1
|
Han MQ, Zhao YJ, Pang S, Zhu HJ, Luo DQ, Liu YF, Yang K, Cao F. Modulating culture method promotes the production of disulfide-linked resorcylic acid lactone dimers with anti-proliferative activity. Bioorg Chem 2025; 159:108418. [PMID: 40168886 DOI: 10.1016/j.bioorg.2025.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Sulfur-containing natural products are distinguished by their unique chemical structures and notable biological activities, rendering them highly valuable in drug discovery and development. Recent advancements in chemical epigenetic modifications, sulfur source regulation, and fungal co-cultivation have significantly facilitated the discovery of novel sulfur-containing compounds. In this study, the modulating culture method, incorporating DMSO and sea salt into the culture medium, was utilized to induce the marine-derived fungus Penicillium sp. to produce novel disulfide-linked resorcylic acid lactone dimers, dipenirestone A and B (1 and 2), along with their monomeric precursors (3-13). The absolute configurations of the new compounds 1-6 were elucidated through calculated NMR and ECD methods, as well as X-ray crystallography. Notably, the dimeric compounds (1 and 2) exhibited significantly enhanced anti-proliferative activity against HGC-27 cells compared to the monomers 3-13. It was revealed that compounds 1 and 2 exerted an antiproliferative effect through the modulation of the PI3K/AKT/mTOR signaling pathway. This was manifested as cell cycle arrest in the G1 phase, reduction in mitochondrial membrane potential, and induction of apoptosis.
Collapse
Affiliation(s)
- Ming-Qian Han
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Ying-Jie Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Sen Pang
- Huanghe Science & Technology College, Zhengzhou 450005, China
| | - Hua-Jie Zhu
- School of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Du-Qiang Luo
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yun-Feng Liu
- College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Kan Yang
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Liew JJM, Wicht DK, Gonzalez R, Dowling DP, Ellis HR. Current understanding of enzyme structure and function in bacterial two-component flavin-dependent desulfonases: Cleaving C-S bonds of organosulfur compounds. Arch Biochem Biophys 2024; 758:110048. [PMID: 38848996 DOI: 10.1016/j.abb.2024.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The inherent structural properties of enzymes are critical in defining catalytic function. Often, studies to evaluate the relationship between structure and function are limited to only one defined structural element. The two-component flavin-dependent desulfonase family of enzymes involved in bacterial sulfur acquisition utilize a comprehensive range of structural features to carry out the desulfonation of organosulfur compounds. These metabolically essential two-component FMN-dependent desulfonase systems have been proposed to utilize oligomeric changes, protein-protein interactions for flavin transfer, and common mechanistic steps for carbon-sulfur bond cleavage. This review is focused on our current functional and structural understanding of two-component FMN-dependent desulfonase systems from multiple bacterial sources. Mechanistic and structural comparisons from recent independent studies provide fresh insights into the overall functional properties of these systems and note areas in need of further investigation. The review acknowledges current studies focused on evaluating the structural properties of these enzymes in relationship to their distinct catalytic function. The role of these enzymes in maintaining adequate sulfur levels, coupled with the conserved nature of these enzymes in diverse bacteria, underscore the importance in understanding the functional and structural nuances of these systems.
Collapse
Affiliation(s)
- Jeremy J M Liew
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Denyce K Wicht
- Department of Biochemistry, Chemistry, Environment, and Physics, Suffolk University, Boston, MA, 02108, USA
| | - Reyaz Gonzalez
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Daniel P Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
3
|
Krzyżanowska DM, Jabłońska M, Kaczyński Z, Czerwicka-Pach M, Macur K, Jafra S. Host-adaptive traits in the plant-colonizing Pseudomonas donghuensis P482 revealed by transcriptomic responses to exudates of tomato and maize. Sci Rep 2023; 13:9445. [PMID: 37296159 PMCID: PMC10256816 DOI: 10.1038/s41598-023-36494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Pseudomonads are metabolically flexible and can thrive on different plant hosts. However, the metabolic adaptations required for host promiscuity are unknown. Here, we addressed this knowledge gap by employing RNAseq and comparing transcriptomic responses of Pseudomonas donghuensis P482 to root exudates of two plant hosts: tomato and maize. Our main goal was to identify the differences and the common points between these two responses. Pathways upregulated only by tomato exudates included nitric oxide detoxification, repair of iron-sulfur clusters, respiration through the cyanide-insensitive cytochrome bd, and catabolism of amino and/or fatty acids. The first two indicate the presence of NO donors in the exudates of the test plants. Maize specifically induced the activity of MexE RND-type efflux pump and copper tolerance. Genes associated with motility were induced by maize but repressed by tomato. The shared response to exudates seemed to be affected both by compounds originating from the plants and those from their growth environment: arsenic resistance and bacterioferritin synthesis were upregulated, while sulfur assimilation, sensing of ferric citrate and/or other iron carriers, heme acquisition, and transport of polar amino acids were downregulated. Our results provide directions to explore mechanisms of host adaptation in plant-associated microorganisms.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Zbigniew Kaczyński
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata Czerwicka-Pach
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
4
|
Tomita K, Hirose A, Tanaka Y, Kouzuma A, Watanabe K. Electrogenetic control of gene expression in Shewanella oneidensis MR-1 using Arc-dependent transcriptional promoters. J Biosci Bioeng 2023:S1389-1723(23)00134-2. [PMID: 37244813 DOI: 10.1016/j.jbiosc.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Electrochemically active bacteria (EAB) are capable of electrically interacting with electrodes, enabling their application in bioelectrochemical systems (BESs). As the performance of BES is related to the metabolic activities of EAB, the development of methods to control their metabolic activities is important to facilitate BES applications. A recent study found that the EAB Shewanella oneidensis MR-1 uses the Arc system to regulate the expression of catabolic genes in response to electrode potentials, suggesting that a methodology for electrical control of gene expression in EAB, referred to as electrogenetics, can be developed by using electrode potential-responsive, Arc-dependent transcriptional promoters. Here, we explored Arc-dependent promoters in the genomes of S. oneidensis MR-1 and Escherichia coli to identify electrode potential-responsive promoters that are differentially activated in MR-1 cells exposed to high- and low-potential electrodes. LacZ reporter assays using electrode-associated cells of MR-1 derivatives revealed that the activities of promoters located upstream of the E. coli feo gene (Pfeo) and the MR-1 nqrA2 (SO_0902) gene (Pnqr2) were significantly increased when S. oneidensis cells were exposed to electrodes poised at +0.7 V and -0.4 V (versus the standard hydrogen electrode), respectively. Additionally, we developed a microscopic system for in situ monitoring of promoter activity in electrode-associated cells and found that Pnqr2 activity was persistently induced in MR-1 cells associated with an electrode poised at -0.4 V. Our results indicate that these electrode potential-responsive promoters enable efficient regulation of gene expression in EAB, providing a molecular basis for the development of electrogenetics.
