1
|
Transformation of the Drosophila Sex-Manipulative Endosymbiont Spiroplasma poulsonii and Persisting Hurdles for Functional Genetic Studies. Appl Environ Microbiol 2020; 86:AEM.00835-20. [PMID: 32444468 DOI: 10.1128/aem.00835-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023] Open
Abstract
Insects are frequently infected by bacterial symbionts that greatly affect their physiology and ecology. Most of these endosymbionts are, however, barely tractable outside their native host, rendering functional genetics studies difficult or impossible. Spiroplasma poulsonii is a facultative bacterial endosymbiont of Drosophila melanogaster that manipulates the reproduction of its host by killing its male progeny at the embryonic stage. S. poulsonii, although a very fastidious bacterium, is closely related to pathogenic Spiroplasma species that are cultivable and genetically modifiable. In this work, we present the transformation of S. poulsonii with a plasmid bearing a fluorescence cassette, leveraging techniques adapted from those used to modify the pathogenic species Spiroplasma citri We demonstrate the feasibility of S. poulsonii transformation and discuss approaches for mutant selection and fly colonization, which are persisting hurdles that must be overcome to allow functional bacterial genetics studies of this endosymbiont in vivo IMPORTANCE Dozens of bacterial endosymbiont species have been described and estimated to infect about half of all insect species. However, only a few them are tractable in vitro, which hampers our understanding of the bacterial determinants of the host-symbiont interaction. Developing a transformation method for S. poulsonii is a major step toward genomic engineering of this symbiont, which will foster basic research on endosymbiosis. This could also open the way to practical uses of endosymbiont engineering through paratransgenesis of vector or pest insects.
Collapse
|
2
|
Jones TKL, Medina RF. Corn Stunt Disease: An Ideal Insect-Microbial-Plant Pathosystem for Comprehensive Studies of Vector-Borne Plant Diseases of Corn. PLANTS 2020; 9:plants9060747. [PMID: 32545891 PMCID: PMC7356856 DOI: 10.3390/plants9060747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Over 700 plant diseases identified as vector-borne negatively impact plant health and food security globally. The pest control of vector-borne diseases in agricultural settings is in urgent need of more effective tools. Ongoing research in genetics, molecular biology, physiology, and vector behavior has begun to unravel new insights into the transmission of phytopathogens by their insect vectors. However, the intricate mechanisms involved in phytopathogen transmission for certain pathosystems warrant further investigation. In this review, we propose the corn stunt pathosystem (Zea mays-Spiroplasma kunkelii-Dalbulus maidis) as an ideal model for dissecting the molecular determinants and mechanisms underpinning the persistent transmission of a mollicute by its specialist insect vector to an economically important monocotyledonous crop. Corn stunt is the most important disease of corn in the Americas and the Caribbean, where it causes the severe stunting of corn plants and can result in up to 100% yield loss. A comprehensive study of the corn stunt disease system will pave the way for the discovery of novel molecular targets for genetic pest control targeting either the insect vector or the phytopathogen.
Collapse
Affiliation(s)
- Tara-kay L. Jones
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843-2475, USA;
- Texas A&M AgriLife Research—Weslaco, 2415 E. Business 83, Weslaco, TX 78596-8344, USA
| | - Raul F. Medina
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843-2475, USA;
- Correspondence: ; Tel.: +1-979-845-4775
| |
Collapse
|
3
|
Masson F, Calderon‐Copete S, Schüpfer F, Vigneron A, Rommelaere S, Garcia‐Arraez MG, Paredes JC, Lemaitre B. Blind killing of both male and female Drosophila embryos by a natural variant of the endosymbiotic bacterium Spiroplasma poulsonii. Cell Microbiol 2020; 22:e13156. [PMID: 31912942 PMCID: PMC7187355 DOI: 10.1111/cmi.13156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Spiroplasma poulsonii is a vertically transmitted endosymbiont of Drosophila melanogaster that causes male-killing, that is the death of infected male embryos during embryogenesis. Here, we report a natural variant of S. poulsonii that is efficiently vertically transmitted yet does not selectively kill males, but kills rather a subset of all embryos regardless of their sex, a phenotype we call 'blind-killing'. We show that the natural plasmid of S. poulsonii has an altered structure: Spaid, the gene coding for the male-killing toxin, is deleted in the blind-killing strain, confirming its function as a male-killing factor. Then we further investigate several hypotheses that could explain the sex-independent toxicity of this new strain on host embryos. As the second non-male-killing variant isolated from a male-killing original population, this new strain raises questions on how male-killing is maintained or lost in fly populations. As a natural knock-out of Spaid, which is unachievable yet by genetic engineering approaches, this variant also represents a valuable tool for further investigations on the male-killing mechanism.
