1
|
Tokuda R, Iwabuchi N, Kitazawa Y, Nijo T, Suzuki M, Maejima K, Oshima K, Namba S, Yamaji Y. Potential mobile units drive the horizontal transfer of phytoplasma effector phyllogen genes. Front Genet 2023; 14:1132432. [PMID: 37252660 PMCID: PMC10210161 DOI: 10.3389/fgene.2023.1132432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/03/2023] [Indexed: 05/31/2023] Open
Abstract
Phytoplasmas are obligate intracellular plant pathogenic bacteria that can induce phyllody, which is a type of abnormal floral organ development. Phytoplasmas possess phyllogens, which are effector proteins that cause phyllody in plants. Phylogenetic comparisons of phyllogen and 16S rRNA genes have suggested that phyllogen genes undergo horizontal transfer between phytoplasma species and strains. However, the mechanisms and evolutionary implications of this horizontal gene transfer are unclear. Here, we analyzed synteny in phyllogen flanking genomic regions from 17 phytoplasma strains that were related to six 'Candidatus' species, including three strains newly sequenced in this study. Many of the phyllogens were flanked by multicopy genes within potential mobile units (PMUs), which are putative transposable elements found in phytoplasmas. The multicopy genes exhibited two distinct patterns of synteny that correlated with the linked phyllogens. The low level of sequence identities and partial truncations found among these phyllogen flanking genes indicate that the PMU sequences are deteriorating, whereas the highly conserved sequences and functions (e.g., inducing phyllody) of the phyllogens suggest that the latter are important for phytoplasma fitness. Furthermore, although their phyllogens were similar, PMUs in strains related to 'Ca. P. asteris' were often located in different regions of the genome. These findings strongly indicate that PMUs drive the horizontal transfer of phyllogens among phytoplasma species and strains. These insights improve our understanding of how symptom-determinant genes have been shared among phytoplasmas.
Collapse
Affiliation(s)
- Ryosuke Tokuda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takamichi Nijo
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenro Oshima
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Olasz F, Szabó M, Veress A, Bibó M, Kiss J. The dynamic network of IS30 transposition pathways. PLoS One 2022; 17:e0271414. [PMID: 35901099 PMCID: PMC9333248 DOI: 10.1371/journal.pone.0271414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
The E. coli element IS30 has adopted the copy-out-paste-in transposition mechanism that is prevalent in a number of IS-families. As an initial step, IS30 forms free circular transposition intermediates like IS minicircles or tandem IS-dimers by joining the inverted repeats of a single element or two, sometimes distantly positioned IS copies, respectively. Then, the active IR-IR junction of these intermediates reacts with the target DNA, which generates insertions, deletions, inversions or cointegrates. The element shows dual target specificity as it can insert into hot spot sequences or next to its inverted repeats. In this study the pathways of rearrangements of transposition-derived cointegrate-like structures were examined. The results showed that the probability of further rearrangements in these structures depends on whether the IS elements are flanked by hot spot sequences or take part in an IR-IR junction. The variability of the deriving products increases with the number of simultaneously available IRs and IR-IR joints in the cointegrates or the chromosome. Under certain conditions, the parental structures whose transposition formed the cointegrates are restored and persist among the rearranged products. Based on these findings, a novel dynamic model has been proposed for IS30, which possibly fits to other elements that have adopted the same transposition mechanism. The model integrates the known transposition pathways and the downstream rearrangements occurring after the formation of different cointegrate-like structures into a complex network. Important feature of this network is the presence of “feedback loops” and reversible transposition rearrangements that can explain how IS30 generates variability and preserves the original genetic constitution in the bacterial population, which contributes to the adaptability and evolution of host bacteria.
Collapse
Affiliation(s)
- Ferenc Olasz
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, Hungary
| | - Mónika Szabó
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, Hungary
| | - Alexandra Veress
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Márton Bibó
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - János Kiss
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Gödöllő, Hungary
- * E-mail:
| |
Collapse
|
3
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
4
|
Abstract
ABSTRACT
The number and diversity of known prokaryotic insertion sequences (IS) have increased enormously since their discovery in the late 1960s. At present the sequences of more than 4000 different IS have been deposited in the specialized ISfinder database. Over time it has become increasingly apparent that they are important actors in the evolution of their host genomes and are involved in sequestering, transmitting, mutating and activating genes, and in the rearrangement of both plasmids and chromosomes. This review presents an overview of our current understanding of these transposable elements (TE), their organization and their transposition mechanism as well as their distribution and genomic impact. In spite of their diversity, they share only a very limited number of transposition mechanisms which we outline here. Prokaryotic IS are but one example of a variety of diverse TE which are being revealed due to the advent of extensive genome sequencing projects. A major conclusion from sequence comparisons of various TE is that frontiers between the different types are becoming less clear. We detail these receding frontiers between different IS-related TE. Several, more specialized chapters in this volume include additional detailed information concerning a number of these.
