1
|
Hu X, Cai W, Zhang L, Zhu Z, Okita TW, Tian L. Molecular Dialog of Ralstonia solanacearum and Plant Hosts with Highlights on Type III Effectors. Int J Mol Sci 2025; 26:3686. [PMID: 40332227 PMCID: PMC12027289 DOI: 10.3390/ijms26083686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Ralstonia solanacearum is a highly destructive soil-borne bacterium that causes bacterial wilt disease in more than 310 plant species worldwide. The pathogenicity of the bacteria is closely associated with type III effectors (T3Es), a class of virulence factors that are delivered to host plant cells by the type III secretion system. In spite of the complex evolutionary history and genetic diversity of the R. solanacearum species complex (RSSC), more than 100 different T3Es have been identified from the genomes of various strains. Based on the available functional studies, certain T3Es interact with host plant proteins and suppress host cell immunity, whereas other T3Es are recognized by the host plant to trigger specific resistance mechanisms. This review summarizes the mechanisms by which T3Es interfere with plant immune responses and the activation of the plant defense system upon T3E recognition. This in-depth review of the molecular interactions between R. solanacearum and its host plants offers insights into the complexity of plant-pathogen interactions and provides a scientific rationale and theoretical support for the future breeding of resistant crops.
Collapse
Affiliation(s)
- Xinyu Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol 2025; 23:24-40. [PMID: 39251840 DOI: 10.1038/s41579-024-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
Collapse
|
3
|
Cornelis P, Dingemans J, Baysse C. Pseudomonas aeruginosa Soluble Pyocins as Antibacterial Weapons. Methods Mol Biol 2024; 2721:125-136. [PMID: 37819519 DOI: 10.1007/978-1-0716-3473-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections and associated with lung infections in cystic fibrosis (CF) patients (Lyczak et al., Microbes Infect 2:1051-1060, 2000). Multiple drug-resistant P. aeruginosa strains pose a serious problem because of antibiotic treatment failure. There is therefore a need for alternative anti-Pseudomonas molecules. Soluble pyocins (S-pyocins) are bacteriocins produced by P. aeruginosa strains that kill sensitive strains of the same species. These bacteriocins and their immunity gene are easily cloned and expressed in E. coli and their activity spectrum against different P. aeruginosa strains can be tested. In this chapter, we describe the procedures for cloning, expression, and sensitivity testing of two different S-pyocins. We also describe how to identify their receptor binding domain in sensitive strains, how to construct chimeric pyocins with extended activity spectra, and how to identify new pyocins in genomes by multiplex PCR.
Collapse
Affiliation(s)
- Pierre Cornelis
- Vrije Universiteit Brussel, Microbiology Group, Brussels, Belgium.
| | - Jozef Dingemans
- Vrije Universiteit Brussel, Microbiology Group, Brussels, Belgium
| | - Christine Baysse
- Institut de Génétique et de Développement de Rennes (IGDR), CNRS UMR 6290, Université de Rennes, Rennes, France
| |
Collapse
|
4
|
Avendaño R, Muñoz-Montero S, Rojas-Gätjens D, Fuentes-Schweizer P, Vieto S, Montenegro R, Salvador M, Frew R, Kim J, Chavarría M, Jiménez JI. Production of selenium nanoparticles occurs through an interconnected pathway of sulphur metabolism and oxidative stress response in Pseudomonas putida KT2440. Microb Biotechnol 2023; 16:931-946. [PMID: 36682039 PMCID: PMC10128140 DOI: 10.1111/1751-7915.14215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/23/2023] Open
Abstract
The soil bacterium Pseudomonas putida KT2440 has been shown to produce selenium nanoparticles aerobically from selenite; however, the molecular actors involved in this process are unknown. Here, through a combination of genetic and analytical techniques, we report the first insights into selenite metabolism in this bacterium. Our results suggest that the reduction of selenite occurs through an interconnected metabolic network involving central metabolic reactions, sulphur metabolism, and the response to oxidative stress. Genes such as sucA, D2HGDH and PP_3148 revealed that the 2-ketoglutarate and glutamate metabolism is important to convert selenite into selenium. On the other hand, mutations affecting the activity of the sulphite reductase decreased the bacteria's ability to transform selenite. Other genes related to sulphur metabolism (ssuEF, sfnCE, sqrR, sqr and pdo2) and stress response (gqr, lsfA, ahpCF and sadI) were also identified as involved in selenite transformation. Interestingly, suppression of genes sqrR, sqr and pdo2 resulted in the production of selenium nanoparticles at a higher rate than the wild-type strain, which is of biotechnological interest. The data provided in this study brings us closer to understanding the metabolism of selenium in bacteria and offers new targets for the development of biotechnological tools for the production of selenium nanoparticles.
Collapse
Affiliation(s)
- Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | | | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.,Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, Costa Rica
| | - Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Rafael Montenegro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Manuel Salvador
- Biotechnology Applications, IDENER Research & Development, Seville, Spain
| | - Rufus Frew
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Juhyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu, Korea
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Jose I Jiménez
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
5
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
6
|
A Review of Pseudomonas aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline. BIOLOGY 2022; 11:biology11121711. [PMID: 36552220 PMCID: PMC9774294 DOI: 10.3390/biology11121711] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
P. aeruginosa is a common Gram-negative bacterium found in nature that causes severe infections in humans. As a result of its natural resistance to antibiotics and the ability of biofilm formation, the infection with this pathogen can be therapeutic challenging. During infection, P. aeruginosa produces secondary metabolites such as metallophores that play an important role in their virulence. Metallophores are metal ions chelating molecules secreted by bacteria, thus allowing them to survive in the host under metal scarce conditions. Pyoverdine, pyochelin and pseudopaline are the three metallophores secreted by P. aeruginosa. Pyoverdines are the primary siderophores that acquire iron from the surrounding medium. These molecules scavenge and transport iron to the bacterium intracellular compartment. Pyochelin is another siderophore produced by this bacterium, but in lower quantities and its affinity for iron is less than that of pyoverdine. The third metallophore, pseudopaline, is an opine narrow spectrum ion chelator that enables P. aeruginosa to uptake zinc in particular but can transport nickel and cobalt as well. This review describes all the aspects related to these three metallophore, including their main features, biosynthesis process, secretion and uptake when loaded by metals, in addition to the genetic regulation responsible for their synthesis and secretion.
Collapse
|
7
|
Sambrano H, Castillo JC, Ramos CW, de Mayorga B, Chen O, Durán O, Ciniglio C, Aguilar C, Cisterna O, de Chial M. Prevalence of antibiotic resistance and virulent factors in nosocomial clinical isolates of Pseudomonas aeruginosa from Panamá. Braz J Infect Dis 2020; 25:101038. [PMID: 33285136 PMCID: PMC9392144 DOI: 10.1016/j.bjid.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022] Open
Abstract
Background Pseudomonas aeruginosa is an important causative agent of nosocomial infections. As pathogen, P. aeruginosa is of increasing clinical importance due to its ability to develop high-level multidrug resistance (MDR). Methods The aim of the present study was to better understand the intrinsic virulence of circulating strains of Pseudomonas aeruginosa, by surveying and characterizing the antibiotic resistance profiles and prevalence of virulence factors in 51 clinical isolates of P. aeruginosa obtained from children admitted to Hospital del Niño-Panamá during the period of October 2016 until March 2017. Antimicrobial susceptibilities were assessed by determining the minimum inhibitory concentration for 12 antibiotics against P. aeruginosa clinical isolates using the VITEK system (https://www.biomerieux.com). Additionally, all isolates were examined by Polymerase Chain Reaction (PCR) for the presence of components of the MexAB-OprM efflux pump system (mexABR) and pyoverdine receptor genes and betalactamases resistance genes (ESBL) using gene-specific primers. Results A total of 51 pyoverdine producing clinical isolates were analyzed, all of which expressed resistance genes such as genes of the MexAB-OprM efflux pump system (mexABR) and pyoverdine receptor genes (fpvA). Out of 51 MDR isolates, 22 were ESBL producers. The most common ESBL gene was blaTEM expressed by 43% of the isolates. The isolates tested in this study showed increased resistance to antibiotics in the following categories: (i) penicillins (ampicillin (69%), piperacillin (22%); (ii) pyrimethamines (trimethoprim, 65%); (iii) nitrofurans (nitrofurantoin, 63%), and (iv) third-generation cephalosporin cefotaxime (53%). These results underscore a high prevalence of MDR amongst clinical isolates from Panama. Conclusions The present study indicates that prevalence of BlaTEM-carrying strains is increasing with subsequent multidrug resistance in Panamá and as well reported worldwide. The virulent factors identified in this study provide valuable information regarding the prevalence of resistance genes and their potential impact on treatments that exploit the unique physiology of the pathogen. To prevent further spread of MDR, the proportions of resistant strains of Pseudomonas aeruginosa should be constantly evaluated on healthcare institutions of Panamá. More importantly, this information can be used to better understand the evolution and dissemination of strains hoping to prevent the development of resistance in Pseudomonas aeruginosa. Future studies quantifying the expression of these virulent genes will emphasize on the acquisition of multidrug resistance.