Collapse
Affiliation(s)
- Keisuke Tomita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsumi Hirose
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yugo Tanaka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
5
|
Zhao J, Gao J, Jin X, You J, Feng K, Ye J, Chen J, Zhang S. Superior dimethyl disulfide degradation in a microbial fuel cell: Extracellular electron transfer and hybrid metabolism pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120469. [PMID: 36272610 DOI: 10.1016/j.envpol.2022.120469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
To enhance the biological degradation of volatile organic sulfur compounds, a microbial fuel cell (MFC) system with superior activity is developed for dimethyl disulfide (DMDS) degradation. The MFC achieves a removal efficiency near 100% within 6 h (initial concentration: 90 mg L-1) and a maximum biodegradation rate constant of 0.743 mM h-1. The DMDS removal load attains 2.684 mmol h-1 L-1, which is 6.18-2440 times the loads of conventional biodegradation processes reported. Meanwhile, the maximum power density output and corresponding current density output are 5.40 W m-3 and 40.6 A m-3, respectively. The main mechanism of extracellular electron transfer is classified as mediated electron transfer, supplemented by direct transfer. Furthermore, the mass balance analysis indicates that methanethiol, S0, S2-, SO42-, HCHO, and CO2 are the main intermediate and end products involved in the hybrid metabolism pathway of DMDS. Overall, these findings may offer basic information for bioelectrochemical degradation of DMDS and facilitate the application of MFC in waste gas treatment. ENVIRONMENTAL IMPLICATION: Dimethyl disulfide (DMDS), which features poor solubility, odorous smell, and refractory property, is a typical pollutant emitted from the petrochemical industry. For the first time, we develop an MFC system for DMDS degradation. The superior DMDS removal load per unit reactor volume is 6.18-2440 times those of conventional biodegradation processes in literature. Both the electron transfer route and the hybrid metabolism pathway of DMDS are cleared in this work. Overall, these findings give an in-depth understanding of the bioelectrochemical DMDS degradation mechanism and provide an efficient alternative for DMDS removal.
Collapse
Affiliation(s)
- Jingkai Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jialing Gao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoyou Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juping You
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ke Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiexu Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shihan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Bairoliya S, Goel A, Mukherjee M, Koh Zhi Xiang J, Cao B. Monochloramine Induces Release of DNA and RNA from Bacterial Cells: Quantification, Sequencing Analyses, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15791-15804. [PMID: 36215406 DOI: 10.1021/acs.est.2c06632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Monochloramine (MCA) is a widely used secondary disinfectant to suppress microbial growth in drinking water distribution systems. In monochloraminated drinking water, a significant amount of extracellular DNA (eDNA) has been reported, which has many implications ranging from obscuring DNA-based drinking water microbiome analyses to posing potential health concerns. To address this, it is imperative for us to know the origin of the eDNA in drinking water. Using Pseudomonas aeruginosa as a model organism, we report for the first time that MCA induces the release of nucleic acids from both biofilms and planktonic cells. Upon exposure to 2 mg/L MCA, massive release of DNA from suspended cells in both MilliQ water and 0.9% NaCl was directly visualized using live cell imaging in a CellASIC ONIX2 microfluidic system. Exposing established biofilms to MCA also resulted in DNA release from the biofilms, which was confirmed by increased detection of eDNA in the effluent. Intriguingly, massive release of RNA was also observed, and the extracellular RNA (eRNA) was also found to persist in water for days. Sequencing analyses of the eDNA revealed that it could be used to assemble the whole genome of the model organism, while in the water, certain fragments of the genome were more persistent than others. RNA sequencing showed that the eRNA contains non-coding RNA and mRNA, implying its role as a possible signaling molecule in environmental systems and a snapshot of the past metabolic state of the bacterial cells.
Collapse
Affiliation(s)
- Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| | - Apoorva Goel
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Manisha Mukherjee
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| | - Jonas Koh Zhi Xiang
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore
| |
Collapse
|
7
|
Martín-Cabello G, Terrón-González L, Santero E. Characterization of a dszEABC operon providing fast growth on dibenzothiophene and construction of broad-host-range biodesulfurization catalysts. Environ Microbiol 2022; 24:1946-1963. [PMID: 35233925 DOI: 10.1111/1462-2920.15951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023]
Abstract
A new operon for biodesulfurization (BDS) of dibenzothiophene and derivatives has been isolated from a metagenomic library made from oil-contaminated soil, by selecting growth of E. coli on DBT as the sulfur source. This operon is similar to a dszEABC operon also isolated by metagenomic functional screening but exhibited substantial differences: (i) the new fosmid provides much faster growth on DBT; (ii) associated dszEABC genes can be expressed without the need of heterologous expression from the vector promoter; and (iii) monooxygenases encoded in the fosmid cannot oxidize indole to produce indigo. We show how expression of the new dszEABC operon is regulated by the sulfur source, being induced under sulfur-limiting conditions. Its transcription is activated by DszR, a type IV activator οf σN -dependent promoters. DszR is coded in a dszHR operon, whose transcription is in turn regulated by sulfur and presumably activated by the global regulator of sulfur metabolism CysB. Expression of dszH is essential for production of active DszR, although it is not involved in sulfur sensing or regulation. Two broad-host-range DBT biodesulfurization catalysts have been constructed and shown to provide DBT biodesulfurization capability to three Pseudomonas strains, displaying desirable characteristics for biocatalysts to be used in BDS processes.
