1
|
Stecker D, Hoffmann T, Link H, Commichau FM, Bremer E. L-Proline Synthesis Mutants of Bacillus subtilis Overcome Osmotic Sensitivity by Genetically Adapting L-Arginine Metabolism. Front Microbiol 2022; 13:908304. [PMID: 35783388 PMCID: PMC9245794 DOI: 10.3389/fmicb.2022.908304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The accumulation of the compatible solute L-proline by Bacillus subtilis via synthesis is a cornerstone in the cell’s defense against high salinity as the genetic disruption of this biosynthetic process causes osmotic sensitivity. To understand how B. subtilis could potentially cope with high osmolarity surroundings without the functioning of its natural osmostress adaptive L-proline biosynthetic route (ProJ-ProA-ProH), we isolated suppressor strains of proA mutants under high-salinity growth conditions. These osmostress-tolerant strains carried mutations affecting either the AhrC transcriptional regulator or its operator positioned in front of the argCJBD-carAB-argF L-ornithine/L-citrulline/L-arginine biosynthetic operon. Osmostress protection assays, molecular analysis and targeted metabolomics showed that these mutations, in conjunction with regulatory mutations affecting rocR-rocDEF expression, connect and re-purpose three different physiological processes: (i) the biosynthetic pathway for L-arginine, (ii) the RocD-dependent degradation route for L-ornithine, and (iii) the last step in L-proline biosynthesis. Hence, osmostress adaptation without a functional ProJ-ProA-ProH route is made possible through a naturally existing, but inefficient, metabolic shunt that allows to substitute the enzyme activity of ProA by feeding the RocD-formed metabolite γ-glutamate-semialdehyde/Δ1-pyrroline-5-carboxylate into the biosynthetic route for the compatible solute L-proline. Notably, in one class of mutants, not only substantial L-proline pools but also large pools of L-citrulline were accumulated, a rather uncommon compatible solute in microorganisms. Collectively, our data provide an example of the considerable genetic plasticity and metabolic resourcefulness of B. subtilis to cope with everchanging environmental conditions.
Collapse
Affiliation(s)
- Daniela Stecker
- Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - Tamara Hoffmann
- Faculty of Biology, Philipps-University Marburg, Marburg, Germany
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Hannes Link
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Fabian M. Commichau
- Insitute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
- Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Erhard Bremer
- Faculty of Biology, Philipps-University Marburg, Marburg, Germany
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Erhard Bremer,
| |
Collapse
|
2
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Structural and Biochemical Characterization of Aldehyde Dehydrogenase 12, the Last Enzyme of Proline Catabolism in Plants. J Mol Biol 2018; 431:576-592. [PMID: 30580036 DOI: 10.1016/j.jmb.2018.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022]
Abstract
Heterokonts, Alveolata protists, green algae from Charophyta and Chlorophyta divisions, and all Embryophyta plants possess an aldehyde dehydrogenase (ALDH) gene named ALDH12. Here, we provide a biochemical characterization of two ALDH12 family members from the lower plant Physcomitrella patens and higher plant Zea mays. We show that ALDH12 encodes an NAD+-dependent glutamate γ-semialdehyde dehydrogenase (GSALDH), which irreversibly converts glutamate γ-semialdehyde (GSAL), a mitochondrial intermediate of the proline and arginine catabolism, to glutamate. Sedimentation equilibrium and small-angle X-ray scattering analyses reveal that in solution both plant GSALDHs exist as equilibrium between a domain-swapped dimer and the dimer-of-dimers tetramer. Plant GSALDHs share very low-sequence identity with bacterial, fungal, and animal GSALDHs (classified as ALDH4), which are the closest related ALDH superfamily members. Nevertheless, the crystal structure of ZmALDH12 at 2.2-Å resolution shows that nearly all key residues involved in the recognition of GSAL are identical to those in ALDH4, indicating a close functional relationship with ALDH4. Phylogenetic analysis suggests that the transition from ALDH4 to ALDH12 occurred during the evolution of the endosymbiotic plant ancestor, prior to the evolution of green algae and land plants. Finally, ALDH12 expression in maize and moss is downregulated in response to salt and drought stresses, possibly to maintain proline levels. Taken together, these results provide molecular insight into the biological roles of the plant ALDH12 family.