Collapse
Affiliation(s)
- Héctor Sambrano
- Universidad de Panamá, Programa de Maestría en Ciencias Biológicas, Panama
| | - Julio César Castillo
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama; Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá (INDICASAT-AIP), Panama
| | - Carlos W Ramos
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Brenda de Mayorga
- Universidad de Panamá, Escuela de Biología, Departmento de Microbiología y Parasitología, Panama
| | - Olga Chen
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Ovidio Durán
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Carmelo Ciniglio
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Criseida Aguilar
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | | | - Magaly de Chial
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama.
| |
Collapse
|
8
|
Lysocins: Bioengineered Antimicrobials That Deliver Lysins across the Outer Membrane of Gram-Negative Bacteria. Antimicrob Agents Chemother 2019; 63:AAC.00342-19. [PMID: 30962344 DOI: 10.1128/aac.00342-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
The prevalence of multidrug-resistant Pseudomonas aeruginosa has stimulated development of alternative therapeutics. Bacteriophage peptidoglycan hydrolases, termed lysins, represent an emerging antimicrobial option for targeting Gram-positive bacteria. However, lysins against Gram-negatives are generally deterred by the outer membrane and their inability to work in serum. One solution involves exploiting evolved delivery systems used by colicin-like bacteriocins (e.g., S-type pyocins of P. aeruginosa) to translocate through the outer membrane. Following surface receptor binding, colicin-like bacteriocins form Tol- or TonB-dependent translocons to actively import bactericidal domains through outer membrane protein channels. With this understanding, we developed lysocins, which are bioengineered lysin-bacteriocin fusion molecules capable of periplasmic import. In our proof-of-concept studies, components from the P. aeruginosa bacteriocin pyocin S2 (PyS2) responsible for surface receptor binding and outer membrane translocation were fused to the GN4 lysin to generate the PyS2-GN4 lysocin. PyS2-GN4 delivered the GN4 lysin to the periplasm to induce peptidoglycan cleavage and log-fold killing of P. aeruginosa with minimal endotoxin release. While displaying narrow-spectrum antipseudomonal activity in human serum, PyS2-GN4 also efficiently disrupted biofilms, outperformed standard-of-care antibiotics, exhibited no cytotoxicity toward eukaryotic cells, and protected mice from P. aeruginosa challenge in a bacteremia model. In addition to targeting P. aeruginosa, lysocins can be constructed to target other prominent Gram-negative bacterial pathogens.
Collapse
|
9
|
Post SJ, Shapiro JA, Wuest WM. Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MEDCHEMCOMM 2019; 10:505-512. [PMID: 31057729 PMCID: PMC6482887 DOI: 10.1039/c9md00032a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022]
Abstract
The rise of antibiotic resistant bacteria has become a problem of global concern. Of particular interest are the ESKAPE pathogens, species with high rates of multi-drug resistant infections. Novel antibiotic mechanisms of action are necessary to compliment traditional therapeutics. Recent research has focused on targeting virulence factors as a method of combatting infection without creating selective pressure for resistance or damaging the host commensal microbiome. Some investigations into one such virulence behavior, iron acquisition, have displayed additional effects on another virulence behavior, biofilm formation. The use of exogenous iron-chelators, gallium as an iron mimic, and inhibition of siderophore-mediated iron acquisition are all strategies for disturbing iron-homeostasis that have implicated effects on biofilms. However, the exact nature of this connection remains ambiguous. Herein we summarize these findings and identify opportunities for further investigation.
Collapse
Affiliation(s)
- Savannah J Post
- Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
| | - Justin A Shapiro
- Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
| | - William M Wuest
- Department of Chemistry , Emory University , Atlanta , GA 30322 , USA .
- Antibiotic Resistance Center , Emory University School of Medicine , Atlanta , GA 30322 , USA
| |
Collapse
|
10
|
Atanaskovic I, Kleanthous C. Tools and Approaches for Dissecting Protein Bacteriocin Import in Gram-Negative Bacteria. Front Microbiol 2019; 10:646. [PMID: 31001227 PMCID: PMC6455109 DOI: 10.3389/fmicb.2019.00646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Bacteriocins of Gram-negative bacteria are typically multi-domain proteins that target and kill bacteria of the same or closely related species. There is increasing interest in protein bacteriocin import; from a fundamental perspective to understand how folded proteins are imported into bacteria and from an applications perspective as species-specific antibiotics to combat multidrug resistant bacteria. In order to translocate across the cell envelope and cause cell death, protein bacteriocins hijack nutrient uptake pathways. Their import is energized by parasitizing intermembrane protein complexes coupled to the proton motive force, which delivers a toxic domain into the cell. A plethora of genetic, structural, biochemical, and biophysical methods have been applied to find cell envelope components involved in bacteriocin import since their discovery almost a century ago. Here, we review the various approaches that now exist for investigating how protein bacteriocins translocate into Gram-negative bacteria and highlight areas of research that will need methodological innovations to fully understand this process. We also highlight recent studies demonstrating how bacteriocins can be used to probe organization and architecture of the Gram-negative cell envelope itself.
Collapse
Affiliation(s)
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Liang Y, Zhang S. Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback–Leibler divergence. J Theor Biol 2018; 454:22-29. [DOI: 10.1016/j.jtbi.2018.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
|
12
|
Stilwell P, Lowe C, Buckling A. The effect of cheats on siderophore diversity in Pseudomonas aeruginosa. J Evol Biol 2018; 31:1330-1339. [PMID: 29904987 PMCID: PMC6175192 DOI: 10.1111/jeb.13307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Cooperation can be maintained if cooperative behaviours are preferentially directed towards other cooperative individuals. Tag-based cooperation (greenbeards) - where cooperation benefits individuals with the same tag as the actor - is one way to achieve this. Tag-based cooperation can be exploited by individuals who maintain the specific tag but do not cooperate, and selection to escape this exploitation can result in the evolution of tag diversity. We tested key predictions crucial for the evolution of cheat-mediated tag diversity using the production of iron-scavenging pyoverdine by the opportunistic pathogen, Pseduomonas aeruginosa as a model system. Using two strains that produce different pyoverdine types and their respective cheats, we show that cheats outcompete their homologous pyoverdine producer, but are outcompeted by the heterologous producer in well-mixed environments. As a consequence, co-inoculating two types of pyoverdine producer and one type of pyoverdine cheat resulted in the pyoverdine type whose cheat was not present having a large fitness advantage. Theory suggests that in such interactions, cheats can maintain tag diversity in spatially structured environments, but that tag-based cooperation will be lost in well-mixed populations, regardless of tag diversity. We saw that when all pyoverdine producers and cheats were co-inoculated in well-mixed environments, both types of pyoverdine producers were outcompeted, whereas spatial structure (agar plates and compost microcosms), rather than maintaining diversity, resulted in the domination of one pyoverdine producer. These results suggest cheats may play a more limited role in the evolution of pyoverdine diversity than predicted.