Collapse
Affiliation(s)
- Guadalupe Martín-Cabello
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain
| | - Laura Terrón-González
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain
| |
Collapse
|
8
|
Liew JJM, El Saudi IM, Nguyen SV, Wicht DK, Dowling DP. Structures of the alkanesulfonate monooxygenase MsuD provide insight into C-S bond cleavage, substrate scope, and an unexpected role for the tetramer. J Biol Chem 2021; 297:100823. [PMID: 34029591 PMCID: PMC8234197 DOI: 10.1016/j.jbc.2021.100823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023] Open
Abstract
Bacterial two-component flavin-dependent monooxygenases cleave the stable C-S bond of environmental and anthropogenic organosulfur compounds. The monooxygenase MsuD converts methanesulfonate (MS-) to sulfite, completing the sulfur assimilation process during sulfate starvation, but the mechanism of this conversion remains unclear. To explore the mechanism of C-S bond cleavage, we report a series of crystal structures of MsuD from Pseudomonas fluorescens in different liganded states. This report provides the first crystal structures of an alkanesulfonate monooxygenase with a bound flavin and alkanesulfonate, elucidating the roles of the active site lid, the protein C terminus, and an active site loop in flavin and/or alkanesulfonate binding. These structures position MS- closest to the flavin N5 position, consistent with an N5-(hydro)peroxyflavin mechanism rather than a classical C4a-(hydro)peroxyflavin mechanism. A fully enclosed active site is observed in the ternary complex, mediated by interchain interaction of the C terminus at the tetramer interface. These structures identify an unexpected function of the protein C terminus in this protein family in stabilizing tetramer formation and the alkanesulfonate-binding site. Spurred by interest from the crystal structures, we conducted biochemical assays and molecular docking that redefine MsuD as a small- to medium-chain alkanesulfonate monooxygenase. Functional mutations verify the sulfonate-binding site and reveal the critical importance of the protein C terminus for monooxygenase function. These findings reveal a deeper understanding of MsuD's functionality at the molecular level and consequently how it operates within its role as part of the sulfur assimilation pathway.
Collapse
Affiliation(s)
- Jeremy J M Liew
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Israa M El Saudi
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Son V Nguyen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Denyce K Wicht
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Daniel P Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Light Response of Pseudomonas putida KT2440 Mediated by Class II LitR, a Photosensor Homolog. J Bacteriol 2020; 202:JB.00146-20. [PMID: 32967908 DOI: 10.1128/jb.00146-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/19/2020] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 retains three homologs (PplR1 to PplR3) of the LitR/CarH family, an adenosyl B12-dependent light-sensitive MerR family transcriptional regulator. Transcriptome analysis revealed the existence of a number of photoinducible genes, including pplR1, phrB (encoding DNA photolyase), ufaM (furan-containing fatty acid synthase), folE (GTP cyclohydrolase I), cryB (cryptochrome-like protein), and multiple genes without annotated/known function. Transcriptional analysis by quantitative reverse transcription-PCR with knockout mutants of pplR1 to pplR3 showed that a triple knockout completely abolished the light-inducible transcription in P. putida, which indicates the occurrence of ternary regulation of PplR proteins. A DNase I footprint assay showed that PplR1 protein specifically binds to the promoter regions of light-inducible genes, suggesting a consensus PplR1-binding direct repeat, 5'-T(G/A)TACAN12TGTA(C/T)A-3'. The disruption of B12 biosynthesis cluster did not affect the light-inducible transcription; however, disruption of ppSB1-LOV (where LOV indicates "light, oxygen, or voltage") and ppSB2-LOV, encoding blue light photoreceptors adjacently located to pplR3 and pplR2, respectively, led to the complete loss of light-inducible transcription. Overall, the results suggest that the three PplRs and two PpSB-LOVs cooperatively regulate the light-inducible gene expression. The wide distribution of the pplR/ppSB-LOV cognate pair homologs in Pseudomonas spp. and related bacteria suggests that the response and adaptation to light are similarly regulated in the group of nonphototrophic bacteria.IMPORTANCE The LitR/CarH family is a new group of photosensor homologous to MerR-type transcriptional regulators. Proteins of this family are distributed to various nonphototrophic bacteria and grouped into at least five classes (I to V). Pseudomonas putida retaining three class II LitR proteins exhibited a genome-wide response to light. All three paralogs were functional and mediated photodependent activation of promoters directing the transcription of light-induced genes or operons. Two LOV (light, oxygen, or voltage) domain proteins, adjacently encoded by two litR genes, were also essential for the photodependent transcriptional control. Despite the difference in light-sensing mechanisms, the DNA binding consensus of class II LitR [T(G/A)TA(C/T)A] was the same as that of class I. This is the first study showing the actual involvement of class II LitR in light-induced transcription.
Collapse
|
10
|
Koga R, Matsumoto A, Kouzuma A, Watanabe K. Identification of an extracytoplasmic function sigma factor that facilitates
c
‐type cytochrome maturation and current generation under electrolyte‐flow conditions in
Shewanella oneidensis
MR
‐1. Environ Microbiol 2020; 22:3671-3684. [DOI: 10.1111/1462-2920.15131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Ryota Koga
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences 1432‐1 Horinouchi, Hachioji Tokyo 192‐0392 Japan
| | - Akiho Matsumoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences 1432‐1 Horinouchi, Hachioji Tokyo 192‐0392 Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences 1432‐1 Horinouchi, Hachioji Tokyo 192‐0392 Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences 1432‐1 Horinouchi, Hachioji Tokyo 192‐0392 Japan
| |
Collapse
|
11
|
Soule J, Gnann AD, Gonzalez R, Parker MJ, McKenna KC, Nguyen SV, Phan NT, Wicht DK, Dowling DP. Structure and function of the two-component flavin-dependent methanesulfinate monooxygenase within bacterial sulfur assimilation. Biochem Biophys Res Commun 2020; 522:107-112. [PMID: 31753487 DOI: 10.1016/j.bbrc.2019.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
Abstract
Methyl sulfur compounds are a rich source of environmental sulfur for microorganisms, but their use requires redox systems. The bacterial sfn and msu operons contain two-component flavin-dependent monooxygenases for dimethylsulfone (DMSO2) assimilation: SfnG converts DMSO2 to methanesulfinate (MSI-), and MsuD converts methanesulfonate (MS-) to sulfite. However, the enzymatic oxidation of MSI- to MS- has not been demonstrated, and the function of the last enzyme of the msu operon (MsuC) is unresolved. We employed crystallographic and biochemical studies to identify the function of MsuC from Pseudomonas fluorescens. The crystal structure of MsuC adopts the acyl-CoA dehydrogenase fold with putative binding sites for flavin and MSI-, and functional assays of MsuC in the presence of its oxidoreductase MsuE, FMN, and NADH confirm the enzymatic generation of MS-. These studies reveal that MsuC converts MSI- to MS- in sulfite biosynthesis from DMSO2.