Collapse
|
4
|
Noda-Garcia L, Romero Romero ML, Longo LM, Kolodkin-Gal I, Tawfik DS. Bacilli glutamate dehydrogenases diverged via coevolution of transcription and enzyme regulation. EMBO Rep 2017; 18:1139-1149. [PMID: 28468957 DOI: 10.15252/embr.201743990] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/29/2022] Open
Abstract
The linkage between regulatory elements of transcription, such as promoters, and their protein products is central to gene function. Promoter-protein coevolution is therefore expected, but rarely observed, and the manner by which these two regulatory levels are linked remains largely unknown. We study glutamate dehydrogenase-a hub of carbon and nitrogen metabolism. In Bacillus subtilis, two paralogues exist: GudB is constitutively transcribed whereas RocG is tightly regulated. In their active, oligomeric states, both enzymes show similar enzymatic rates. However, swaps of enzymes and promoters cause severe fitness losses, thus indicating promoter-enzyme coevolution. Characterization of the proteins shows that, compared to RocG, GudB's enzymatic activity is highly dependent on glutamate and pH Promoter-enzyme swaps therefore result in excessive glutamate degradation when expressing a constitutive enzyme under a constitutive promoter, or insufficient activity when both the enzyme and its promoter are tightly regulated. Coevolution of transcriptional and enzymatic regulation therefore underlies paralogue-specific spatio-temporal control, especially under diverse growth conditions.
Collapse
Affiliation(s)
- Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Liam M Longo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Peng Q, Liu C, Wang B, Yang M, Wu J, Zhang J, Song F. Sox transcription in sarcosine utilization is controlled by Sigma(54) and SoxR in Bacillus thuringiensis HD73. Sci Rep 2016; 6:29141. [PMID: 27404799 PMCID: PMC4941409 DOI: 10.1038/srep29141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/10/2016] [Indexed: 12/04/2022] Open
Abstract
Sarcosine oxidase catalyzes the oxidative demethylation of sarcosine to yield glycine, formaldehyde, and hydrogen peroxide. In this study, we analyzed the transcription and regulation of the sox locus, including the sarcosine oxidase-encoding genes in Bacillus thuringiensis (Bt). RT-PCR analysis revealed that the sox locus forms two opposing transcriptional units: soxB (soxB/E/F/G/H/I) and soxR (soxR/C/D/A). The typical −12/−24 consensus sequence was located 15 bp and 12 bp from the transcriptional start site (TSS) of soxB and soxC, respectively. Promoter-lacZ fusion assays showed that the soxB promoter is controlled by the Sigma54 factor and is activated by the Sigma54-dependent transcriptional regulator SoxR. SoxR also inhibits its own expression. Expression from the PsoxCR promoter, which is responsible for the transcription of soxC, soxD, and soxA, is Sigma54-dependent and requires SoxR. An 11-bp inverted repeat sequence was identified as SoxR binding site upstream of the soxB TSS. Purified SoxR specifically bound a DNA fragment containing this region. Mutation or deletion of this sequence abolished the transcriptional activities of soxB and soxC. Thus, SoxR binds to the same sequence to activate the transcription of soxB and soxC. Sarcosine utilization was abolished in soxB and soxR mutants, suggesting that the sox locus is essential for sarcosine utilization.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxia Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences, Northeast Agriculture University, Harbin, China
| | - Min Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianbo Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Peng Q, Wang G, Liu G, Zhang J, Song F. Identification of metabolism pathways directly regulated by sigma(54) factor in Bacillus thuringiensis. Front Microbiol 2015; 6:407. [PMID: 26029175 PMCID: PMC4428206 DOI: 10.3389/fmicb.2015.00407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
Sigma(54) (σ(54)) regulates nitrogen and carbon utilization in bacteria. Promoters that are σ(54)-dependent are highly conserved and contain short sequences located at the -24 and -12 positions upstream of the transcription initiation site. σ(54) requires regulatory proteins known as bacterial enhancer-binding proteins (bEBPs) to activate gene transcription. We show that σ(54) regulates the capacity to grow on various nitrogen sources using a Bacillus thuringiensis HD73 mutant lacking the sigL gene encoding σ(54) (ΔsigL). A 2-fold-change cutoff and a false discovery rate cutoff of P < 0.05 were used to analyze the DNA microarray data, which revealed 255 genes that were downregulated and 121 that were upregulated in the ΔsigL mutant relative to the wild-type HD73 strain. The σ(54) regulon (stationary phase) was characterized by DNA microarray, bioinformatics, and functional assay; 16 operons containing 47 genes were identified whose promoter regions contain the conserved -12/-24 element and whose transcriptional activities were abolished or reduced in the ΔsigL mutant. Eight σ(54)-dependent transcriptional bEBPs were found in the Bt HD73 genome, and they regulated nine σ(54)-dependent promoters. The metabolic pathways activated by σ(54) in this process have yet to be identified in Bacillus thuringiensis; nonetheless, the present analysis of the σ(54) regulon provides a better understanding of the physiological roles of σ factors in bacteria.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Guannan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Guiming Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