Collapse
Affiliation(s)
| | - Chris Lowe
- Biosciences, University of Exeter, Cornwall, UK
| | | |
Collapse
|
13
|
Liang Y, Zhang S, Ding S. Accurate prediction of Gram-negative bacterial secreted protein types by fusing multiple statistical features from PSI-BLAST profile. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:469-481. [PMID: 29688029 DOI: 10.1080/1062936x.2018.1459835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Gram-negative bacterial secreted proteins play different roles in invaded eukaryotic cells and cause various diseases. Prediction of Gram-negative bacterial secreted protein types is a meaningful and challenging task. In this paper, we develop a multiple statistical features extraction model based on the dipeptide composition (DPC) descriptor and the detrended moving-average auto-cross-correlation analysis (DMACA) descriptor by PSI-BLAST profile. A 610-dimensional feature vector was constructed on the training set, and the feature extraction model was denoted DPC-DMACA-PSSM. A support vector machine was then selected as a classifier, and the bias-free jackknife test method was used for evaluating the accuracy. Our predictor achieves favourable performance for overall accuracy on the test set and also outperforms the other published approaches. The results show that our approach offers a reliable tool for the identification of Gram-negative bacterial secreted protein types.
Collapse
Affiliation(s)
- Y Liang
- a School of Science , Xi'an Polytechnic University , Xi'an 710048 , PR China
| | - S Zhang
- b School of Mathematics and Statistics , Xidian University , Xi'an 710071 , PR China
| | - S Ding
- c Department of Sciences , Dalian Nationalities University , Dalian 116600 , PR China
| |
Collapse
|
14
|
Zhang D, Zhou Y, Zhao D, Zhu J, Yang Z, Zhu M. Complete genome sequence and pathogenic genes analysis of Pectobacterium atroseptica JG10-08. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0559-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Abstract
Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle. Biofilm formation by Pseudomonas aeruginosa is one of the hallmarks of chronic cystic fibrosis (CF) lung infections. The biofilm matrix protects this bacterium from antibiotics as well as from the immune system. Hence, the prevention or reversion of biofilm formation is believed to have a great impact on treatment of chronic P. aeruginosa CF lung infections. In the present study, we showed that it is possible to modulate the behavior of a highly adapted transmissible P. aeruginosa CF isolate at both the transcriptomic and phenotypic levels by introducing shear stress in a CF-like environment, driving it from a biofilm to a planktonic lifestyle. Consequently, the results obtained in this study are of great importance with regard to therapeutic applications that introduce shear stress in the lungs of CF patients.
Collapse
|
16
|
Zhang W, Liang W, Li C. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:217-224. [PMID: 26476308 DOI: 10.1016/j.jhazmat.2015.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/20/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Siderophores are low-molecular-weight chemicals that are secreted by many microorganisms to chelate iron from the external environment in order to facilitate their growth and diverse metabolisms. In this study, a fluorescent siderophore, pyoverdine, secreted by Pseudomonas aeruginosa PA1 was purified by affinity chromatography using Cu-sepharose. Pyoverdine was determined to have a molecular mass of 1333.54 Da, as determined by MALDI-TOF/TOF, and belong to type I pyoverdine, as determined by PCR analysis of its corresponding outer membrane ferri-pyoverdine receptor. Pyoverdine showed different degrees of inhibitory effects on the growth of marine Vibrio sp. strains. It was also shown that the biofilm developed by Vibrio parahaemolyticus WzW1 and Wz2121 and Vibrio cyclitrophicus HS12 was significantly reduced, alone with the repressed growth in the presence of pyoverdine. Siderophore production was determined in the strains of Vibrio sp. in response to the pyoverdine-induced iron-limited conditions. The siderophore production of most Vibrio sp. was up-regulated, with the exception of the bacteria that produced little siderophore. Furthermore, Apostichopus japonicus cultured in pyoverdine pretreated seawater showed a relative percent of survival of 89% when they were challenged by Vibrio splendidus. Our results demonstrated that pyoverdine may be a promising agent that could be potentially applied to treat vibriosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Weikang Liang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, PR China.
| |
Collapse
|
17
|
Antibacterial activity and mutagenesis of sponge-associated Pseudomonas fluorescens H41. Antonie van Leeuwenhoek 2015; 108:117-26. [DOI: 10.1007/s10482-015-0469-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
|
18
|
Matthijs S, Vander Wauven C, Cornu B, Ye L, Cornelis P, Thomas CM, Ongena M. Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Res Microbiol 2014; 165:695-704. [PMID: 25303834 DOI: 10.1016/j.resmic.2014.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/17/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022]
Abstract
Mupirocin is a polyketide antibiotic with broad antibacterial activity. It was isolated and characterized about 40 years ago from Pseudomonas fluorescens NCIMB 10586. To study the phylogenetic distribution of mupirocin producing strains in the genus Pseudomonas a large collection of Pseudomonas strains of worldwide origin, consisting of 117 Pseudomonas type strains and 461 strains isolated from different biological origins, was screened by PCR for the mmpD gene of the mupirocin gene cluster. Five mmpD(+) strains from different geographic and biological origin were identified. They all produced mupirocin and were strongly antagonistic against Staphylococcus aureus. Phylogenetic analysis showed that mupirocin production is limited to a single species. Inactivation of mupirocin production leads to complete loss of in vitro antagonism against S. aureus, except on certain iron-reduced media where the siderophore pyoverdine is responsible for the in vitro antagonism of a mupirocin-negative mutant. In addition to mupirocin some of the strains produced lipopeptides of the massetolide group. These lipopeptides do not play a role in the observed in vitro antagonism of the mupirocin producing strains against S. aureus.
Collapse
Affiliation(s)
- Sandra Matthijs
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Corinne Vander Wauven
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Bertrand Cornu
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Lumeng Ye
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Marc Ongena
- Walloon Center for Industrial Biology, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium.
| |
Collapse
|
19
|
Fajardo A, Hernando-Amado S, Oliver A, Ball G, Filloux A, Martinez JL. Characterization of a novel Zn2+-dependent intrinsic imipenemase from Pseudomonas aeruginosa. J Antimicrob Chemother 2014; 69:2972-8. [DOI: 10.1093/jac/dku267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Llamas MA, Imperi F, Visca P, Lamont IL. Cell-surface signaling inPseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol Rev 2014; 38:569-97. [DOI: 10.1111/1574-6976.12078] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 01/06/2023] Open
|
21
|
Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio 2014; 5:e00966-14. [PMID: 24803516 PMCID: PMC4010824 DOI: 10.1128/mbio.00966-14] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa airway infections are a major cause of mortality and morbidity of cystic fibrosis (CF) patients. In order to persist, P. aeruginosa depends on acquiring iron from its host, and multiple different iron acquisition systems may be active during infection. This includes the pyoverdine siderophore and the Pseudomonas heme utilization (phu) system. While the regulation and mechanisms of several iron-scavenging systems are well described, it is not clear whether such systems are targets for selection during adaptation of P. aeruginosa to the host environment. Here we investigated the within-host evolution of the transmissible P. aeruginosa DK2 lineage. We found positive selection for promoter mutations leading to increased expression of the phu system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrate that increased expression of phuR confers a growth advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive evolution in two distinct lineages (DK1 and PA clone C). Furthermore, in all three lineages, phuR promoter mutations coincided with the loss of pyoverdine production, suggesting that within-host adaptation toward heme utilization is triggered by the loss of pyoverdine production. Targeting heme utilization might therefore be a promising strategy for the treatment of P. aeruginosa infections in CF patients. Most bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability of the opportunistic pathogen Pseudomonas aeruginosa to cause chronic infections in cystic fibrosis (CF) patients also depends on iron-scavenging systems. While the regulation and mechanisms of several such iron-scavenging systems have been well described, not much is known about how the within-host selection pressures act on the pathogens’ ability to acquire iron. Here, we investigated the within-host evolution of P. aeruginosa, and we found evidence that P. aeruginosa during long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections.