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sandra Calderon‐Copete
- Center for Integrative GenomicsLausanne Genomic Technologies FacilityLausanneSwitzerland
| | - Fanny Schüpfer
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenConnecticut
| | - Samuel Rommelaere
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Mario G. Garcia‐Arraez
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Juan C. Paredes
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Present address:
International Centre of Insect Physiology and Ecology (ICIPE)KasaraniNairobiKenya
| | - Bruno Lemaitre
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
4
|
Variable Membrane Protein A of Flavescence Dorée Phytoplasma Binds the Midgut Perimicrovillar Membrane of Euscelidius variegatus and Promotes Adhesion to Its Epithelial Cells. Appl Environ Microbiol 2018; 84:AEM.02487-17. [PMID: 29439985 DOI: 10.1128/aem.02487-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 01/27/2023] Open
Abstract
Phytoplasmas are uncultivated plant pathogens and cell wall-less bacteria and are transmitted from plant to plant by hemipteran insects. The phytoplasma's circulative propagative cycle in insects requires the crossing of the midgut and salivary glands, and primary adhesion to cells is an initial step toward the invasion process. The flavescence dorée (FD) phytoplasma possesses a set of variable membrane proteins (Vmps) exposed on its surface, and this pathogen is suspected to interact with insect cells. The results showed that VmpA is expressed by the flavescence dorée phytoplasma present in the midgut and salivary glands. Phytoplasmas cannot be cultivated at present, and no mutant can be produced to investigate the putative role of Vmps in the adhesion of phytoplasma to insect cells. To overcome this difficulty, we engineered the Spiroplasma citri mutant G/6, which lacks the ScARP adhesins, for VmpA expression and used VmpA-coated fluorescent beads to determine if VmpA acts as an adhesin in ex vivo adhesion assays and in vivo ingestion assays. VmpA specifically interacted with Euscelidius variegatus insect cells in culture and promoted the retention of VmpA-coated beads to the midgut of E. variegatus In this latest case, VmpA-coated fluorescent beads were localized and embedded in the perimicrovillar membrane of the insect midgut. Thus, VmpA functions as an adhesin that could be essential in the colonization of the insect by the FD phytoplasmas.IMPORTANCE Phytoplasmas infect a wide variety of plants, ranging from wild plants to cultivated species, and are transmitted by different leafhoppers, planthoppers, and psyllids. The specificity of the phytoplasma-insect vector interaction has a major impact on the phytoplasma plant host range. As entry into insect cells is an obligate process for phytoplasma transmission, the bacterial adhesion to insect cells is a key step. Thus, studying surface-exposed proteins of phytoplasma will help to identify the adhesins implicated in the specific recognition of insect vectors. In this study, it is shown that the membrane protein VmpA of the flavescence dorée (FD) phytoplasma acts as an adhesin that is able to interact with cells of Euscelidius variegatus, the experimental vector of the FD phytoplasma.