7
|
Tanaka K, Iwasaki K, Morimoto T, Matsuse T, Hasunuma T, Takenaka S, Chumsakul O, Ishikawa S, Ogasawara N, Yoshida KI. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis. BMC Microbiol 2015; 15:43. [PMID: 25880922 PMCID: PMC4348106 DOI: 10.1186/s12866-015-0373-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
Background The two-component regulatory system, involving the histidine sensor kinase DegS and response regulator DegU, plays an important role to control various cell processes in the transition phase of Bacillus subtilis. The degU32 allele in strain 1A95 is characterized by the accumulation of phosphorylated form of DegU (DegU-P). Results Growing 1A95 cells elevated the pH of soytone-based medium more than the parental strain 168 after the onset of the transition phase. The rocG gene encodes a catabolic glutamate dehydrogenase that catalyzes one of the main ammonia-releasing reactions. Inactivation of rocG abolished 1A95-mediated increases in the pH of growth media. Thus, transcription of the rocG locus was examined, and a novel 3.7-kb transcript covering sivA, rocG, and rocA was found in 1A95 but not 168 cells. Increased intracellular fructose 1,6-bisphosphate (FBP) levels are known to activate the HPr kinase HPrK, and to induce formation of the P-Ser-HPr/CcpA complex, which binds to catabolite responsive elements (cre) and exerts CcpA-dependent catabolite repression. A putative cre found within the intergenic region between sivA and rocG, and inactivation of ccpA led to creation of the 3.7-kb transcript in 168 cells. Analyses of intermediates in central carbon metabolism revealed that intracellular FBP levels were lowered earlier in 1A95 than in 168 cells. A genome wide transcriptome analysis comparing 1A95 and 168 cells suggested similar events occurring in other catabolite repressive loci involving induction of lctE encoding lactate dehydrogenase. Conclusions Under physiological conditions the 3.7-kb rocG transcript may be tightly controlled by a roadblock mechanism involving P-Ser-HPr/CcpA in 168 cells, while in 1A95 cells abolished repression of the 3.7-kb transcript. Accumulation of DegU-P in 1A95 affects central carbon metabolism involving lctE enhanced by unknown mechanisms, downregulates FBP levels earlier, and inactivates HPrK to allow the 3.7-kb transcription, and thus similar events may occur in other catabolite repressive loci. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0373-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan.
| | - Kana Iwasaki
- Department of Agrobioscience, Kobe University, Kobe, Hyogo, Japan.
| | - Takuya Morimoto
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi, Japan. .,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | | | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan.
| | - Shinji Takenaka
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan. .,Department of Agrobioscience, Kobe University, Kobe, Hyogo, Japan.
| | - Onuma Chumsakul
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | - Shu Ishikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | - Naotake Ogasawara
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | - Ken-ichi Yoshida
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan. .,Department of Agrobioscience, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
8
|
Transcription of the lysine-2,3-aminomutase gene in the kam locus of Bacillus thuringiensis subsp. kurstaki HD73 is controlled by both σ54 and σK factors. J Bacteriol 2014; 196:2934-43. [PMID: 24914178 DOI: 10.1128/jb.01675-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysine 2,3-aminomutase (KAM; EC 5.4.3.2) catalyzes the interconversion of l-lysine and l-β-lysine. The transcription and regulation of the kam locus, including lysine-2,3-aminomutase-encoding genes, in Bacillus thuringiensis were analyzed in this study. Reverse transcription-PCR (RT-PCR) analysis revealed that this locus forms two operons: yodT (yodT-yodS-yodR-yodQ-yodP-kamR) and kamA (kamA-yokU-yozE). The transcriptional start sites (TSSs) of the kamA gene were determined using 5' rapid amplification of cDNA ends (RACE). A typical -12/-24 σ(54) binding site was identified in the promoter PkamA, which is located upstream of the kamA gene TSS. A β-galactosidase assay showed that PkamA, which directs the transcription of the kamA operon, is controlled by the σ(54) factor and is activated through the σ(54)-dependent transcriptional regulator KamR. The kamA operon is also controlled by σ(K) and regulated by the GerE protein in the late stage of sporulation. kamR and kamA mutants were prepared by homologous recombination to examine the role of the kam locus. The results showed that the sporulation rate in B. thuringiensis HD(ΔkamR) was slightly decreased compared to that in HD73, whereas that in HD(ΔkamA) was similar to that in HD73. This means that other genes regulated by KamR are important for sporulation.