Collapse
Affiliation(s)
- Jess Soule
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Andrew D Gnann
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Reyaz Gonzalez
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Mackenzie J Parker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kylie C McKenna
- Department of Chemistry and Biochemistry, Suffolk University, Boston, MA, 02108, USA
| | - Son V Nguyen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, MA, 02108, USA
| | - Ngan T Phan
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA; Department of Chemistry and Biochemistry, Suffolk University, Boston, MA, 02108, USA
| | - Denyce K Wicht
- Department of Chemistry and Biochemistry, Suffolk University, Boston, MA, 02108, USA.
| | - Daniel P Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA.
| |
Collapse
|
12
|
Martín-Cabello G, Terrón-González L, Ferrer M, Santero E. Identification of a complete dibenzothiophene biodesulfurization operon and its regulator by functional metagenomics. Environ Microbiol 2019; 22:91-106. [PMID: 31600862 DOI: 10.1111/1462-2920.14823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/01/2022]
Abstract
Functional screening for aromatic ring oxygenases of an oil contaminated soil metagenome identified 25 different clones bearing monooxygenases coding genes. One fosmid bore an operon containing four tightly linked genes coding for a complete dibenzothiophene biodesulfurization pathway, which included the predicted monooxygenases DszC and DszA, the desulfinase DszB, and an FMN-oxidoreductase designated DszE. The dszEABC operon provided Escherichia coli with the ability to use dibenzothiophene as the only sulfur source. Transcription of the operon is driven from a σN -dependent promoter and regulated by an activator that was designated dszR. DszR has been purified and characterized in vitro and shown to be a constitutively active σN -dependent activator of the group IV, which binds to two contiguous sequences located upstream of the promoter. The dsz promoter and dszE and dszR genes have apparently been recruited from an aliphatic sulfonate biodegradation pathway. If transcribed from a heterologous upstream promoter, the σN -dependent promoter region functions as an 'insulator' that prevents translation of dszE, by binding with its ribosome binding site. Translational coupling, in turn, prevents translation of the downstream dszABC genes. The silencer combined with translational coupling thus represents an effective way of preventing expression of operons when spuriously transcribed from upstream promoters.
Collapse
Affiliation(s)
- Guadalupe Martín-Cabello
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain
| | - Laura Terrón-González
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain
| | - Manuel Ferrer
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain
| |
Collapse
|
13
|
SfnR2 Regulates Dimethyl Sulfide-Related Utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 2019; 201:JB.00606-18. [PMID: 30478084 DOI: 10.1128/jb.00606-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Dimethyl sulfide (DMS) is a volatile sulfur compound produced mainly from the degradation of dimethylsulfoniopropionate (DMSP) in marine environments. DMS undergoes oxidation to form dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2), and methanesulfonate (MSA), all of which occur in terrestrial environments and are accessible for consumption by various microorganisms. The purpose of the present study was to determine how the enhancer-binding proteins SfnR1 and SfnR2 contribute to the utilization of DMS and its derivatives in Pseudomonas aeruginosa PAO1. First, results from cell growth experiments showed that deletion of either sfnR2 or sfnG, a gene encoding a DMSO2-monooxygenase, significantly inhibits the ability of P. aeruginosa PAO1 to use DMSP, DMS, DMSO, and DMSO2 as sulfur sources. Deletion of the sfnR1 or msuEDC genes, which encode a MSA desulfurization pathway, did not abolish the growth of P. aeruginosa PAO1 on any sulfur compound tested. Second, data collected from β-galactosidase assays revealed that the msuEDC-sfnR1 operon and the sfnG gene are induced in response to sulfur limitation or nonpreferred sulfur sources, such as DMSP, DMS, and DMSO, etc. Importantly, SfnR2 (and not SfnR1) is essential for this induction. Expression of sfnR2 is induced under sulfur limitation but independently of SfnR1 or SfnR2. Finally, the results of this study suggest that the main function of SfnR2 is to direct the initial activation of the msuEDC-sfnR1 operon in response to sulfur limitation or nonpreferred sulfur sources. Once expressed, SfnR1 contributes to the expression of msuEDC-sfnR1, sfnG, and other target genes involved in DMS-related metabolism in P. aeruginosa PAO1.IMPORTANCE Dimethyl sulfide (DMS) is an important environmental source of sulfur, carbon, and/or energy for microorganisms. For various bacteria, including Pseudomonas, Xanthomonas, and Azotobacter, DMS utilization is thought to be controlled by the transcriptional regulator SfnR. Adding more complexity, some bacteria, such as Acinetobacter baumannii, Enterobacter cloacae, and Pseudomonas aeruginosa, possess two, nonidentical SfnR proteins. In this study, we demonstrate that SfnR2 and not SfnR1 is the principal regulator of DMS metabolism in P. aeruginosa PAO1. Results suggest that SfnR1 has a supportive but nonessential role in the positive regulation of genes required for DMS utilization. This study not only enhances our understanding of SfnR regulation but, importantly, also provides a framework for addressing gene regulation through dual SfnR proteins in other bacteria.
Collapse
|
14
|
McFarlane JS, Hagen RA, Chilton AS, Forbes DL, Lamb AL, Ellis HR. Not as easy as π: An insertional residue does not explain the π-helix gain-of-function in two-component FMN reductases. Protein Sci 2018; 28:123-134. [PMID: 30171650 DOI: 10.1002/pro.3504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 11/08/2022]
Abstract
The π-helix located at the tetramer interface of two-component FMN-dependent reductases contributes to the structural divergence from canonical FMN-bound reductases within the NADPH:FMN reductase family. The π-helix in the SsuE FMN-dependent reductase of the alkanesulfonate monooxygenase system has been proposed to be generated by the insertion of a Tyr residue in the conserved α4-helix. Variants of Tyr118 were generated, and their X-ray crystal structures determined, to evaluate how these alterations affect the structural integrity of the π-helix. The structure of the Y118A SsuE π-helix was converted to an α-helix, similar to the FMN-bound members of the NADPH:FMN reductase family. Although the π-helix was altered, the FMN binding region remained unchanged. Conversely, deletion of Tyr118 disrupted the secondary structural properties of the π-helix, generating a random coil region in the middle of helix 4. Both the Y118A and Δ118 SsuE SsuE variants crystallize as a dimer. The MsuE FMN reductase involved in the desulfonation of methanesulfonates is structurally similar to SsuE, but the π-helix contains a His insertional residue. Exchanging the π-helix insertional residue of each enzyme did not result in equivalent kinetic properties. Structure-based sequence analysis further demonstrated the presence of a similar Tyr residue in an FMN-bound reductase in the NADPH:FMN reductase family that is not sufficient to generate a π-helix. Results from the structural and functional studies of the FMN-dependent reductases suggest that the insertional residue alone is not solely responsible for generating the π-helix, and additional structural adaptions occur to provide the altered gain of function.