Collapse
|
5
|
In Vitro Culture of the Insect Endosymbiont Spiroplasma poulsonii Highlights Bacterial Genes Involved in Host-Symbiont Interaction. mBio 2018; 9:mBio.00024-18. [PMID: 29559567 PMCID: PMC5874924 DOI: 10.1128/mbio.00024-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endosymbiotic bacteria associated with eukaryotic hosts are omnipresent in nature, particularly in insects. Studying the bacterial side of host-symbiont interactions is, however, often limited by the unculturability and genetic intractability of the symbionts. Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with several Drosophila species. S. poulsonii strongly affects its host’s physiology, for example by causing male killing or by protecting it against various parasites. Despite intense work on this model since the 1950s, attempts to cultivate endosymbiotic Spiroplasma in vitro have failed so far. Here, we developed a method to sustain the in vitro culture of S. poulsonii by optimizing a commercially accessible medium. We also provide a complete genome assembly, including the first sequence of a natural plasmid of an endosymbiotic Spiroplasma species. Last, by comparing the transcriptome of the in vitro culture to the transcriptome of bacteria extracted from the host, we identified genes putatively involved in host-symbiont interactions. This work provides new opportunities to study the physiology of endosymbiotic Spiroplasma and paves the way to dissect insect-endosymbiont interactions with two genetically tractable partners. The discovery of insect bacterial endosymbionts (maternally transmitted bacteria) has revolutionized the study of insects, suggesting novel strategies for their control. Most endosymbionts are strongly dependent on their host to survive, making them uncultivable in artificial systems and genetically intractable. Spiroplasma poulsonii is an endosymbiont of Drosophila that affects host metabolism, reproduction, and defense against parasites. By providing the first reliable culture medium that allows a long-lasting in vitro culture of Spiroplasma and by elucidating its complete genome, this work lays the foundation for the development of genetic engineering tools to dissect endosymbiosis with two partners amenable to molecular study. Furthermore, the optimization method that we describe can be used on other yet uncultivable symbionts, opening new technical opportunities in the field of host-microbes interactions.
Collapse
|
6
|
Renaudin J, Béven L, Batailler B, Duret S, Desqué D, Arricau-Bouvery N, Malembic-Maher S, Foissac X. Heterologous expression and processing of the flavescence dorée phytoplasma variable membrane protein VmpA in Spiroplasma citri. BMC Microbiol 2015; 15:82. [PMID: 25879952 PMCID: PMC4392738 DOI: 10.1186/s12866-015-0417-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/18/2015] [Indexed: 11/21/2022] Open
Abstract
Background Flavescence dorée (FD) of grapevine is a phloem bacterial disease that threatens European vineyards. The disease is associated with a non-cultivable mollicute, a phytoplasma that is transmitted by the grapevine leafhopper Scaphoideus titanus in a persistent, propagative manner. The specificity of insect transmission is presumably mediated through interactions between the host tissues and phytoplasma surface proteins comprising the so-called variable membrane proteins (Vmps). Plant spiroplasmas and phytoplasmas share the same ecological niches, the phloem sieve elements of host plants and the hemocoel of insect vectors. Unlike phytoplasmas, however, spiroplasmas, and Spiroplasma citri in particular, can be grown in cell-free media and genetically engineered. As a new approach for studying phytoplasmas-insect cell interactions, we sought to mimic phytoplasmas through the construction of recombinant spiroplasmas exhibiting FD phytoplasma Vmps at the cell surface. Results Here, we report the expression of the FD phytoplasma VmpA in S. citri. Transformation of S. citri with plasmid vectors in which the vmpA coding sequence was under the control of the S. citri tuf gene promoter resulted in higher accumulation of VmpA than with the native promoter. Expression of VmpA at the spiroplasma surface was achieved by fusing the vmpA coding sequence to the signal peptide sequence of the S. citri adhesin ScARP3d, as revealed by direct colony immunoblotting and immunogold labelling electron microscopy. Anchoring of VmpA to the spiroplasma membrane was further demonstrated by Triton X-114 protein partitioning and Western immunoblotting. Using the same strategy, the secretion of free, functionally active β-lactamase (used as a model protein) into the culture medium by recombinant spiroplasmas was achieved. Conclusions Construction of recombinant spiroplasmas harbouring the FD phytoplasma variable membrane protein VmpA at their surface was achieved, which provides a new biological approach for studying interactions of phytoplasma surface proteins with host cells. Likewise, the secretion of functional β-lactamase by recombinant spiroplasmas established the considerable promise of the S. citri expression system for delivering phytoplasma effector proteins into host cells. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0417-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joël Renaudin
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Laure Béven
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Brigitte Batailler
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMS3420, Bordeaux Imaging Center, Bordeaux, France. .,CNRS, Bordeaux Imaging Center, UMS 3420, Bordeaux, France. .,INSERM, Bordeaux Imaging Center, US 004, Bordeaux, France.