Collapse
|
9
|
Zaprasis A, Hoffmann T, Wünsche G, Flórez LA, Stülke J, Bremer E. Mutational activation of the RocR activator and of a crypticrocDEFpromoter bypass loss of the initial steps of proline biosynthesis inBacillus subtilis. Environ Microbiol 2013; 16:701-17. [DOI: 10.1111/1462-2920.12193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Adrienne Zaprasis
- Department of Biology, Laboratory for Microbiology; Philipps-University Marburg; Karl-von-Frisch Str. 8 Marburg D-35032 Germany
| | - Tamara Hoffmann
- Department of Biology, Laboratory for Microbiology; Philipps-University Marburg; Karl-von-Frisch Str. 8 Marburg D-35032 Germany
| | - Guido Wünsche
- Department of Biology, Laboratory for Microbiology; Philipps-University Marburg; Karl-von-Frisch Str. 8 Marburg D-35032 Germany
| | - Lope A. Flórez
- Department of General Microbiology; Institute of Microbiology and Genetics; Georg-August University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| | - Jörg Stülke
- Department of General Microbiology; Institute of Microbiology and Genetics; Georg-August University Göttingen; Grisebachstr. 8 Göttingen D-37077 Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology; Philipps-University Marburg; Karl-von-Frisch Str. 8 Marburg D-35032 Germany
| |
Collapse
|
10
|
Manabe K, Kageyama Y, Morimoto T, Shimizu E, Takahashi H, Kanaya S, Ara K, Ozaki K, Ogasawara N. Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions. Microb Cell Fact 2013; 12:18. [PMID: 23419162 PMCID: PMC3600796 DOI: 10.1186/1475-2859-12-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/06/2013] [Indexed: 11/23/2022] Open
Abstract
Background The Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular enzymes under batch fermentation conditions. We predicted that deletion of the gene for RocG, a bi-functional protein that acts as a glutamate dehydrogenase and an indirect repressor of glutamate synthesis, would improve glutamate metabolism, leading to further increased enzyme production. However, deletion of rocG dramatically decreased production of the alkaline cellulase Egl-237 in strain MGB874 (strain 874∆rocG). Results Transcriptome analysis and cultivation profiles suggest that this phenomenon is attributable to impaired secretion of alkaline cellulase Egl-237 and nitrogen starvation, caused by decreased external pH and ammonium depletion, respectively. With NH3-pH auxostat fermentation, production of alkaline cellulase Egl-237 in strain 874∆rocG was increased, exceeding that in the wild-type-background strain 168∆rocG. Notably, in strain 874∆rocG, high enzyme productivity was observed throughout cultivation, possibly due to enhancement of metabolic flux from 2-oxoglutarate to glutamate and generation of metabolic energy through activation of the tricarboxylic acid (TCA) cycle. The level of alkaline cellulase Egl-237 obtained corresponded to about 5.5 g l-1, the highest level reported so far. Conclusions We found the highest levels of production of alkaline cellulase Egl-237 with the reduced-genome strain 874∆rocG and using the NH3-pH auxostat. Deletion of the glutamate dehydrogenase gene rocG enhanced enzyme production via a prolonged auxostat fermentation, possibly due to improved glutamate synthesis and enhanced generation of metabolism energy.
