1
|
Kurylenko O, Ruchala J, Kruk B, Vasylyshyn R, Szczepaniak J, Dmytruk K, Sibirny A. The role of Mig1, Mig2, Tup1 and Hap4 transcription factors in regulation of xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha. FEMS Yeast Res 2021; 21:6275188. [PMID: 33983391 DOI: 10.1093/femsyr/foab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/07/2021] [Indexed: 01/20/2023] Open
Abstract
Glucose is a preferred carbon source for most living organisms. The metabolism and regulation of glucose utilization are well studied mostly for Saccharomyces cerevisiae. Xylose is the main pentose sugar released from the lignocellulosic biomass, which has a high potential as a renewable feedstock for bioethanol production. The thermotolerant yeast Ogataea (Hansenula) polymorpha, in contrast to S. cerevisiae, is able to metabolize and ferment not only glucose but also xylose. However, in non-conventional yeasts, the regulation of glucose and xylose metabolism remains poorly understood. In this study, we characterize the role of transcriptional factors Mig1, Mig2, Tup1 and Hap4 in the natural xylose-fermenting yeast O. polymorpha. The deletion of MIG1 had no significant influence on ethanol production either from xylose or glucose, however the deletion of both MIG1 and MIG2 reduced the amount of ethanol produced from these sugars. The deletion of HAP4-A and TUP1 genes resulted in increased ethanol production from xylose. Inversely, the overexpression of HAP4-A and TUP1 genes reduced ethanol production during xylose alcoholic fermentation. Thus, HAP4-A and TUP1 are involved in repression of xylose metabolism and fermentation in yeast O. polymorpha and their deletion could be a viable strategy to improve ethanol production from this pentose.
Collapse
Affiliation(s)
- Olena Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Justyna Ruchala
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine.,Department of Microbiology and Molecular Genetics, University of Rzeszow, Cwiklinskiej 2D, Building D10, Rzeszow 35-601, Poland
| | - Barbara Kruk
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Cwiklinskiej 2D, Building D10, Rzeszow 35-601, Poland
| | - Roksolana Vasylyshyn
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Justyna Szczepaniak
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Cwiklinskiej 2D, Building D10, Rzeszow 35-601, Poland
| | - Kostyantyn Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine.,Department of Microbiology and Molecular Genetics, University of Rzeszow, Cwiklinskiej 2D, Building D10, Rzeszow 35-601, Poland
| |
Collapse
|
2
|
Musa M, Perić M, Bou Dib P, Sobočanec S, Šarić A, Lovrić A, Rudan M, Nikolić A, Milosević I, Vlahoviček K, Raimundo N, Kriško A. Heat-induced longevity in budding yeast requires respiratory metabolism and glutathione recycling. Aging (Albany NY) 2019; 10:2407-2427. [PMID: 30227387 PMCID: PMC6188503 DOI: 10.18632/aging.101560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023]
Abstract
Heat-induced hormesis is a well-known conserved phenomenon in aging, traditionally attributed to the benefits conferred by increased amounts of heat shock (HS) proteins. Here we find that the key event for the HS-induced lifespan extension in budding yeast is the switch from glycolysis to respiratory metabolism. The resulting increase in reactive oxygen species activates the antioxidant response, supported by the redirection of glucose from glycolysis to the pentose phosphate pathway, increasing the production of NADPH. This sequence of events culminates in replicative lifespan (RLS) extension, implying decreased mortality per generation that persists even after the HS has finished. We found that switching to respiratory metabolism, and particularly the consequent increase in glutathione levels, were essential for the observed RLS extension. These results draw the focus away solely from the HS response and demonstrate that the antioxidant response has a key role in heat-induced hormesis. Our findings underscore the importance of the changes in cellular metabolic activity for heat-induced longevity in budding yeast.