Collapse
Affiliation(s)
- Jeffrey S McFarlane
- The Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Richard A Hagen
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849
| | - Annemarie S Chilton
- The Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Dianna L Forbes
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849
| | - Audrey L Lamb
- The Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Holly R Ellis
- The Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama, 36849
| |
Collapse
|
15
|
Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells. Appl Environ Microbiol 2017. [PMID: 28625998 DOI: 10.1128/aem.00903-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An electrochemical flow cell equipped with a graphite working electrode (WE) at the bottom was inoculated with Shewanella oneidensis MR-1 expressing an anaerobic fluorescent protein, and biofilm formation on the WE was observed over time during current generation at WE potentials of +0.4 and 0 V (versus standard hydrogen electrodes), under electrolyte-flow conditions. Electrochemical analyses suggested the presence of unique electron-transfer mechanisms in the +0.4-V biofilm. Microscopic analyses revealed that, in contrast to aerobic biofilms, current-generating biofilm (at +0.4 V) was thin and flat (∼10 μm in thickness), and cells were evenly and densely distributed in the biofilm. In contrast, cells were unevenly distributed in biofilm formed at 0 V. In situ fluorescence staining and biofilm recovery experiments showed that the amounts of extracellular polysaccharides (EPSs) in the +0.4-V biofilm were much smaller than those in the aerobic and 0-V biofilms, suggesting that Shewanella cells suppress the production of EPSs at +0.4 V under flow conditions. We suggest that Shewanella cells perceive electrode potentials and modulate the structure and composition of biofilms to efficiently transfer electrons to electrodes.IMPORTANCE A promising application of microbial fuel cells (MFCs) is to save energy in wastewater treatment. Since current is generated in these MFCs by biofilm microbes under horizontal flows of wastewater, it is important to understand the mechanisms for biofilm formation and current generation under water-flow conditions. Although massive work has been done to analyze the molecular mechanisms for current generation by model exoelectrogenic bacteria, such as Shewanella oneidensis, limited information is available regarding the formation of current-generating biofilms over time under water-flow conditions. The present study developed electrochemical flow cells and used them to examine the electrochemical and structural features of current-generating biofilms under water-flow conditions. We show unique features of mature biofilms actively generating current, creating opportunities to search for as-yet-undiscovered current-generating mechanisms in Shewanella biofilms. Furthermore, information provided in the present study is useful for researchers attempting to develop anode architectures suitable for wastewater treatment MFCs.
Collapse
|
16
|
Kasai T, Kouzuma A, Watanabe K. CRP Regulates D-Lactate Oxidation in Shewanella oneidensis MR-1. Front Microbiol 2017; 8:869. [PMID: 28559887 PMCID: PMC5432575 DOI: 10.3389/fmicb.2017.00869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/28/2017] [Indexed: 01/11/2023] Open
Abstract
Shewanella oneidensis MR-1 is a heterotrophic facultative anaerobe that respires using various organic and inorganic compounds. This organism has served as a model to study bacterial metabolic and regulatory systems that facilitate their survival in redox-stratified environments. The expression of many anaerobic respiratory genes in MR-1, including those for the reduction of fumarate, dimethyl sulfoxide, and metal oxides, is regulated by cyclic AMP receptor protein (CRP). However, relatively little is known about how this organism regulates the expression of catabolic enzymes catalyzing the oxidation of organic compounds, including lactate. Here, we investigated transcriptional mechanisms for the lldP (SO_1522) and dld (SO_1521) genes, which encode putative lactate permease and D-lactate dehydrogenase, respectively, and demonstrate that CRP regulates their expression in MR-1. We found that a crp-deletion mutant of MR-1 (Δcrp) showed impaired growth on D-lactate. Complementary expression of dld in Δcrp restored the ability to grow on D-lactate, indicating that the deficient growth of Δcrp on D-lactate is attributable to decreased expression of dld. In vivo transcription and in vitro electrophoretic mobility shift assays reveal that CRP positively regulates the expression of the lldP and dld genes by directly binding to an upstream region of lldP. Taken together, these results indicate that CRP is a global transcriptional regulator that coordinately regulates the expression of catabolic and respiratory pathways in MR-1, including D-lactate dehydrogenase and anaerobic terminal reductases.
Collapse
Affiliation(s)
- Takuya Kasai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences,Hachioji, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences,Hachioji, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences,Hachioji, Japan
| |
Collapse
|
17
|
Butawan M, Benjamin RL, Bloomer RJ. Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement. Nutrients 2017; 9:E290. [PMID: 28300758 PMCID: PMC5372953 DOI: 10.3390/nu9030290] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/22/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Methylsulfonylmethane (MSM) has become a popular dietary supplement used for a variety of purposes, including its most common use as an anti-inflammatory agent. It has been well-investigated in animal models, as well as in human clinical trials and experiments. A variety of health-specific outcome measures are improved with MSM supplementation, including inflammation, joint/muscle pain, oxidative stress, and antioxidant capacity. Initial evidence is available regarding the dose of MSM needed to provide benefit, although additional work is underway to determine the precise dose and time course of treatment needed to provide optimal benefits. As a Generally Recognized As Safe (GRAS) approved substance, MSM is well-tolerated by most individuals at dosages of up to four grams daily, with few known and mild side effects. This review provides an overview of MSM, with details regarding its common uses and applications as a dietary supplement, as well as its safety for consumption.
Collapse
Affiliation(s)
- Matthew Butawan
- Center for Nutraceutical and Dietary Supplement Research, School of Health Studies, The University of Memphis, Memphis, TN 38152, USA.
| | | | - Richard J Bloomer
- Center for Nutraceutical and Dietary Supplement Research, School of Health Studies, The University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
18
|
The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate. Arch Biochem Biophys 2016; 604:159-66. [PMID: 27392454 DOI: 10.1016/j.abb.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/28/2016] [Accepted: 07/02/2016] [Indexed: 11/21/2022]
Abstract
The biochemical pathway through which sulfur may be assimilated from dimethylsulfide (DMS) is proposed to proceed via oxidation of DMS to dimethylsulfoxide (DMSO) and subsequent conversion of DMSO to dimethylsulfone (DMSO2). Analogous chemical oxidation processes involving biogenic DMS in the atmosphere result in the deposition of DMSO2 into the terrestrial environment. Elucidating the enzymatic pathways that involve DMSO2 contribute to our understanding of the global sulfur cycle. Dimethylsulfone monooxygenase SfnG and flavin mononucleotide (FMN) reductase MsuE from the genome of the aerobic soil bacterium Pseudomonas fluorescens Pf0-1 were produced in Escherichia coli, purified, and biochemically characterized. The enzyme MsuE functions as a reduced nicotinamide adenine dinucleotide (NADH)-dependent FMN reductase with apparent steady state kinetic parameters of Km = 69 μM and kcat/Km = 9 min(-1) μM (-1) using NADH as the variable substrate, and Km = 8 μM and kcat/Km = 105 min(-1) μM (-1) using FMN as the variable substrate. The enzyme SfnG functions as a flavoprotein monooxygenase and converts DMSO2 to methanesulfinate in the presence of FMN, NADH, and MsuE, as evidenced by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. The results suggest that methanesulfinate is a biochemical intermediate in sulfur assimilation.