In a second section of the review, we provide a detailed description of the expanding variety of IS, which we have divided into families for convenience. Our perception of these families continues to evolve and families emerge regularly as more IS are identified. This section is designed as an aid and a source of information for consultation by interested specialist readers.
Collapse
|
5
|
Trudel MV, Tanaka KH, Filion G, Daher RK, Frenette M, Charette SJ. Insertion sequence AS5 (IS AS5 ) is involved in the genomic plasticity of Aeromonas salmonicida.. Mob Genet Elements 2013; 3:e25640. [PMID: 23956951 PMCID: PMC3742599 DOI: 10.4161/mge.25640] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022] Open
Abstract
The genome of the fish pathogen Aeromonas salmonicida subsp salmonicida harbors a large number of insertion sequences (ISs), many of which are located on plasmids. In the present study, we analyzed the small plasmid profile of A. salmonicida strains to identify evidences of plasmid alterations. Ten out of 78 strains analyzed displayed an unconventional plasmid profile. However the HER1104 strain was unique, having a positive PCR signal for pAsal1 plasmid despite not carrying this plasmid. Instead, HER1104 was bearing a plasmid at higher molecular weight than pAsal1. We characterized this new larger plasmid, which we called pAsal1B since it is a derivative of pAsal1 containing one more complete IS (ISAS5) than the parental plasmid. An additional 96 bp relic of ISAS5 was also present in pAsal1B. These results propose that ISAS5 is another active mobile genetic element in A. salmonicida subsp salmonicida and provided further proof of the genomic plasticity of this bacterium.
Collapse
Affiliation(s)
- Mélanie V Trudel
- Institut de Biologie Intégrative et des Systèmes (IBIS); Pavillon Charles-Eugène-Marchand; Université Laval; Quebec City, QC Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec; Quebec City, QC Canada
| | | | | | | | | | | |
Collapse
|
6
|
Lo TC, Chen HW, Tsai YK, Kuo YC, Lin CF, Kuo SY, Lin TH. Formation of an inverted repeat junction in the transposition of insertion sequence ISLC3 isolated from Lactobacillus casei. MICROBIOLOGY-SGM 2008; 154:1047-1058. [PMID: 18375798 DOI: 10.1099/mic.0.2007/013227-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An insertion sequence, ISLC3, of 1351 bp has been isolated from Lactobacillus casei. Formation of IS circles containing a 3 bp spacer (complete junction) or deletion of 25 bp at the left inverted repeat (IRL) between the abutted IS ends of the ISLC3 junction region (deleted junction) was also discovered in the lactobacilli and Escherichia coli system studied. We found that the promoter formed by the complete junction P(jun) was more active than that formed by the 25 bp deleted junction P(djun) or the indigenous promoter P(IRL). The corresponding transcription start sites for both promoter P(jun) and P(IRL) as well as P(djun) were subsequently determined using a primer extension assay. The activity of transposase OrfAB of ISLC3 was also assayed using an in vitro system. It was found that this transposase preferred to cleave a single DNA strand at the IRR over the IRL end in the transposition process, suggesting that attack of one end by the other was oriented from IRR to IRL.
Collapse
Affiliation(s)
- Ta-Chun Lo
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hung-Wen Chen
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yu-Kuo Tsai
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yang-Cheng Kuo
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chao-Fen Lin
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ssu-Ying Kuo
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Thy-Hou Lin
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
7
|
Nakatsukasa H, Uchiumi T, Kucho KI, Suzuki A, Higashi S, Abe M. Transposon mediation allows a symbiotic plasmid of Rhizobium leguminosarum bv. trifolii to become a symbiosis island in Agrobacterium and Rhizobium. J GEN APPL MICROBIOL 2008; 54:107-18. [DOI: 10.2323/jgam.54.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Kiss J, Nagy Z, Tóth G, Kiss GB, Jakab J, Chandler M, Olasz F. Transposition and target specificity of the typical IS30 family element IS1655 from Neisseria meningitidis. Mol Microbiol 2007; 63:1731-47. [PMID: 17367392 DOI: 10.1111/j.1365-2958.2007.05621.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have analysed the transposition and target selection strategy of IS1655, a typical IS30 family member resident in Neisseria meningitidis. We have redefined IS1655 as a 1080 bp long element with 25 bp imperfect inverted repeats (IRs), which generates a 3 bp target duplication and have shown that it transposes using an intermediate with abutted IRs separated by 2 bp. IS1655 exhibits bipartite target specificity inserting preferentially either next to sequences similar to its IRs or into an unrelated but well defined sequence. IR-targeting leads to the formation of a new junction in which the targeted IR and one of the donor IRs are separated by 2 bp. The non-IR targets were characterized as an imperfect 19 bp palindrome in which the central five positions show slight GC excess and the distal region is AT-rich. Artificial targets designed according to the consensus were recognized by the element as hot spots for insertion. The organization of IS1655 is similar to that of other IS30 family members. Moreover, it shows striking similarity to IS30 in transposition strategy even though their transposases differ in their N-terminal regions, which, for IS30, appears to determine target specificity. Comparative analysis of the transposases and the evolutionary aspects of sequence variants are also briefly discussed.