| | - Sybille Duret
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Delphine Desqué
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Nathalie Arricau-Bouvery
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Sylvie Malembic-Maher
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| | - Xavier Foissac
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France. .,Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France.
| |
Collapse
|
7
|
Duret S, Batailler B, Dubrana MP, Saillard C, Renaudin J, Béven L, Arricau-Bouvery N. Invasion of insect cells by Spiroplasma citri involves spiralin relocalization and lectin/glycoconjugate-type interactions. Cell Microbiol 2014; 16:1119-32. [PMID: 24438161 DOI: 10.1111/cmi.12265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
Spiroplamas are helical, cell wall-less bacteria belonging to the Class Mollicutes, a group of microorganisms phylogenetically related to low G+C, Gram-positive bacteria. Spiroplasma species are all found associated with arthropods and a few, including Spiroplasma citri are pathogenic to plant. Thus S. citri has the ability to colonize cells of two very distinct hosts, the plant and the insect vector. While spiroplasmal factors involved in transmission by the leafhopper Circulifer haematoceps have been identified, their specific contribution to invasion of insect cells is poorly understood. In this study we provide evidence that the lipoprotein spiralin plays a major role in the very early step of cell invasion. Confocal laser scanning immunomicroscopy revealed a relocalization of spiralin at the contact zone of adhering spiroplasmas. The implication of a role for spiralin in adhesion to insect cells was further supported by adhesion assays showing that a spiralin-less mutant was impaired in adhesion and that recombinant spiralin triggered adhesion of latex beads. We also showed that cytochalasin D induced changes in the surface-exposed glycoconjugates, as inferred from the lectin binding patterns, and specifically improved adhesion of S. citri wild-type but not of the spiralin-less mutant. These results indicate that cytochalasin D exposes insect cell receptors of spiralin that are masked in untreated cells. In addition, competitive adhesion assays with lectins strongly suggest spiralin to exhibit glycoconjugate binding properties similar to that of the Vicia villosa agglutinin (VVA) lectin.
Collapse
Affiliation(s)
- Sybille Duret
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Khanchezar A, Béven L, Izadpanah K, Salehi M, Saillard C. Spiralin diversity within Iranian strains of Spiroplasma citri. Curr Microbiol 2013; 68:96-104. [PMID: 23995776 DOI: 10.1007/s00284-013-0437-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
The first-cultured and most-studied spiroplasma is Spiroplasma citri, the causal agent of citrus stubborn disease, one of the three plant-pathogenic, sieve-tube-restricted, and leafhopper vector-transmitted mollicutes. In Iranian Fars province, S. citri cultures were obtained from stubborn affected citrus trees, sesame and safflower plants, and from the leafhopper vector Circulifer haematoceps. Spiralin gene sequences from different S. citri isolates were amplified by PCR, cloned, and sequenced. Phylogenetic trees based on spiralin gene sequence showed diversity and indicated the presence of three clusters among the S. citri strains. Comparison of the amino acid sequences of eleven spiralins from Iranian strains and those from the reference S. citri strain GII-3 (241 aa), Palmyre strain (242 aa), Spiroplasma kunkelii (240 aa), and Spiroplasma phoeniceum (237 aa) confirmed the conservation of general features of the protein. However, the spiralin of an S. citri isolate named Shiraz I comprised 346 amino acids and showed a large duplication of the region comprised between two short repeats previously identified in S. citri spiralins. We report in this paper the spiralin diversity in Spiroplasma strains from southern Iran and for the first time a partial internal duplication of the spiralin gene.