Collapse
|
19
|
Kasai T, Kouzuma A, Nojiri H, Watanabe K. Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. BMC Microbiol 2015; 15:68. [PMID: 25886963 PMCID: PMC4417206 DOI: 10.1186/s12866-015-0406-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/11/2015] [Indexed: 11/17/2022] Open
Abstract
Background Shewanella oneidensis MR-1 is capable of reducing extracellular electron acceptors, such as metals and electrodes, through the Mtr respiratory pathway, which consists of the outer membrane cytochromes OmcA and MtrC and associated proteins MtrA and MtrB. These proteins are encoded in the mtr gene cluster (omcA-mtrCAB) in the MR-1 chromosome. Results Here, we investigated the transcriptional mechanisms for the mtr genes and demonstrated that omcA and mtrC are transcribed from two upstream promoters, PomcA and PmtrC, respectively. In vivo transcription and in vitro electrophoretic mobility shift assays revealed that a cAMP receptor protein (CRP) positively regulates the expression of the mtr genes by binding to the upstream regions of PomcA and PmtrC. However, the expression of omcA and mtrC was differentially regulated in response to culture conditions; specifically, the expression from PmtrC was higher under aerobic conditions than that under anaerobic conditions with fumarate as an electron acceptor, whereas expression from PomcA exhibited the opposite trend. Deletion of the region upstream of the CRP-binding site of PomcA resulted in a significant increase in promoter activity under aerobic conditions, demonstrating that the deleted region is involved in the negative regulation of PomcA. Conclusions Taken together, the present results indicate that transcription of the mtr genes is regulated by multiple promoters and regulatory systems, including the CRP/cAMP-dependent regulatory system and yet-unidentified negative regulators. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0406-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takuya Kasai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392, Tokyo, Japan.
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392, Tokyo, Japan.
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657, Tokyo, Japan.
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392, Tokyo, Japan.
| |
Collapse
|
20
|
Role for ferredoxin:NAD(P)H oxidoreductase (FprA) in sulfate assimilation and siderophore biosynthesis in Pseudomonads. J Bacteriol 2013; 195:3876-87. [PMID: 23794620 DOI: 10.1128/jb.00528-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyridine-2,6-bis(thiocarboxylate) (PDTC), produced by certain pseudomonads, is a sulfur-containing siderophore that binds iron, as well as a wide range of transition metals, and it affects the net hydrolysis of the environmental contaminant carbon tetrachloride. The pathway of PDTC biosynthesis has not been defined. Here, we performed a transposon screen of Pseudomonas putida DSM 3601 to identify genes necessary for PDTC production (Pdt phenotype). Transposon insertions within genes for sulfate assimilation (cysD, cysNC, and cysG [cobA2]) dominated the collection of Pdt mutations. In addition, two insertions were within the gene for the LysR-type transcriptional activator FinR (PP1637). Phenotypic characterization indicated that finR mutants were cysteine bradytrophs. The Pdt phenotype of finR mutants could be complemented by the known target of FinR regulation, fprA (encoding ferredoxin:NADP(+) oxidoreductase), or by Escherichia coli cysJI (encoding sulfite reductase). These data indicate that fprA is necessary for effective sulfate assimilation by P. putida and that the effect of finR mutation on PDTC production was due to deficient expression of fprA and sulfite reduction. fprA expression in both P. putida and P. aeruginosa was found to be regulated by FinR, but in a manner dependent upon reduced sulfur sources, implicating FinR in sulfur regulatory physiology. The genes and phenotypes identified in this study indicated a strong dependence upon intracellular reduced sulfur/cysteine for PDTC biosynthesis and that pseudomonads utilize sulfite reduction enzymology distinct from that of E. coli and possibly similar to that of chloroplasts and other proteobacteria.
Collapse
|
21
|
He SY, Lin YH, Hou KY, Hwang SCJ. Degradation of dimethyl-sulfoxide-containing wastewater using airlift bioreactor by polyvinyl-alcohol-immobilized cell beads. BIORESOURCE TECHNOLOGY 2011; 102:5609-5616. [PMID: 21377356 DOI: 10.1016/j.biortech.2011.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 02/04/2011] [Accepted: 02/06/2011] [Indexed: 05/30/2023]
Abstract
Airlift bioreactor containing polyvinyl-alcohol-immobilized cell beads was investigated for its capability of biodegradation of dimethyl sulfoxide (DMSO) in term of sludge characteristics including the strategy of acclimation with sucrose and the protection of microorganism from poisoning of DMSO by PVA cell beads. Media condition with sucrose at 50 mg L(-1) was beneficial to the biodegradation of DMSO in the fresh PVA entrapped-sludge, but became insignificant in the acclimated one as for tolerance of DMSO toxicity. The removal efficiency of DMSO had the highest rate at 1.42-kg DMSO per kilogram of suspended solid per day after series acclimation batches in the oxygen-enriched airlift bioreactor treated with the 1187.4 mg L(-1) of DMSO. Microbial consortium was required for the complete biodegradation of DMSO without any dimethyl sulfide produced. Pseudomonas sp. W1, excreting extracellular monooxygenase identified by indole, was isolated to be one of the most effective DMSO-degrading microorganism in our airlift bioreactor.
Collapse
Affiliation(s)
- Sin-Yi He
- Department of Civil Engineering, Chung Hua University, 707, Section 2, Wufu Road, Hsinchu 300, Taiwan, ROC
| | | | | | | |
Collapse
|
22
|
Koechler S, Cleiss-Arnold J, Proux C, Sismeiro O, Dillies MA, Goulhen-Chollet F, Hommais F, Lièvremont D, Arsène-Ploetze F, Coppée JY, Bertin PN. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol 2010; 10:53. [PMID: 20167112 PMCID: PMC2848651 DOI: 10.1186/1471-2180-10-53] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III) to As(V) as a detoxification mechanism. RESULTS In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III). To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (sigma54) of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE) and a putative -12/-24 sigma54-dependent promoter motif was identified upstream of aoxAB coding sequences. CONCLUSION These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III) in this microorganism.