Collapse
Affiliation(s)
- János Kiss
- Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4, H-2100, Gödöllo, Hungary
| | | | | | | | | | | | | |
Collapse
|
9
|
Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 2006; 188:3682-96. [PMID: 16672622 PMCID: PMC1482866 DOI: 10.1128/jb.188.10.3682-3696.2006] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phytoplasmas ("Candidatus Phytoplasma," class Mollicutes) cause disease in hundreds of economically important plants and are obligately transmitted by sap-feeding insects of the order Hemiptera, mainly leafhoppers and psyllids. The 706,569-bp chromosome and four plasmids of aster yellows phytoplasma strain witches' broom (AY-WB) were sequenced and compared to the onion yellows phytoplasma strain M (OY-M) genome. The phytoplasmas have small repeat-rich genomes. This comparative analysis revealed that the repeated DNAs are organized into large clusters of potential mobile units (PMUs), which contain tra5 insertion sequences (ISs) and genes for specialized sigma factors and membrane proteins. So far, these PMUs appear to be unique to phytoplasmas. Compared to mycoplasmas, phytoplasmas lack several recombination and DNA modification functions, and therefore, phytoplasmas may use different mechanisms of recombination, likely involving PMUs, for the creation of variability, allowing phytoplasmas to adjust to the diverse environments of plants and insects. The irregular GC skews and the presence of ISs and large repeated sequences in the AY-WB and OY-M genomes are indicative of high genomic plasticity. Nevertheless, segments of approximately 250 kb located between the lplA and glnQ genes are syntenic between the two phytoplasmas and contain the majority of the metabolic genes and no ISs. AY-WB appears to be further along in the reductive evolution process than OY-M. The AY-WB genome is approximately 154 kb smaller than the OY-M genome, primarily as a result of fewer multicopy sequences, including PMUs. Furthermore, AY-WB lacks genes that are truncated and are part of incomplete pathways in OY-M.
Collapse
Affiliation(s)
- Xiaodong Bai
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, 44691, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nagy Z, Chandler M. Regulation of transposition in bacteria. Res Microbiol 2004; 155:387-98. [PMID: 15207871 DOI: 10.1016/j.resmic.2004.01.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
Mobile genetic elements (MGEs) play a central role in the evolution of bacterial genomes. Transposable elements (TE: transposons and insertion sequences) represent an important group of these elements. Comprehension of the dynamics of genome evolution requires an understanding of how the activity of TEs is regulated and how their activity responds to the physiology of the host cell. This article presents an overview of the large range of, often astute, regulatory mechanisms, which have been adopted by TEs. These include mechanisms intrinsic to the element at the level of gene expression, the presence of key checkpoints in the recombination pathway and the intervention of host proteins which provide a TE/host interface. The multiplicity and interaction of these mechanisms clearly illustrates the importance of limiting transposition activity and underlines the compromise that has been reached between TE activity and the host genome. Finally, we consider how TE activity can shape the host genome.
Collapse
MESH Headings
- Bacteria/genetics
- DNA Methylation
- DNA Repair/genetics
- DNA Transposable Elements/genetics
- DNA, Superhelical/genetics
- Evolution, Molecular
- Frameshifting, Ribosomal/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genome, Bacterial
- Integration Host Factors/genetics
- Models, Genetic
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis/genetics
- RNA Stability/genetics
- RNA, Antisense/genetics
- SOS Response, Genetics/genetics
Collapse
Affiliation(s)
- Zita Nagy
- Laboratoire de Microbiologie et de Génétique Moléculaire (CNRS), 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | | |
Collapse
|
11
|
Lewis LA, Cylin E, Lee HK, Saby R, Wong W, Grindley NDF. The left end of IS2: a compromise between transpositional activity and an essential promoter function that regulates the transposition pathway. J Bacteriol 2004; 186:858-65. [PMID: 14729714 PMCID: PMC321474 DOI: 10.1128/jb.186.3.858-865.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cut-and-paste (simple insertion) and replicative transposition pathways are the two classical paradigms by which transposable elements are mobilized. A novel variation of cut and paste, a two-step transposition cycle, has recently been proposed for insertion sequences of the IS3 family. In IS2 this variation involves the formation of a circular, putative transposition intermediate (the minicircle) in the first step. Two aspects of the minicircle may involve its proposed role in the second step (integration into the target). The first is the presence of a highly reactive junction formed by the two abutted ends of the element. The second is the assembly at the minicircle junction of a strong hybrid promoter which generates higher levels of transposase. In this report we show that IS2 possesses a highly reactive minicircle junction at which a strong promoter is assembled and that the promoter is needed for the efficient completion of the pathway. We show that the sequence diversions which characterize the imperfect inverted repeats or ends of this element have evolved specifically to permit the formation and optimal function of this promoter. While these sequence diversions eliminate catalytic activity of the left end (IRL) in the linear element, sufficient sequence information essential for catalysis is retained by the IRL in the context of the minicircle junction. These data confirm that the minicircle is an essential intermediate in the two-step transposition pathway of IS2.
