements of intracellular pH (pHi) dynamics in living cells are therefore crucial to the understanding of stress response and adaptation. We used the pH-sensitive GFP derivative 'ratiometric pHluorin' expressed in the cytosol and in the mitochondrial matrix of growing Saccharomyces cerevisiae to assess the variation in cytosolic pH (pHcyt) and mitochondrial pH (pHmit) in response to nutrient availability, respiratory chain activity, shifts in environmental pH and stress induced by addition of sorbic acid. The in vivo measurement allowed accurate determination of organelle-specific pH, determining a constant pHcyt of 7.2 and a constant pHmit of 7.5 in cells exponentially growing on glucose. We show that pHcyt and pHmit are differentially regulated by carbon source and respiratory chain inhibitors. Upon glucose starvation or sorbic acid stress, pHi decrease coincided with growth stasis. Additionally, pHi and growth coincided similarly in recovery after addition of glucose to glucose-starved cultures or after recovery from a sorbic acid pulse. We suggest a relation between pHi and cellular energy generation, and therefore a relation between pHi and growth.
Collapse
Affiliation(s)
- Rick Orij
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, The Netherlands
| | - Jarne Postmus
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, The Netherlands
| | - Alex Ter Beek
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, The Netherlands
| | - Gertien J Smits
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, The Netherlands
| |
Collapse
|
29
|
|