Collapse
|
22
|
Ye L, Matthijs S, Bodilis J, Hildebrand F, Raes J, Cornelis P. Analysis of the draft genome of Pseudomonas fluorescens ATCC17400 indicates a capacity to take up iron from a wide range of sources, including different exogenous pyoverdines. Biometals 2014; 27:633-44. [PMID: 24756978 DOI: 10.1007/s10534-014-9734-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
Abstract
All fluorescent pseudomonads (Pseudomonas aeruginosa, P. putida, P. fluorescens, P. syringae and others) are known to produce the high-affinity peptidic yellow-green fluorescent siderophore pyoverdine. These siderophores have peptide chains that are quite diverse and more than 50 pyoverdine structures have been elucidated. In the majority of the cases, a Pseudomonas species is also able to produce a second siderophore of lower affinity for iron. Pseudomonas fluorescens ATCC 17400 has been shown to produce a unique second siderophore, (thio)quinolobactin, which has an antimicrobial activity against the phytopathogenic Oomycete Pythium debaryanum. We show that this strain has the capacity to utilize 16 different pyoverdines, suggesting the presence of several ferripyoverdine receptors. Analysis of the draft genome of P. fluorescens ATCC 17400 confirmed the presence of 55 TonB-dependent receptors, the largest so far for Pseudomonas, among which 15 are predicted to be ferripyoverdine receptors (Fpv). Phylogenetic analysis revealed the presence of two different clades containing ferripyoverdine receptors, with sequences similar to the P. aeruginosa type II FpvA forming a separate cluster. Among the other receptors we confirmed the presence of the QbsI (thio)quinolobactin receptor, an ferri-achromobactin and an ornicorrugatin receptor, several catecholate and four putative heme receptors. Twenty five of the receptors genes were found to be associated with genes encoding extracytoplasmic sigma factors (ECF σ) and transmembrane anti-σ sensors.
Collapse
Affiliation(s)
- Lumeng Ye
- Department of Bioengineering Sciences, Research Group Microbiology, VIB Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Dingemans J, Ye L, Hildebrand F, Tontodonati F, Craggs M, Bilocq F, De Vos D, Crabbé A, Van Houdt R, Malfroot A, Cornelis P. The deletion of TonB-dependent receptor genes is part of the genome reduction process that occurs during adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung. Pathog Dis 2014; 71:26-38. [PMID: 24659602 DOI: 10.1111/2049-632x.12170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 01/02/2023] Open
Abstract
Chronic Pseudomonas aeruginosa infections are the main cause of morbidity among patients with cystic fibrosis (CF) due to persistent lung inflammation caused by interaction between this bacterium and the immune system. Longitudinal studies of clonally related isolates of a dominant CF clone have indicated that genome reduction frequently occurs during adaptation of P. aeruginosa in the CF lung. In this study, we have evaluated the P. aeruginosa population structure of patients attending the Universitair Ziekenhuis Brussel (UZ Brussel) CF reference center using a combination of genotyping methods. Although the UZ Brussel P. aeruginosa CF population is characterized by the absence of a dominant CF clone, some potential interpatient transmissions could be detected. Interestingly, one of these clones showed deletion of the alternative type I ferripyoverdine receptor gene fpvB. Furthermore, we found that several other TonB-dependent receptors are deleted as well. The genome of one potentially transmissible CF clone was sequenced, revealing large deleted regions including all type III secretion system genes and several virulence genes. Remarkably, a large number of deleted genes are shared between the P. aeruginosa CF clone described in this study and isolates belonging to the dominant Copenhagen CF DK2 clone, suggesting parallel evolution.
Collapse
Affiliation(s)
- Jozef Dingemans
- Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology, Brussels, Belgium; Unit of Microbiology, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Strong reciprocity, whereby cooperators punish non-cooperators, may help to explain the evolutionary success of cooperative behaviours. However, theory suggests that selection for strong reciprocity can depend upon tight genetic linkage between cooperation and punishment, to avoid the strategy being outcompeted by non-punishing cooperators. We tested this hypothesis using experimental populations of the bacterium Pseudomonas aeruginosa, which cooperate by producing iron-scavenging siderophores and, in this context, punish non-cooperators with toxins. Consistent with theory, we show that cooperative punishers can indeed invade cheats, but only when the traits are tightly linked. These results emphasize that punishment is only likely to be favoured when the punishment itself leads to a direct or indirect fitness benefit to the actor.
Collapse
Affiliation(s)
- R Fredrik Inglis
- Department of Environmental Sciences, Eidgenössiche Technische Hochschule Zürich, , Zürich 8092, Switzerland
| | | | | |
Collapse
|
25
|
Elfarash A, Dingemans J, Ye L, Hassan AA, Craggs M, Reimmann C, Thomas MS, Cornelis P. Pore-forming pyocin S5 utilizes the FptA ferripyochelin receptor to kill Pseudomonas aeruginosa. Microbiology (Reading) 2014; 160:261-269. [DOI: 10.1099/mic.0.070672-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pyocins are toxic proteins produced by some strains of Pseudomonas aeruginosa that are lethal for related strains of the same species. Some soluble pyocins (S2, S3 and S4) were previously shown to use the pyoverdine siderophore receptors to enter the cell. The P. aeruginosa PAO1 pore-forming pyocin S5 encoding gene (PAO985) was cloned into the expression vector pET15b, and the affinity-purified protein product tested for its killing activity against different P. aeruginosa strains. The results, however, did not show any correlation with a specific ferripyoverdine receptor. To further identify the S5 receptor, transposon mutants were generated. Pooled mutants were exposed to pyocin S5 and the resistant colonies growing in the killing zone were selected. The majority of S5-resistant mutants had an insertion in the fptA gene encoding the receptor for the siderophore pyochelin. Complementation of an fptA transposon mutant with the P. aeruginosa fptA gene in trans restored the sensitivity to S5. In order to define the receptor-binding domain of pyocin S5, two hybrid pyocins were constructed containing different regions from pyocin S5 fused to the C-terminal translocation and DNase killing domains of pyocin S2. Only the protein containing amino acid residues 151 to 300 from S5 showed toxicity, indicating that the pyocin S5 receptor-binding domain is not at the N-terminus of the protein as in other S-type pyocins. Pyocin S5 was, however, unable to kill Burkholderia cenocepacia strains producing a ferripyochelin FptA receptor, nor was the B. cenocepacia fptA gene able to restore the sensitivity of the resistant fptA mutant P. aeruginosa strain.