Collapse
Affiliation(s)
- Amin Khanchezar
- Plant Virology Research Centre (PVRC), College of Agriculture, Shiraz University, Shiraz, Iran
| | | | | | | | | |
Collapse
|
9
|
The repetitive domain of ScARP3d triggers entry of Spiroplasma citri into cultured cells of the vector Circulifer haematoceps. PLoS One 2012; 7:e48606. [PMID: 23119070 PMCID: PMC3485318 DOI: 10.1371/journal.pone.0048606] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/27/2012] [Indexed: 11/19/2022] Open
Abstract
Spiroplasma citri is a plant pathogenic mollicute transmitted by the leafhopper vector Circulifer haematoceps. Successful transmission requires the spiroplasmas to cross the intestinal epithelium and salivary gland barriers through endocytosis mediated by receptor-ligand interactions. To characterize these interactions we studied the adhesion and invasion capabilities of a S. citri mutant using the Ciha-1 leafhopper cell line. S. citri GII3 wild-type contains 7 plasmids, 5 of which (pSci1 to 5) encode 8 related adhesins (ScARPs). As compared to the wild-type strain GII3, the S. citri mutant G/6 lacking pSci1 to 5 was affected in its ability to adhere and enter into the Ciha-1 cells. Proteolysis analyses, Triton X-114 partitioning and agglutination assays showed that the N-terminal part of ScARP3d, consisting of repeated sequences, was exposed to the spiroplasma surface whereas the C-terminal part was anchored into the membrane. Latex beads cytadherence assays showed the ScARP3d repeat domain (Rep3d) to be involved, and internalization of the Rep3d-coated beads to be actin-dependent. These data suggested that ScARP3d, via its Rep3d domain, was implicated in adhesion of S. citri GII3 to insect cells. Inhibition tests using anti-Rep3d antibodies and competitive assays with recombinant Rep3d both resulted in a decrease of insect cells invasion by the spiroplasmas. Unexpectedly, treatment of Ciha-1 cells with the actin polymerisation inhibitor cytochalasin D increased adhesion and consequently entry of S. citri GII3. For the ScARPs-less mutant G/6, only adhesion was enhanced though to a lesser extent following cytochalasin D treatment. All together these results strongly suggest a role of ScARPs, and particularly ScARP3d, in adhesion and invasion of the leafhopper cells by S. citri.
Collapse
|
10
|
Alexeev D, Kostrjukova E, Aliper A, Popenko A, Bazaleev N, Tyakht A, Selezneva O, Akopian T, Prichodko E, Kondratov I, Chukin M, Demina I, Galyamina M, Kamashev D, Vanyushkina A, Ladygina V, Levitskii S, Lazarev V, Govorun V. Application of Spiroplasma melliferum Proteogenomic Profiling for the Discovery of Virulence Factors and Pathogenicity Mechanisms in Host-associated Spiroplasmas. J Proteome Res 2011; 11:224-36. [DOI: 10.1021/pr2008626] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dmitry Alexeev
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
- Moscow Institute of Physics and Technology - Bioinformatics Dolgoprudny,
Pervomayskaya 21 , Moscow 117303, Russian Federation
| | - Elena Kostrjukova
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Alexander Aliper
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Anna Popenko
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Nikolay Bazaleev
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Alexander Tyakht
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Oksana Selezneva
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
- Russian Research Centre Kurchatov Institute, pl. Akademika Kurchatova
1, Moscow 123182, Russian Federation
| | - Tatyana Akopian
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Elena Prichodko
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Ilya Kondratov
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Mikhail Chukin
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Irina Demina
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Maria Galyamina
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Dmitri Kamashev
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
- Russian Research Centre Kurchatov Institute, pl. Akademika Kurchatova
1, Moscow 123182, Russian Federation
| | - Anna Vanyushkina
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
- Russian Research Centre Kurchatov Institute, pl. Akademika Kurchatova
1, Moscow 123182, Russian Federation
| | - Valentina Ladygina
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
| | - Sergei Levitskii
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
- Russian Research Centre Kurchatov Institute, pl. Akademika Kurchatova