Collapse
Affiliation(s)
- Sandrine Koechler
- UMR7156 Génétique Moléculaire, Génomique et Microbiologie, CNRS Université de Strasbourg, 28 rue Goethe, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schäfer H, Myronova N, Boden R. Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:315-334. [PMID: 20007683 DOI: 10.1093/jxb/erp355] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dimethylsulphide (DMS) plays a major role in the global sulphur cycle. It has important implications for atmospheric chemistry, climate regulation, and sulphur transport from the marine to the atmospheric and terrestrial environments. In addition, DMS acts as an info-chemical for a wide range of organisms ranging from micro-organisms to mammals. Micro-organisms that cycle DMS are widely distributed in a range of environments, for instance, oxic and anoxic marine, freshwater and terrestrial habitats. Despite the importance of DMS that has been unearthed by many studies since the early 1970s, the understanding of the biochemistry, genetics, and ecology of DMS-degrading micro-organisms is still limited. This review examines current knowledge on the microbial cycling of DMS and points out areas for future research that should shed more light on the role of organisms degrading DMS and related compounds in the biosphere.
Collapse
|
24
|
CbpA: a polarly localized novel cyclic AMP-binding protein in Pseudomonas aeruginosa. J Bacteriol 2009; 191:7193-205. [PMID: 19801409 DOI: 10.1128/jb.00970-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas aeruginosa, cyclic AMP (cAMP) signaling regulates the transcription of hundreds of genes encoding diverse virulence factors, including the type II secretion system (T2SS) and type III secretion system (T3SS) and their associated toxins, type IV pili (TFP), and flagella. Vfr, a cAMP-dependent transcriptional regulator that is homologous to the Escherichia coli catabolite repressor protein, is thought to be the major cAMP-binding protein that regulates these important virulence determinants. Using a bioinformatic approach, we have identified a gene (PA4704) encoding an additional putative cAMP-binding protein in P. aeruginosa PAO1, which we herein refer to as CbpA, for cAMP-binding protein A. Structural modeling predicts that CbpA is composed of a C-terminal cAMP-binding (CAP) domain and an N-terminal degenerate CAP domain and is structurally similar to eukaryotic protein kinase A regulatory subunits. We show that CbpA binds to cAMP-conjugated agarose via its C-terminal CAP domain. Using in vitro trypsin protection assays, we demonstrate that CbpA undergoes a conformational change upon cAMP binding. Reporter gene assays and electrophoresis mobility shift assays defined the cbpA promoter and a Vfr-binding site that are necessary for Vfr-dependent transcription. Although CbpA is highly regulated by Vfr, deletion of cbpA did not affect known Vfr-dependent functions, including the T2SS, the T3SS, flagellum- or TFP-dependent motility, virulence in a mouse model of acute pneumonia, or protein expression profiles. Unexpectedly, CbpA-green fluorescent protein was found to be localized to the flagellated old cell pole in a cAMP-dependent manner. These results suggest that polar localization of CbpA may be important for its function.
Collapse
|
25
|
Transcription factors CysB and SfnR constitute the hierarchical regulatory system for the sulfate starvation response in Pseudomonas putida. J Bacteriol 2008; 190:4521-31. [PMID: 18456803 DOI: 10.1128/jb.00217-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida DS1 is able to utilize dimethyl sulfone as a sulfur source. Expression of the sfnFG operon responsible for dimethyl sulfone oxygenation is directly regulated by a sigma(54)-dependent transcriptional activator, SfnR, which is encoded within the sfnECR operon. We investigated the transcription mechanism for the sulfate starvation-induced expression of these sfn operons. Using an in vivo transcription assay and in vitro DNA-binding experiments, we revealed that SfnR negatively regulates the expression of sfnECR by binding to the downstream region of the transcription start point. Additionally, we demonstrated that a LysR-type transcriptional regulator, CysB, directly activates the expression of sfnECR by binding to its upstream region. CysB is a master regulator that controls the sulfate starvation response of the sfn operons, as is the case for the sulfonate utilization genes of Escherichia coli, although CysB(DS1) appeared to differ from that of E. coli CysB in terms of the effect of O-acetylserine on DNA-binding ability. Furthermore, we investigated what effector molecules repress the expression of sfnFG and sfnECR in vivo by using the disruptants of the sulfate assimilatory genes cysNC and cysI. The measurements of mRNA levels of the sfn operons in these gene disruptants suggested that the expression of sfnFG is repressed by sulfate itself while the expression of sfnECR is repressed by the downstream metabolites in the sulfate assimilatory pathway, such as sulfide and cysteine. These results indicate that SfnR plays a role independent of CysB in the sulfate starvation-induced expression of the sfn operons.
Collapse
|
26
|
Habe H, Kouzuma A, Endoh T, Omori T, Yamane H, Nojiri H. Transcriptional regulation of the sulfate-starvation-induced gene sfnA by a sigma54-dependent activator of Pseudomonas putida. MICROBIOLOGY-SGM 2007; 153:3091-3098. [PMID: 17768252 DOI: 10.1099/mic.0.2007/008151-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sigma(54)-dependent transcriptional regulator SfnR is essential for the use of dimethyl sulfone (DMSO(2)) as a sulfur source by Pseudomonas putida DS1. SfnR binds three SfnR-binding sites (sites 1, 2 and 3) within an intergenic region of the divergently transcribed sfnAB and sfnFG gene clusters. The site 1 region, proximal to the sfnF gene, is indispensable for the expression of the sfnFG operon, which encodes components of DMSO(2) monooxygenase. We investigated the transcriptional regulation of the sfnAB operon and possible functions of the sfnA gene. RT-PCR analysis revealed that the sfnAB gene cluster, which is similar to homologues of the acyl-CoA dehydrogenase family, was transcribed as an operon, and its expression was regulated by SfnR under conditions of sulfate starvation. Deletion analyses using lacZ as a reporter demonstrated that the region up to at least -138 bp from the transcription start point of sfnA (containing sites 2 and 3) was necessary for the expression of the sfnAB operon. A growth test of the sfnA-disrupted mutant revealed the possibility that sfnA may be involved in the use of methanethiol as a sulfur source.