Collapse
Affiliation(s)
- Ameer Elfarash
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, Egypt
- VIB Department of Structural Biology, Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Jozef Dingemans
- VIB Department of Structural Biology, Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Lumeng Ye
- VIB Department of Structural Biology, Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Ahmed Amir Hassan
- VIB Department of Structural Biology, Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Michael Craggs
- VIB Department of Structural Biology, Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Cornelia Reimmann
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland
| | - Mark S. Thomas
- Department of Infection and Immunity, School of Medicine, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Cornelis
- VIB Department of Structural Biology, Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
26
|
Fothergill JL, Winstanley C, James CE. Novel therapeutic strategies to counterPseudomonas aeruginosainfections. Expert Rev Anti Infect Ther 2014; 10:219-35. [DOI: 10.1586/eri.11.168] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
De Soyza A, Hall AJ, Mahenthiralingam E, Drevinek P, Kaca W, Drulis-Kawa Z, Stoitsova SR, Toth V, Coenye T, Zlosnik JEA, Burns JL, Sá-Correia I, De Vos D, Pirnay JP, Kidd TJ, Reid D, Manos J, Klockgether J, Wiehlmann L, Tümmler B, McClean S, Winstanley C. Developing an international Pseudomonas aeruginosa reference panel. Microbiologyopen 2013; 2:1010-23. [PMID: 24214409 PMCID: PMC3892346 DOI: 10.1002/mbo3.141] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis (CF) patients and causes a wide range of infections among other susceptible populations. Its inherent resistance to many antimicrobials also makes it difficult to treat infections with this pathogen. Recent evidence has highlighted the diversity of this species, yet despite this, the majority of studies on virulence and pathogenesis focus on a small number of strains. There is a pressing need for a P. aeruginosa reference panel to harmonize and coordinate the collective efforts of the P. aeruginosa research community. We have collated a panel of 43 P. aeruginosa strains that reflects the organism's diversity. In addition to the commonly studied clones, this panel includes transmissible strains, sequential CF isolates, strains with specific virulence characteristics, and strains that represent serotype, genotype or geographic diversity. This focussed panel of P. aeruginosa isolates will help accelerate and consolidate the discovery of virulence determinants, improve our understanding of the pathogenesis of infections caused by this pathogen, and provide the community with a valuable resource for the testing of novel therapeutic agents.
Collapse
Affiliation(s)
- Anthony De Soyza
- Institute of Cellular Medicine, Newcastle University, Newcastle, U.K
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mózes J, Szűcs I, Molnár D, Jakab P, Fatemeh E, Szilasi M, Majoros L, Orosi P, Kardos G. A potential role of aminoglycoside resistance in endemic occurrence of Pseudomonas aeruginosa strains in lower airways of mechanically ventilated patients. Diagn Microbiol Infect Dis 2013; 78:79-84. [PMID: 24183948 DOI: 10.1016/j.diagmicrobio.2013.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/28/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
Abstract
Altogether, 98 Pseudomonas aeruginosa isolates from a 5-bed intensive care unit were fingerprinted with pulsed-field gel electrophoresis and tested for aminoglycoside resistance genes aac(6')-Ib, aac(3″)-IIa, ant(2″)-Ia, armA, rmtA, and rmtB and integrons and virulence genes/operons phzI, phzII, phzM, phzS, apr, lasB, plcH, plcN, pilA, algD, toxA, exoS, exoT, exoY, and exoU. Two major clusters were identified (49 and 19 isolates), harbouring aac(6')-Ib, blaPSE-1, and ant(3″)-Ia genes or ant(2″)-Ia gene, respectively, on a class I integron. Most virulence genes except for exoU and pilA were found. Only 1 isolate of the minor cluster (8 isolates) and 1 of the 22 sporadic isolates carried integrons (without gene cassettes); virulence profile was highly variable. Comparing the resistance and virulence patterns of endemic and sporadic isolates suggests that integron-borne aminoglycoside resistance is more closely associated with the frequency than virulence. Consequently, aminoglycoside usage may have played a role in maintenance of the endemic clones.
Collapse
Affiliation(s)
- Julianna Mózes
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen Nagyerdei krt. 98, Hungary
| | - Ildikó Szűcs
- Department of Pulmonology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen Nagyerdei krt. 98, Hungary
| | - Dávid Molnár
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen Nagyerdei krt. 98, Hungary
| | - Péter Jakab
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen Nagyerdei krt. 98, Hungary
| | - Ebrahimi Fatemeh
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen Nagyerdei krt. 98, Hungary
| | - Mária Szilasi
- Department of Pulmonology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen Nagyerdei krt. 98, Hungary
| | - László Majoros
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen Nagyerdei krt. 98, Hungary
| | - Piroska Orosi
- Department of Hospital Hygiene and Infection Control, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen Nagyerdei krt. 98, Hungary
| | - Gábor Kardos
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen Nagyerdei krt. 98, Hungary.
| |
Collapse
|
29
|
A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a Pseudomonas putida isolate and the use of pyoverdine as a taxonomic marker for typing P. putida subspecies. Biometals 2013; 26:561-75. [PMID: 23877277 DOI: 10.1007/s10534-013-9653-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
The structure of a pyoverdine produced by Pseudomonas putida, W15Oct28, was elucidated by combining mass spectrometric methods and bioinformatics by the analysis of non-ribosomal peptide synthetase genes present in the newly sequenced genome. The only form of pyoverdine produced by P. putida W15Oct28 is characterized to contain α-ketoglutaric acid as acyl side chain, a dihydropyoverdine chromophore, and a 12 amino acid peptide chain. The peptide chain is unique among all pyoverdines produced by Pseudomonas subspecies strains. It was characterized as -L-Asp-L-Ala-D-AOHOrn-L-Thr-Gly-c[L-Thr(O-)-L-Hse-D-Hya-L-Ser-L-Orn-L-Hse-L-Ser-O-]. The chemical formula and the detected and calculated molecular weight of this pyoverdine are: C65H93N17O32, detected mass 1624.6404 Da, calculated mass 1624.6245. Additionally, pyoverdine structures from both literature reports and bioinformatics prediction of the genome sequenced P. putida strains are summarized allowing us to propose a scheme based on pyoverdines structures as tool for the phylogeny of P. putida. This study shows the strength of the combination of in silico analysis together with analytical data and literature mining in determining the structure of secondary metabolites such as peptidic siderophores.
Collapse
|
30
|
Hall AJ, Fothergill JL, Kaye SB, Neal TJ, McNamara PS, Southern KW, Winstanley C. Intraclonal genetic diversity amongst cystic fibrosis and keratitis isolates of Pseudomonas aeruginosa. J Med Microbiol 2013; 62:208-216. [DOI: 10.1099/jmm.0.048272-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Amanda J. Hall
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK
| | - Joanne L. Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK
| | - Stephen B. Kaye
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - Timothy J. Neal
- Department of Medical Microbiology, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | | | | | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
31
|
Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5. J Bacteriol 2012; 195:765-76. [PMID: 23222724 DOI: 10.1128/jb.01639-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Pseudomonas protegens Pf-5 (previously called P. fluorescens Pf-5) produces two siderophores, enantio-pyochelin and a compound in the large and diverse pyoverdine family. Using high-resolution mass spectroscopy, we determined the structure of the pyoverdine produced by Pf-5. In addition to producing its own siderophores, Pf-5 also utilizes ferric complexes of some pyoverdines produced by other strains of Pseudomonas spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer membrane proteins in Pf-5 indicated that six are in a well-supported clade with ferric-pyoverdine receptors (Fpvs) from other Pseudomonas spp. We used a combination of phylogenetics, bioinformatics, mutagenesis, pyoverdine structural determinations, and cross-feeding bioassays to assign specific ferric-pyoverdine substrates to each of the six Fpvs of Pf-5. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpvs of Pf-5. Functional redundancy of the Pf-5 Fpvs was also apparent, with some ferric-pyoverdines taken up by all mutants with a single Fpv deletion but not by a mutant having deletions in two of the Fpv-encoding genes. Finally, we demonstrated that phylogenetically related Fpvs take up ferric complexes of structurally related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpvs in other Pseudomonas spp.