1, Moscow 123182, Russian Federation
| | - Vasily Lazarev
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
- Russian Research Centre Kurchatov Institute, pl. Akademika Kurchatova
1, Moscow 123182, Russian Federation
| | - Vadim Govorun
- Russian Institute of Physico-Chemical Medicine, Malaya Pirogovskaya 1a,
Moscow, Russian Federation
- Russian Research Centre Kurchatov Institute, pl. Akademika Kurchatova
1, Moscow 123182, Russian Federation
- M.M. Shemyakin–Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Ul. Miklukho-Maklaya,
16/10 , Moscow 117997, Russian Federation
| |
Collapse
|
11
|
Mutaqin K, Comer JL, Wayadande AC, Melcher U, Fletcher J. Selection and characterization ofSpiroplasma citrimutants by random transposome mutagenesis. Can J Microbiol 2011; 57:525-32. [DOI: 10.1139/w11-026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phytopathogenic spiroplasmas can multiply in vascular plants and insects. A deeper understanding of this dual-host life could be furthered through the identification by random mutagenesis of spiroplasma genes required. The ability of the EZ::TN™ <DHFR-1> Tnp transposome™ system to create random insertional mutations in the genome of Spiroplasma citri was evaluated. The efficiency of electroporation-mediated transformation of S. citri BR3-3X averaged 28.8 CFUs/ng transposome for 109spiroplasma cells. Many transformants appearing on the selection plates were growth impaired when transferred to broth. Altering broth composition in various ways did not improve their growth. However, placing colonies into a small broth volume resulted in robust growth and successful subsequent passages of a subset of transformants. PCR using primers for the dihydrofolate reductase gene confirmed the transposon’s presence in the genomes of selected transformants. Southern blot hybridization and nucleotide sequencing suggested that insertion was random within the chromosome and usually at single sites. The insertions were stable. Growth rates of all transformants were lower than that of the wild-type S. citri, but none lost the ability to adhere to a Circulifer tenellus (CT-1) cell line. The EZ::TN™ <DHFR-1> Tnp transposome™ system represents an additional tool for genetic manipulation of the fastidious spiroplasmas.
Collapse
Affiliation(s)
- Kikin Mutaqin
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jana L. Comer
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Astri C. Wayadande
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ulrich Melcher
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jacqueline Fletcher
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
12
|
Abstract
Plasmids are key vectors of horizontal gene transfer and essential genetic engineering tools. They code for genes involved in many aspects of microbial biology, including detoxication, virulence, ecological interactions, and antibiotic resistance. While many studies have decorticated the mechanisms of mobility in model plasmids, the identification and characterization of plasmid mobility from genome data are unexplored. By reviewing the available data and literature, we established a computational protocol to identify and classify conjugation and mobilization genetic modules in 1,730 plasmids. This allowed the accurate classification of proteobacterial conjugative or mobilizable systems in a combination of four mating pair formation and six relaxase families. The available evidence suggests that half of the plasmids are nonmobilizable and that half of the remaining plasmids are conjugative. Some conjugative systems are much more abundant than others and preferably associated with some clades or plasmid sizes. Most very large plasmids are nonmobilizable, with evidence of ongoing domestication into secondary chromosomes. The evolution of conjugation elements shows ancient divergence between mobility systems, with relaxases and type IV coupling proteins (T4CPs) often following separate paths from type IV secretion systems. Phylogenetic patterns of mobility proteins are consistent with the phylogeny of the host prokaryotes, suggesting that plasmid mobility is in general circumscribed within large clades. Our survey suggests the existence of unsuspected new relaxases in archaea and new conjugation systems in cyanobacteria and actinobacteria. Few genes, e.g., T4CPs, relaxases, and VirB4, are at the core of plasmid conjugation, and together with accessory genes, they have evolved into specific systems adapted to specific physiological and ecological contexts.