Collapse
Affiliation(s)
- Kenji Manabe
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol 2011; 77:8370-81. [PMID: 21965396 DOI: 10.1128/aem.06136-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome reduction strategies to create genetically improved cellular biosynthesis machineries for proteins and other products have been pursued by use of a wide range of bacteria. We reported previously that the novel Bacillus subtilis strain MGB874, which was derived from strain 168 and has a total genomic deletion of 874 kb (20.7%), exhibits enhanced production of recombinant enzymes. However, it was not clear how the genomic reduction resulted in elevated enzyme production. Here we report that deletion of the rocDEF-rocR region, which is involved in arginine degradation, contributes to enhanced enzyme production in strain MGB874. Deletion of the rocDEF-rocR region caused drastic changes in glutamate metabolism, leading to improved cell yields with maintenance of enzyme productivity. Notably, the specific enzyme productivity was higher in the reduced-genome strain, with or without the rocDEF-rocR region, than in wild-type strain 168. The high specific productivity in strain MGB874 is likely attributable to the higher expression levels of the target gene resulting from an increased promoter activity and plasmid copy number. Thus, the combined effects of the improved cell yield by deletion of the rocDEF-rocR region and the increased specific productivity by deletion of another gene(s) or the genomic reduction itself enhanced the production of recombinant enzymes in MGB874. Our findings represent a good starting point for the further improvement of B. subtilis reduced-genome strains as cell factories for the production of heterologous enzymes.
Collapse
|
12
|
Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl Environ Microbiol 2008; 75:981-90. [PMID: 19114526 DOI: 10.1128/aem.01652-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.
Collapse
|
13
|
Glutamate metabolism in Bacillus subtilis: gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system. J Bacteriol 2008; 190:3557-64. [PMID: 18326565 DOI: 10.1128/jb.00099-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamate is a central metabolite in all organisms since it provides the link between carbon and nitrogen metabolism. In Bacillus subtilis, glutamate is synthesized exclusively by the glutamate synthase, and it can be degraded by the glutamate dehydrogenase. In B. subtilis, the major glutamate dehydrogenase RocG is expressed only in the presence of arginine, and the bacteria are unable to utilize glutamate as the only carbon source. In addition to rocG, a second cryptic gene (gudB) encodes an inactive glutamate dehydrogenase. Mutations in rocG result in the rapid accumulation of gudB1 suppressor mutations that code for an active enzyme. In this work, we analyzed the physiological significance of this constellation of genes and enzymes involved in glutamate metabolism. We found that the weak expression of rocG in the absence of the inducer arginine is limiting for glutamate utilization. Moreover, we addressed the potential ability of the active glutamate dehydrogenases of B. subtilis to synthesize glutamate. Both RocG and GudB1 were unable to catalyze the anabolic reaction, most probably because of their very high K(m) values for ammonium. In contrast, the Escherichia coli glutamate dehydrogenase is able to produce glutamate even in the background of a B. subtilis cell. B. subtilis responds to any mutation that interferes with glutamate metabolism with the rapid accumulation of extragenic or intragenic suppressor mutations, bringing the glutamate supply into balance. Similarly, with the presence of a cryptic gene, the system can flexibly respond to changes in the external glutamate supply by the selection of mutations.
Collapse
|
14
|
Abstract
The remarkable ability of bacteria to adapt efficiently to a wide range of nutritional environments reflects their use of overlapping regulatory systems that link gene expression to intracellular pools of a small number of key metabolites. By integrating the activities of global regulators, such as CcpA, CodY and TnrA, Bacillus subtilis manages traffic through two metabolic intersections that determine the flow of carbon and nitrogen to and from crucial metabolites, such as pyruvate, 2-oxoglutarate and glutamate. Here, the latest knowledge on the control of these key intersections in B. subtilis is reviewed.
Collapse
Affiliation(s)
- Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA.
| |
Collapse
|
15
|
Lu CD. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol 2006; 70:261-72. [PMID: 16432742 DOI: 10.1007/s00253-005-0308-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/13/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
L-arginine is produced by bacterial fermentation and is consumed in food flavoring and pharmaceutical industries. A better understanding of arginine metabolism in bacteria could be beneficial for a rational design of recombinant L-arginine producers by genetic engineering. This mini-review illustrated the current status of genes and enzymes for arginine metabolism, including biosynthetic pathways, catabolic pathways, uptake and excretion systems, and regulation. The linkage of polyamine and glutamate metabolism to the arginine network was also discussed, followed by a perspective view on how to construct arginine overproducing strains of bacteria with increasing biosynthesis and excretion and decreasing catabolism and uptake.
Collapse
Affiliation(s)
- Chung-Dar Lu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|