Collapse
|
32
|
Allydice-Francis K, Brown PD. Diversity of Antimicrobial Resistance and Virulence Determinants in Pseudomonas aeruginosa Associated with Fresh Vegetables. Int J Microbiol 2012; 2012:426241. [PMID: 23213336 PMCID: PMC3508576 DOI: 10.1155/2012/426241] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
With the increased focus on healthy eating and consuming raw vegetables, this study assessed the extent of contamination of fresh vegetables by Pseudomonas aeruginosa in Jamaica and examined the antibiotic susceptibility profiles and the presence of various virulence associated determinants of P. aeruginosa. Analyses indicated that vegetables from retail markets and supermarkets were widely contaminated by P. aeruginosa; produce from markets were more frequently contaminated, but the difference was not significant. Lettuce and carrots were the most frequently contaminated vegetables, while tomatoes were the least. Pigment production (Pyoverdine, pyocyanin, pyomelanin and pyorubin), fluorescein and alginate were common in these isolates. Imipenem, gentamicin and ciprofloxacin were the most inhibitory antimicrobial agents. However, isolates were resistant or showed reduced susceptibility to ampicillin, chloramphenicol, sulphamethoxazole/trimethoprim and aztreonam, and up to 35% of the isolates were resistant to four antimicrobial agents. As many as 30% of the isolates were positive for the fpv1 gene, and 13% had multiple genes. Sixty-four percent of the isolates harboured an exoenzyme gene (exoS, exoT, exoU or exoY), and multiple exo genes were common. We conclude that P. aeruginosa is a major contaminant of fresh vegetables, which might be a source of infection for susceptible persons within the community.
Collapse
Affiliation(s)
| | - Paul D. Brown
- Biochemistry Section, Department of Basic Medical Sciences, University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
33
|
López-Berges MS, Capilla J, Turrà D, Schafferer L, Matthijs S, Jöchl C, Cornelis P, Guarro J, Haas H, Di Pietro A. HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. THE PLANT CELL 2012; 24:3805-22. [PMID: 22968717 PMCID: PMC3480304 DOI: 10.1105/tpc.112.098624] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of ΔhapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals.
Collapse
Affiliation(s)
- Manuel S. López-Berges
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
- Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain
| | - Javier Capilla
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - David Turrà
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
- Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain
| | - Lukas Schafferer
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Sandra Matthijs
- Institut de Recherches Microbiologiques Jean-Marie Wiame, 1070 Brussels, Belgium
| | - Christoph Jöchl
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research Group Microbiology, and Flanders Institute for Biotechnology, Department of Structural Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Josep Guarro
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, 14071 Córdoba, Spain
- Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Córdoba, Spain
- Address correspondence to
| |
Collapse
|
34
|
Elfarash A, Wei Q, Cornelis P. The soluble pyocins S2 and S4 from Pseudomonas aeruginosa bind to the same FpvAI receptor. Microbiologyopen 2012; 1:268-75. [PMID: 23170226 PMCID: PMC3496971 DOI: 10.1002/mbo3.27] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 11/08/2022] Open
Abstract
Soluble (S-type) pyocins are Pseudomonas aeruginosa bacteriocins that kill nonimmune P. aeruginosa cells by gaining entry via a specific receptor, which, in the case of pyocin S2, is the siderophore pyoverdine receptor FpvAI, and in the case of pyocin S3, FpvAII. The nucleic acid sequence at the positions 4327697-4327359 of P. aeruginosa PAO1 genome was not annotated, but it was predicted to encode the immunity gene of the flanking pyocin S4 gene (PA3866) based on our analysis of the genome sequence. Using RT-PCR, the expression of the immunity gene was detected, confirming the existence of an immunity gene overlapping the S4 pyocin gene. The PA3866 coding for pyocin S4 and the downstream gene coding for the immunity protein were cloned and expressed in Escherichia coli and the His-tagged S4 pyocin was obtained in pure form. Forty-three P. aeruginosa strains were typed via PCR to identify their ferripyoverdine receptor gene (fpvAI-III) and were tested for their sensitivity to pyocin S4. All S4-sensitive strains had the type I ferripyoverdine receptor fpvA gene. Some S4-resistant type I fpvA-positive strains were detected, but all of them had the S4 immunity gene, and, following the deletion of the immunity gene, became S4-sensitive. The fpvAI receptor gene was deleted in a S4-sensitive strain, and, as expected, the mutant became resistant to S4. The N-terminal receptor binding domain (RBD) of pyocin S2, which also uses the FpvAI receptor to enter the cell, was cloned in the pET-15b vector, and expressed in E. coli. When the purified RBD was mixed with pyocin S4 at different ratios, an inhibition of killing was observed, indicating that S2 RBD competes with the pyocin S4 for the binding to the FpvAI receptor. The S2 RBD was also shown to enhance the expression of the pvdA pyoverdine gene, suggesting that it, like pyoverdine, works via the known siderophore-mediated signalization pathway.
Collapse
Affiliation(s)
- Ameer Elfarash
- Department of Bioengineering Sciences, Research Group of Microbiology, VIB Department of Structural Biology, Vrije Universiteit Brussel Pleinlaan 2, B-1050, Brussels, Belgium
| | | | | |
Collapse
|
35
|
Lee W, van Baalen M, Jansen VAA. An evolutionary mechanism for diversity in siderophore-producing bacteria. Ecol Lett 2011; 15:119-25. [DOI: 10.1111/j.1461-0248.2011.01717.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Matthijs S, Laus G, Meyer JM, Abbaspour-Tehrani K, Schäfer M, Budzikiewicz H, Cornelis P. Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals 2011; 22:951-64. [PMID: 19459056 DOI: 10.1007/s10534-009-9247-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 05/05/2009] [Indexed: 11/26/2022]
Abstract
Pseudomonas entomophila L48 is a recently identified entomopathogenic bacterium which, upon ingestion, kills Drosophila melanogaster, and is closely related to P. putida. The complete genome of this species has been sequenced and therefore a genomic, genetic and structural analysis of the siderophore-mediated iron acquisition was undertaken. P. entomophila produces two siderophores, a structurally new and unique pyoverdine and the secondary siderophore pseudomonine, already described in P. fluorescens species. Structural analysis of the pyoverdine produced by the closely related P. putida KT2440 showed that this strain produces an already characterised pyoverdine, but different from P. entomophila, and no evidence was found for the production of a second siderophore. Growth stimulation assays with heterologous pyoverdines demonstrated that P. entomophila is able to utilize a large variety of structurally distinct pyoverdines produced by other Pseudomonas species. In contrast, P. putida KT2440 is able to utilize only its own pyoverdine and the pyoverdine produced by P. syringae LMG 1247. Our data suggest that although closely related, P. entomophila is a more efficient competitor for iron than P. putida.
Collapse
Affiliation(s)
- Sandra Matthijs
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Vrije Universiteit Brussel, Building E, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
D'aes J, Hua GKH, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, Dietrich LEP, Thomashow LS, Mavrodi DV, Höfte M. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. PHYTOPATHOLOGY 2011; 101:996-1004. [PMID: 21405991 DOI: 10.1094/phyto-11-10-0315] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two different anastomosis groups (AGs) of Rhizoctonia solani, the intermediately aggressive AG 2-2 and the highly aggressive AG 4 HGI, were included in growth-chamber experiments with bean plants. The wild-type strain CMR12a dramatically reduced disease severity caused by both R. solani AGs. A CLP-deficient and a phenazine-deficient mutant of CMR12a still protected bean plants, albeit to a lesser extent compared with the wild type. Two mutants deficient in both phenazine and CLP production completely lost their biocontrol activity. Disease-suppressive capacity of CMR12a decreased after washing bacteria before application to soil and thereby removing metabolites produced during growth on plate. In addition, microscopic observations revealed pronounced branching of hyphal tips of both R. solani AGs in the presence of CMR12a. More branched and denser mycelium was also observed for the phenazine-deficient mutant; however, neither the CLP-deficient mutant nor the mutants deficient in both CLPs and phenazines influenced hyphal growth. Together, results demonstrate the involvement of phenazines and CLPs during Pseudomonas CMR12a-mediated biocontrol of Rhizoctonia root rot of bean.