Collapse
|
13
|
Breton M, Duret S, Béven L, Dubrana MP, Renaudin J. I-SceI-mediated plasmid deletion and intra-molecular recombination in Spiroplasma citri. J Microbiol Methods 2010; 84:216-22. [PMID: 21129414 DOI: 10.1016/j.mimet.2010.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 12/27/2022]
Abstract
S. citri wild-type strain GII3 carries six plasmids (pSci1 to -6) that are thought to encode determinants involved in the transmission of the spiroplasma by its leafhopper vector. In this study we report the use of meganuclease I-SceI for plasmid deletion in S. citri. Plasmids pSci1NT-I and pSci6PT-I, pSci1 and pSci6 derivatives that contain the tetM selection marker and a unique I-SceI recognition site were first introduced into S. citri strains 44 (having no plasmid) and GII3 (carrying pSci1-6), respectively. Due to incompatibility of homologous replication regions, propagation of the S. citri GII3 transformant in selective medium resulted in the replacement of the natural pSci6 by pSci6PT-I. The spiroplasmal transformants were further transformed by an oriC plasmid carrying the I-SceI gene under the control of the spiralin gene promoter. In the S. citri 44 transformant, expression of I-SceI resulted in rapid loss of pSciNT-I showing that expression of I-SceI can be used as a counter-selection tool in spiroplasmas. In the case of the S. citri GII3 transformant carrying pSci6PT-I, expression of I-SceI resulted in the deletion of plasmid fragments comprising the I-SceI site and the tetM marker. Delineating the I-SceI generated deletions proved they had occurred though recombination between homologous sequences. To our knowledge this is the first report of I-SceI mediated intra-molecular recombination in mollicutes.
Collapse
Affiliation(s)
- Marc Breton
- INRA, Génomique Diversité et Pouvoir Pathogéne, Villenave d'Ornon, France
| | | | | | | | | |
Collapse
|
14
|
Carle P, Saillard C, Carrère N, Carrère S, Duret S, Eveillard S, Gaurivaud P, Gourgues G, Gouzy J, Salar P, Verdin E, Breton M, Blanchard A, Laigret F, Bové JM, Renaudin J, Foissac X. Partial chromosome sequence of Spiroplasma citri reveals extensive viral invasion and important gene decay. Appl Environ Microbiol 2010; 76:3420-6. [PMID: 20363791 PMCID: PMC2876439 DOI: 10.1128/aem.02954-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/25/2010] [Indexed: 11/20/2022] Open
Abstract
The assembly of 20,000 sequencing reads obtained from shotgun and chromosome-specific libraries of the Spiroplasma citri genome yielded 77 chromosomal contigs totaling 1,674 kbp (92%) of the 1,820-kbp chromosome. The largest chromosomal contigs were positioned on the physical and genetic maps constructed from pulsed-field gel electrophoresis and Southern blot hybridizations. Thirty-eight contigs were annotated, resulting in 1,908 predicted coding sequences (CDS) representing an overall coding density of only 74%. Cellular processes, cell metabolism, and structural-element CDS account for 29% of the coding capacity, CDS of external origin such as viruses and mobile elements account for 24% of the coding capacity, and CDS of unknown function account for 47% of the coding capacity. Among these, 21% of the CDS group into 63 paralog families. The organization of these paralogs into conserved blocks suggests that they represent potential mobile units. Phage-related sequences were particularly abundant and include plectrovirus SpV1 and SVGII3 and lambda-like SpV2 sequences. Sixty-nine copies of transposases belonging to four insertion sequence (IS) families (IS30, IS481, IS3, and ISNCY) were detected. Similarity analyses showed that 21% of chromosomal CDS were truncated compared to their bacterial orthologs. Transmembrane domains, including signal peptides, were predicted for 599 CDS, of which 58 were putative lipoproteins. S. citri has a Sec-dependent protein export pathway. Eighty-four CDS were assigned to transport, such as phosphoenolpyruvate phosphotransferase systems (PTS), the ATP binding cassette (ABC), and other transporters. Besides glycolytic and ATP synthesis pathways, it is noteworthy that S. citri possesses a nearly complete pathway for the biosynthesis of a terpenoid.