Collapse
Affiliation(s)
- Leslie A Lewis
- Department of Biology, York College of the City University of New York, Jamaica, New York 11451, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Kiss J, Szabó M, Olasz F. Site-specific recombination by the DDE family member mobile element IS30 transposase. Proc Natl Acad Sci U S A 2004; 100:15000-5. [PMID: 14665688 PMCID: PMC299879 DOI: 10.1073/pnas.2436518100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA rearrangements carried out by site-specific recombinases and transposases (Tpases) show striking similarities despite the wide spectrum of the catalytic mechanisms involved in the reactions. Here, we show that the bacterial insertion sequence (IS)30 element can act similarly to site-specific systems. We have developed an inversion system using IS30 Tpase and a viable lambda phage, where the integration/excision system is replaced with IS30. Both models have been proved to operate analogously to their natural counterpart, confirming that a DDE family Tpase is able to fulfill the functions of site-specific recombinases. This work demonstrates that distinction between transposition and site-specific recombination becomes blurred, because both functions can be fulfilled by the same enzyme, and both types of rearrangements can be achieved by the same catalytic mechanisms.
Collapse
Affiliation(s)
- János Kiss
- Environmental Biosafety Research Institute, Agricultural Biotechnology Center, 4 Szent-Györgyi Albert Street, H-2100, Gödöllõ, Hungary
| | | | | |
Collapse
|
13
|
Olasz F, Fischer T, Szabó M, Nagy Z, Kiss J. Gene conversion in transposition of Escherichia coli element IS30. J Mol Biol 2004; 334:967-78. [PMID: 14643660 DOI: 10.1016/j.jmb.2003.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mobile element IS30 has dual target specificity, since it can integrate adjacent to the inverted repeat (IR) of another IS30 copy or into hot-spot sequences characterized by a well-defined consensus showing no similarity to the ends of the element. The result of such integrations into these targets is different, as gene conversion events take place frequently during insertion next to an IR end, while this phenomenon has never been observed in targeting hot-spot sequences. Conversion events in IR-targeting cannot be explained exclusively by the activity of the transposase, but suggest the involvement of the homologous recombination and repair machinery of the host cell. Here, we show that the homology between the donor and target sequences is required for conversion and the starting point of the process is the site of integration. The frequency of conversion depends on the distance of mutations from the end of the targeted element. Remarkable bias is found in the role of donor and target DNA, since generally the donor sequence is converted depending on the target. Conversion was shown to occur also without formation of transposition products. All these data are consistent with the idea of the establishment, migration and resolution of a Holliday-like cruciform structure, which can be responsible for conversion events. To explain the variety of conversion products in IR-targeting, a molecular model has been proposed and discussed.
Collapse
Affiliation(s)
- Ferenc Olasz
- Environmental Biosafety Research Institute, Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4., H-2100 Gödöllo, Hungary.
| | | | | | | | | |
Collapse
|
14
|
Boutoille D, Corvec S, Caroff N, Giraudeau C, Espaze E, Caillon J, Plésiat P, Reynaud A. Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing β-lactam resistance. FEMS Microbiol Lett 2004; 230:143-6. [PMID: 14734177 DOI: 10.1016/s0378-1097(03)00882-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To understand the regulation of the MexAB OprM efflux system in a clinical strain of Pseudomonas aeruginosa presenting a decreased susceptibility to ticarcillin and aztreonam, the mexR repressor gene was amplified by polymerase chain reaction (PCR) and was shown to be disrupted by an insertion sequence of more than 2 kb, with characteristic direct and inverted repeat sequences. Sequencing revealed a 2131-bp IS21 insertion sequence. A reverse transcription PCR method was used to quantify mexA transcripts and showed an increased transcription rate of mexA in this strain, compared with a PAO1 control strain. The nalB phenotype in P. aeruginosa may be due to point mutations, but also to the presence of an insertion sequence in the mexR regulator gene.
Collapse
Affiliation(s)
- David Boutoille
- Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière, CHU de Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|