Collapse
Affiliation(s)
- Jolien D'aes
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pozuelo MJ, Jiménez PA, Valderrey AD, Fernández-Olmos A, Cantón R, Rotger R. [Polymorphism of mucA and fpvA genes in Pseudomonas aeruginosa isolates from cystic fibrosis patients: co-existence of genetically different variants]. Enferm Infecc Microbiol Clin 2010; 29:26-31. [PMID: 21194804 DOI: 10.1016/j.eimc.2010.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/06/2010] [Accepted: 05/20/2010] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Pseudomonas aeruginosa is able to colonize the lungs of cystic fibrosis patients (CF) in an adaptive process that results in the selection of a dominant strain through a process of genetic variation. METHODS One hundred and twenty tree isolates of P. aeruginosa were sequentially recovered from 6 CF patients during the routine follow-up or exacerbations over periods of 2 to 12 years in the Ramon y Cajal University Hospital (Madrid, Spain). Another 13 isolates were obtained from a single CF patient in a short-term study. They were analysed by restriction fragment length polymorphism (RFLP) and sequencing of mucA and fpvA genes, which code for the alginate biosynthesis regulator and a pyoverdin receptor, respectively, and their antibiotic susceptibility was studied by microdilution. RESULTS A dominant colonising strain was found in each patient based on the RFLP profile. The polymorphisms of mucA and fpvA genes correlated well with these profiles, but suggested a relationship between strains isolated from two brothers, not inferred by RFLP. Stop codon mutations in mucA were unique to each dominant strain, indicating the adaptive process suffered. The alternate detection of the same mucA and/or fpvA genotypic variants suggested the coexistence of several subpopulations. This hypothesis was confirmed in a prospective study in which 6 variants were isolated in 7 days from the same patient. CONCLUSIONS Genotypic variants of the P. aeruginosa dominant strains can coexist in the chronic colonization in CF patients. These variants can be undetected by RFLP and they might present variable antibiotic susceptibility.
Collapse
Affiliation(s)
- María José Pozuelo
- Departamento de Biología Celular, Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, España
| | | | | | | | | | | |
Collapse
|
39
|
Valderrey AD, Pozuelo MJ, Jiménez PA, Maciá MD, Oliver A, Rotger R. Chronic colonization by Pseudomonas aeruginosa of patients with obstructive lung diseases: cystic fibrosis, bronchiectasis, and chronic obstructive pulmonary disease. Diagn Microbiol Infect Dis 2010; 68:20-7. [DOI: 10.1016/j.diagmicrobio.2010.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/14/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
|
40
|
Impact of Pseudomonas aeruginosa genomic instability on the application of typing methods for chronic cystic fibrosis infections. J Clin Microbiol 2010; 48:2053-9. [PMID: 20410349 DOI: 10.1128/jcm.00019-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Liverpool epidemic strain (LES) of Pseudomonas aeruginosa is widespread among cystic fibrosis (CF) patients in the United Kingdom and has emerged recently in North America. In this study, we report the analysis of 24 "anomalous" CF isolates of P. aeruginosa that produced inconsistent results with regard to either pulsed-field gel electrophoresis (PFGE) or PCR tests for the LES. We used a new typing method, the ArrayTube genotyping system, to determine that of the 24 anomalous isolates tested, 13 were confirmed as the LES. LES isolates could not be clearly distinguished from non-LES isolates by two other commonly used genetic fingerprinting tests, randomly amplified polymorphic DNA (RAPD) analysis and BOX-PCR, and varied considerably in their carriage of LES genomic islands and prophages. The genomic instability of the LES suggests that identification of this emerging transmissible strain could be a challenging task, and it questions whether discrimination is always a desirable feature of bacterial typing methods in the context of chronic CF infections.
Collapse
|
41
|
Bakkal S, Robinson SM, Ordonez CL, Waltz DA, Riley MA. Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. MICROBIOLOGY-SGM 2010; 156:2058-2067. [PMID: 20378653 PMCID: PMC3068677 DOI: 10.1099/mic.0.036848-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa (Pa) and Burkholderia cepacia complex (Bcc) lung infections are responsible for much of the mortality in cystic fibrosis (CF). However, little is known about the ecological interactions between these two, often co-infecting, species. This study provides what is believed to be the first report of the intra- and interspecies bacteriocin-like inhibition potential of Pa and Bcc strains recovered from CF patients. A total of 66 strains were screened, and shown to possess bacteriocin-like inhibitory activity (97 % of Pa strains and 68 % of Bcc strains showed inhibitory activity), much of which acted across species boundaries. Further phenotypic and molecular-based assays revealed that the source of this inhibition differs for the two species. In Pa, much of the inhibitory activity is due to the well-known S and RF pyocins. In contrast, Bcc inhibition is due to unknown mechanisms, although RF-like toxins were implicated in some strains. These data suggest that bacteriocin-based inhibition may play a role in governing Pa and Bcc interactions in the CF lung and may, therefore, offer a novel approach to mediating these often fatal infections.
Collapse
Affiliation(s)
- Suphan Bakkal
- Department of Biology, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA 01003, USA
| | - Sandra M Robinson
- Department of Biology, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA 01003, USA
| | - Claudia L Ordonez
- Children's Hospital Boston, Division of Respiratory Diseases, 300 Longwood Avenue, Boston, MA 02115, USA
| | - David A Waltz
- Children's Hospital Boston, Division of Respiratory Diseases, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Margaret A Riley
- Department of Biology, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
42
|
Use of non-porous pillar array columns for the separation of Pseudomonas pyoverdine siderophores as an example of a real-world biological sample. J Chromatogr A 2009; 1216:8603-11. [DOI: 10.1016/j.chroma.2009.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/29/2009] [Accepted: 10/06/2009] [Indexed: 11/19/2022]
|
43
|
Pirnay JP, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, Deschaght P, Vaneechoutte M, Jennes S, Pitt T, De Vos D. Pseudomonas aeruginosa population structure revisited. PLoS One 2009; 4:e7740. [PMID: 19936230 PMCID: PMC2777410 DOI: 10.1371/journal.pone.0007740] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/26/2009] [Indexed: 12/25/2022] Open
Abstract
At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa "core lineage" and typically exhibited the exoS(+)/exoU(-) genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set.
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Burn Centre, Queen Astrid Military Hospital, Brussel, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Reid DW, Anderson GJ, Lamont IL. Role of lung iron in determining the bacterial and host struggle in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2009; 297:L795-802. [DOI: 10.1152/ajplung.00132.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cystic fibrosis (CF) is the most common lethal genetic disorder in Caucasian populations. It is a multiorgan system disease that affects the lungs, gastrointestinal tract, liver, and pancreas. The majority of morbidity and mortality in CF relates to chronic airway infection with a variety of bacterial species, commencing in very early infancy, which results in lung destruction and ultimately organ failure ( 41 , 43 ). This review focuses on iron homeostasis in the CF lung and its role in determining the success and chronicity of Pseudomonas aeruginosa infection. There have been previous excellent reviews regarding iron metabolism in the lower respiratory tract and mechanisms of P. aeruginosa iron acquisition, and we direct readers to these articles for further background reading ( 31 , 53 , 58 , 77 , 96 ). In this review, we have brought the “two sides of the coin” together to provide a holistic overview of the relationship between host and bacterial iron homeostasis and put this information into the context of current understanding on infection in the CF lung.