Collapse
Affiliation(s)
- Patricia Carle
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Colette Saillard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Nathalie Carrère
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sébastien Carrère
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sybille Duret
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sandrine Eveillard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Patrice Gaurivaud
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Géraldine Gourgues
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Jérome Gouzy
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Pascal Salar
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Eric Verdin
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Marc Breton
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Alain Blanchard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Frédéric Laigret
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Joseph-Marie Bové
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Joel Renaudin
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Xavier Foissac
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
15
|
Sequences essential for transmission of Spiroplasma citri by its leafhopper vector, Circulifer haematoceps, revealed by plasmid curing and replacement based on incompatibility. Appl Environ Microbiol 2010; 76:3198-205. [PMID: 20305023 DOI: 10.1128/aem.00181-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spiroplasma citri GII3 contains highly related low-copy-number plasmids pSci1 to -6. Despite the strong similarities between their replication regions, these plasmids coexist in the spiroplasma cells, indicating that they are mutually compatible. The pSci1 to -6 plasmids encode the membrane proteins known as S. citri adhesion-related proteins (ScARPs) (pSci1 to -5) and the hydrophilic protein P32 (pSci6), which had been tentatively associated with insect transmission, as they were not detected in non-insect-transmissible strains. With the aim of further investigating the role of plasmid-encoded determinants in insect transmission, we have constructed S. citri mutant strains that differ in their plasmid contents by developing a plasmid curing/replacement strategy based on the incompatibility of plasmids having identical replication regions. Experimental transmission of these S. citri plasmid mutants through injection into the leafhopper vector Circulifer haematoceps revealed that pSci6, more precisely, the pSci6_06 coding sequence, encoding a protein of unknown function, was essential for transmission. In contrast, ScARPs and P32 were dispensable for both acquisition and transmission of the spiroplasmas by the leafhopper vector, even though S. citri mutants lacking pSci1 to -5 (encoding ScARPs) were acquired and transmitted at lower efficiencies than the wild-type strain GII3.
Collapse
|
16
|
Breton M, Sagné E, Duret S, Béven L, Citti C, Renaudin J. First report of a tetracycline-inducible gene expression system for mollicutes. MICROBIOLOGY-SGM 2009; 156:198-205. [PMID: 19797362 DOI: 10.1099/mic.0.034074-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inducible promoter systems are powerful tools for studying gene function in prokaryotes but have never been shown to function in mollicutes. In this study we evaluated the efficacy of the tetracycline-inducible promoter Pxyl/tetO(2) from Bacillus subtilis in controlling gene expression in two mollicutes, the plant pathogen Spiroplasma citri and the animal pathogen Mycoplasma agalactiae. An S. citri plasmid carrying the spiralin gene under the control of the xyl/tetO(2) tetracycline-inducible promoter and the TetR repressor gene under the control of a constitutive spiroplasmal promoter was introduced into the spiralin-less S. citri mutant GII3-9a3. In the absence of tetracycline, expression of TetR almost completely abolished expression of spiralin from the xyl/tetO(2) promoter. Adding tetracycline (>50 ng ml(-1)) to the medium induced high-level expression of spiralin. Interestingly, inducible expression of spiralin was also detected in vivo: in S. citri-infected leafhoppers fed on tetracycline-containing medium and in S. citri-infected plants watered with tetracycline. A similar construct was introduced into the M. agalactiae chromosome through transposition. Tetracycline-induced expression of spiralin proved the TetR-Pxyl/tetO(2) system to be functional in the ruminant pathogen, suggesting that this tetracycline-inducible promoter system might be of general use in mollicutes.
Collapse
Affiliation(s)
- Marc Breton
- Université de Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Evelyne Sagné
- Université de Toulouse, ENVT, UMR 1225 Interactions hôtes agents pathogènes, F-31076 Toulouse, France.,INRA, UMR 1225 Interactions hôtes agents pathogènes, F-31076 Toulouse, France
| | - Sybille Duret
- Université de Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Laure Béven
- Université de Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Christine Citti
- Université de Toulouse, ENVT, UMR 1225 Interactions hôtes agents pathogènes, F-31076 Toulouse, France.,INRA, UMR 1225 Interactions hôtes agents pathogènes, F-31076 Toulouse, France
| | - Joël Renaudin
- Université de Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| |
Collapse
|