Collapse
Affiliation(s)
- Hiroshi Habe
- Research Institute for Innovations in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Kouzuma
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Endoh
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshio Omori
- Department of Industrial Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
27
|
Kouzuma A, Endoh T, Omori T, Nojiri H, Yamane H, Habe H. TheptsPgene encoding the PTS family protein EINtris essential for dimethyl sulfone utilization byPseudomonas putida. FEMS Microbiol Lett 2007; 275:175-81. [PMID: 17711452 DOI: 10.1111/j.1574-6968.2007.00882.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many bacteria living in soil have developed the ability to use a wide variety of organosulfur compounds. Pseudomonas putida strain DS1 is able to utilize dimethyl sulfide as a sulfur source via a series of oxidation reactions that sequentially produce dimethyl sulfoxide, dimethyl sulfone (DMSO2), methanesulfonate, and sulfite. To isolate novel genes involved in DMSO2 utilization, a transposon-based mutagenesis of DS1 was performed. Of c. 10,000 strains containing mini-Tn5 inserts, 11 mutants lacked the ability to utilize DMSO2, and their insertion sites were determined. In addition to the cysNC, cysH, and cysM genes involved in sulfate assimilation, the ptsP gene encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) family protein EI(Ntr) was identified, which is necessary for DMSO2 utilization. Using quantitative reverse transcriptase-polymerase chain reaction analysis, it was demonstrated that the expression of the sfn genes, necessary for DMSO2 utilization, was impaired in the ptsP disruptant. To the authors' knowledge, this is the first report of a PTS protein that is involved in bacterial assimilation of organosulfur compounds.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Scott C, Hilton ME, Coppin CW, Russell RJ, Oakeshott JG, Sutherland TD. A global response to sulfur starvation in Pseudomonas putida and its relationship to the expression of low-sulfur-content proteins. FEMS Microbiol Lett 2006; 267:184-93. [PMID: 17187657 DOI: 10.1111/j.1574-6968.2006.00575.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Sulfur is essential for life on Earth, but its availability is limited in many environments. Here the sulfur-starvation response of the model soil bacterium Pseudomonas putida KT2440 is shown to be associated with an approximately fivefold reduction in the total soluble thiol content of the cell. A bioinformatic survey of the P. putida KT2440 genome identified 646 genes encoding proteins with a significantly lower than average sulfur content (low sulfur-content proteins, LSPs), the expression of which may have a role in the global reduction of cellular thiol content during sulfur starvation. Analysis of the genetic organization of the LSP-encoding genes showed that 31% were potentially transcriptionally associated with at least one other gene encoding a protein defined as an LSP. In particular, 55 LSP genes were located in three large clusters, termed low-sulfur islands (LSIs) here. The predicted identities of the proteins encoded by the LSIs strongly suggest that the LSIs have a role in acquiring sulfur from organic sulfur sources during sulfur starvation. This hypothesis was supported by transcription fusion studies on a limited number of LSP promoters under low-sulfur conditions. In a wider survey of bacterial species, LSIs were found to be more prevalent in free-living, Gram-negative bacteria than in Gram-positive or obligately intracellular bacteria.
Collapse
Affiliation(s)
- Colin Scott
- CSIRO, Entomology, Canberra, ACT, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
Endoh T, Habe H, Nojiri H, Yamane H, Omori T. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Mol Microbiol 2005; 55:897-911. [PMID: 15661012 DOI: 10.1111/j.1365-2958.2004.04431.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida DS1 is able to utilize dimethyl sulphide through dimethyl sulphoxide, dimethyl sulphone (DMSO2), methanesulphonate (MSA) and sulphite as a sulphur source. We previously demonstrated that sfnR encoding a sigma54-dependent transcriptional regulator is essential for DMSO2 utilization by P. putida DS1. To identify the target genes of SfnR, we carried out transposon mutagenesis on an sfnR disruptant (DMSO2-utilization-defective phenotype) using mini-Tn5, which contains two outward-facing constitutively active promoters; as a result, we obtained a mutant that restored the ability to utilize DMSO2. The DMSO2-positive mutant carried a mini-Tn5 insertion in the intergenic region between two opposite-facing operons, sfnAB and sfnFG. Both sfnA and sfnB products were similar to acyl-CoA dehydrogenase family proteins, whereas sfnF and sfnG encoded a putative NADH-dependent FMN reductase (SfnF) and an FMNH2-dependent monooxygenase (SfnG). Disruption and complementation of the sfn genes indicated that the sfnG product is essential for DMSO2 utilization by P. putida DS1. Furthermore, an enzyme assay demonstrated that SfnG is an FMNH2-dependent DMSO2 monooxygenase that converts DMSO2 to MSA. It was revealed that the expression of the sfnFG operon is directly activated by the binding of SfnR at its upstream region. Site-directed mutagenesis of the SfnR binding sequences allowed us to define a potential recognition sequence for SfnR. These results provided insight into regulation of sulphate starvation-induced genes in bacteria.
Collapse
Affiliation(s)
- Takayuki Endoh
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan
| | | | | | | | | |
Collapse
|
30
|
Abstract
sigma54 is unique among the bacterial sigma factors. Besides not being related in sequence with the rest of such factors, its mechanism of transcription initiation is completely different and requires the participation of a transcription activator. In addition, whereas the rest of the alternative sigma factors use to be involved in transcription of somehow related biological functions, this is not the case for sigma54 and many different and unrelated genes have been shown to be transcribed from sigma54-dependent promoters, ranging from flagellation, to utilization of several different carbon and nitrogen sources, or alginate biosynthesis. These genes have been characterized in many different bacterial species and, only until recently with the arrival of complete genome sequences, we have been able to look at the sigma54 functional role from a genomic perspective. Aided by computational methods, the sigma54 regulon has been studied both in Escherichia coli, Salmonella typhimurium and several species of the Rhizobiaceae. Here we present the analysis of the sigma54 regulon (sigmulon) in the complete genome of Pseudomonas putida KT2440. We have developed an improved method for the prediction of sigma54-dependent promoters which combines the scores of sigma54-RNAP target sequences and those of activator binding sites. In combination with other evidence obtained from the chromosomal context and the similarity with closely related bacteria, we have been able to predict more than 80% of the sigma54-dependent promoters of P. putida with high confidence. Our analysis has revealed new functions for sigma54 and, by means of comparative analysis with the previous studies, we have drawn a potential mechanism for the evolution of this regulatory system.
Collapse
Affiliation(s)
- Ildefonso Cases
- Centro Nacional de Biotecnología, CSIC Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|