Collapse
Affiliation(s)
- D. W. Reid
- Menzies Research Institute, Hobart, Tasmania
| | - G. J. Anderson
- Iron Metabolism Unit, Queensland Institute of Medical Research, Brisbane, Australia; and
| | - I. L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
45
|
Cornelis P, Bodilis J. A survey of TonB-dependent receptors in fluorescent pseudomonads. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:256-262. [PMID: 23765855 DOI: 10.1111/j.1758-2229.2009.00041.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For bacteria with an aerobic lifestyle, iron is in the oxidized Fe(3+) form, hence poorly soluble. The solution is the synthesis and excretion of siderophores with a high affinity for iron. These ferrisiderophores are recognized by TonB-dependent outer membrane receptors in Gram-negative bacteria. Haem is also a source of iron and is captured via TonB-dependent receptors as well. In many cases bacterial genomes encode genes for receptors for siderophores produced by other microorganisms (xenosiderophores). Pseudomonads are known for their high adaptive capacity and it is therefore not surprising to find a relatively large number of genes encoding these receptors. In this study we analysed the genomes of three fluorescent pseudomonads available in the Pseudomonas genome database (http://www.pseudomonas.com; P. aeruginosa, P. putida, P. syringae) in order to extract the genes coding for TonB-dependent receptors. As expected we observed differences between species for the number of receptors. We also report differences within species, suggesting the acquisition of some genes via horizontal gene transfer, including those coding for the ferripyoverdine receptors. We also report cases where duplications of receptor genes are observed and the presence of 'receptor islands'. Our study strongly supports the notion of 'core' and 'accessory' TonB-dependent receptors within each species, with the ferripyoverdine receptors belonging to the last category.
Collapse
Affiliation(s)
- Pierre Cornelis
- Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute for Biotechnology (VIB), Vrije Universiteit Brussel, Building E, Pleinlaan 2, 1050 Brussels, Belgium. Université de Rouen, Laboratoire M2C, UMR CNRS 6143, groupe microbiologie, Bâtiment IRESE B, UFR des Sciences, 76821 Mont Saint Aignan, France
| | | |
Collapse
|
46
|
Bodilis J, Ghysels B, Osayande J, Matthijs S, Pirnay JP, Denayer S, De Vos D, Cornelis P. Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 2009; 11:2123-35. [PMID: 19397675 DOI: 10.1111/j.1462-2920.2009.01932.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium, which is also able to cause severe opportunistic infections in humans. The colonization of the host is importantly affected by the production of the high-affinity iron (III) scavenging peptidic siderophore pyoverdine. The species P. aeruginosa can be divided into three subgroups ('siderovars'), each characterized by the production of a specific pyoverdine and receptor (FpvA). We used a multiplex PCR to determine the FpvA siderovar on 345 P. aeruginosa strains from environmental or clinical origin. We found about the same proportion of each type in clinical strains, while FpvA type I was slightly over-represented (49%) in environmental strains. Our multiplex PCR also detected the presence or absence of an additional receptor for type I pyoverdine (FpvB). The fpvB gene was in fact present in the vast majority of P. aeruginosa strains (93%), regardless of their siderovar or their origin. Finally, molecular analyses of fpvA and fpvB genes highlighted a complex evolutionary history, probably linked to the central role of iron acquisition in the ecology and virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Josselin Bodilis
- Université de Rouen, Laboratoire M2C, UMR CNRS 6143, groupe microbiologie, Bâtiment IRESE B, UFR des Sciences, 76821 Mont Saint Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Iron acquisition by Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis. Biometals 2009; 22:53-60. [PMID: 19130260 DOI: 10.1007/s10534-008-9197-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/07/2008] [Indexed: 12/30/2022]
Abstract
The bacterium Pseudomonas aeruginosa is commonly isolated from the general environment and also infects the lungs of patients with cystic fibrosis (CF). Iron in mammals is not freely available to infecting pathogens although significant amounts of extracellular iron are available in the sputum that occurs in the lungs of CF patients. P. aeruginosa has a large number of systems to acquire this essential nutrient and many of these systems have been characterised in the laboratory. However, which iron acquisition systems are active in CF is not well understood. Here we review recent research that sheds light on how P. aeruginosa obtains iron in the lungs of CF patients.
Collapse
|
48
|
Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 2009; 11:1079-91. [PMID: 19207567 DOI: 10.1111/j.1462-2920.2008.01838.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyoverdine (PvdI) is the major siderophore secreted by Pseudomonas aeruginosa PAOI in order to get access to iron. After being loaded with iron in the extracellular medium, PvdI is transported across the bacterial outer membrane by the transporter, FpvAI. We used the spectral properties of PvdI to show that in addition to Fe(3+), this siderophore also chelates, but with lower efficiencies, all the 16 metals used in our screening. Afterwards, FpvAI at the cell surface binds Ag(+), Al(3+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Ga(3+), Hg(2+), Mn(2+), Ni(2+) or Zn(2+) in complex with PvdI. We used Inductively Coupled Plasma-Atomic Emission Spectrometry to monitor metal uptake in P. aeruginosa: TonB-dependent uptake, in the presence of PvdI, was only efficient for Fe(3+). Cu(2+), Ga(3+), Mn(2+) and Ni(2+) were also transported into the cell but with lower uptake rates. The presence of Al(3+), Cu(2+), Ga(3+), Mn(2+), Ni(2+) and Zn(2+) in the extracellular medium induced PvdI production in P. aeruginosa. All these data allow a better understanding of the behaviour of the PvdI uptake pathway in the presence of metals other than iron: FpvAI at the cell surface has broad metal specificity at the binding stage and it is highly selective for Fe(3+) only during the uptake process.
Collapse
Affiliation(s)
- Armelle Braud
- Métaux et Microorganismes, Chimie, Biologie et Applications, UMR 7175-LC1, CNRS-Université Louis Pasteur, ESBS, Illkirch, Strasbourg, France
| | | | | | | | | |
Collapse
|
49
|
Vinckx T, Matthijs S, Cornelis P. Loss of the oxidative stress regulator OxyR in Pseudomonas aeruginosa PAO1 impairs growth under iron-limited conditions. FEMS Microbiol Lett 2009; 288:258-65. [PMID: 19054085 DOI: 10.1111/j.1574-6968.2008.01360.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pyoverdine is the main siderophore secreted by fluorescent pseudomonads to scavenge iron in the extracellular environment. Iron uptake, however, needs to be tightly regulated, because free iron stimulates the formation of highly toxic oxygen derivatives. In the opportunistic pathogen Pseudomonas aeruginosa, the transcriptional regulator OxyR plays a key role in the upregulation of defense mechanisms against oxidative stress as it stimulates the expression of the antioxidant genes katB, ahpB and ahpCF after contact with oxidative stress-generating agents. Inactivation of the oxyR gene in Pseudomonas fluorescens ATCC 17400 and in P. aeruginosa PAO1 impairs pyoverdine-mediated iron uptake. The pyoverdine utilization defect can be restored by complementation with the oxyR gene of P. aeruginosa, as well as by adding catalase. Growth of the oxyR mutant in low- or high-iron media is also impaired at a low, but not at a high inoculum density. Uptake of radioactive (59)Fe pyoverdine is, however, not affected by the oxyR mutation, nor is the transcription of the fpvA gene encoding the ferripyoverdine receptor, suggesting that the defect lies in the inability to remove iron from the ferrisiderophore.
Collapse
Affiliation(s)
- Tiffany Vinckx
- VIB, Department of Molecular and Cellular Interactions, Laboratory of Microbial Interactions, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | |
Collapse
|
50
|
Foulquié Moreno MR, Baert B, Denayer S, Cornelis P, De Vuyst L. Characterization of the amylovorin locus ofLactobacillus amylovorusDCE 471, producer of a bacteriocin active againstPseudomonas aeruginosa, in combination with colistin and pyocins. FEMS Microbiol Lett 2008; 286:199-206. [DOI: 10.1111/j.1574-6968.2008.01275.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|