Collapse
Affiliation(s)
- Marina Musa
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Matea Perić
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Peter Bou Dib
- University Medical Center Göttingen, Institute of Cellular Biochemistry, Göttingen, Germany
| | - Sandra Sobočanec
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Ana Šarić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Anita Lovrić
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Marina Rudan
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Andrea Nikolić
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Ira Milosević
- European Neuroscience Institute, University Medical Center Göttingen, Göttingen, Germany
| | - Kristian Vlahoviček
- University of Zagreb, Faculty of Natural Sciences and Mathematics, Zagreb, Croatia
| | - Nuno Raimundo
- University Medical Center Göttingen, Institute of Cellular Biochemistry, Göttingen, Germany
| | - Anita Kriško
- Mediterranean Institute for Life Sciences, Split, Croatia
| |
Collapse
|
3
|
Cerulus B, Jariani A, Perez-Samper G, Vermeersch L, Pietsch JMJ, Crane MM, New AM, Gallone B, Roncoroni M, Dzialo MC, Govers SK, Hendrickx JO, Galle E, Coomans M, Berden P, Verbandt S, Swain PS, Verstrepen KJ. Transition between fermentation and respiration determines history-dependent behavior in fluctuating carbon sources. eLife 2018; 7:e39234. [PMID: 30299256 PMCID: PMC6211830 DOI: 10.7554/elife.39234] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/05/2018] [Indexed: 01/24/2023] Open
Abstract
Cells constantly adapt to environmental fluctuations. These physiological changes require time and therefore cause a lag phase during which the cells do not function optimally. Interestingly, past exposure to an environmental condition can shorten the time needed to adapt when the condition re-occurs, even in daughter cells that never directly encountered the initial condition. Here, we use the molecular toolbox of Saccharomyces cerevisiae to systematically unravel the molecular mechanism underlying such history-dependent behavior in transitions between glucose and maltose. In contrast to previous hypotheses, the behavior does not depend on persistence of proteins involved in metabolism of a specific sugar. Instead, presence of glucose induces a gradual decline in the cells' ability to activate respiration, which is needed to metabolize alternative carbon sources. These results reveal how trans-generational transitions in central carbon metabolism generate history-dependent behavior in yeast, and provide a mechanistic framework for similar phenomena in other cell types.
Collapse
Affiliation(s)
- Bram Cerulus
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Abbas Jariani
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Gemma Perez-Samper
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Lieselotte Vermeersch
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Julian MJ Pietsch
- Centre for Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Matthew M Crane
- Centre for Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
- Department of PathologyUniversity of WashingtonWashingtonUnited States
| | - Aaron M New
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Brigida Gallone
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Miguel Roncoroni
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Maria C Dzialo
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Sander K Govers
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Jhana O Hendrickx
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Eva Galle
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Maarten Coomans
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Pieter Berden
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Sara Verbandt
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Peter S Swain
- Centre for Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Kevin J Verstrepen
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| |
Collapse
|
4
|
The Zinc Finger Protein Mig1 Regulates Mitochondrial Function and Azole Drug Susceptibility in the Pathogenic Fungus Cryptococcus neoformans. mSphere 2016; 1:mSphere00080-15. [PMID: 27303693 PMCID: PMC4863601 DOI: 10.1128/msphere.00080-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022] Open
Abstract
Fungal pathogens of humans are difficult to treat, and there is a pressing need to identify new targets for antifungal drugs and to obtain a detailed understanding of fungal proliferation in vertebrate hosts. In this study, we examined the roles of the regulatory proteins Mig1 and HapX in mitochondrial function and antifungal drug susceptibility in the fungus Cryptococcus neoformans. This pathogen is a particular threat to the large population of individuals infected with human immunodeficiency virus (HIV). Our analysis revealed regulatory interactions between Mig1 and HapX, and a role for Mig1 in mitochondrial functions, including respiration, tolerance for reactive oxygen species, and expression of genes for iron consumption and iron acquisition functions. Importantly, loss of Mig1 increased susceptibility to the antifungal drug fluconazole, which is commonly used to treat cryptococcal disease. These studies highlight an association between mitochondrial dysfunction and drug susceptibility that may provide new targets for the development of antifungal drugs. The opportunistic pathogen Cryptococcus neoformans causes fungal meningoencephalitis in immunocompromised individuals. In previous studies, we found that the Hap complex in this pathogen represses genes encoding mitochondrial respiratory functions and tricarboxylic acid (TCA) cycle components under low-iron conditions. The orthologous Hap2/3/4/5 complex in Saccharomyces cerevisiae exerts a regulatory influence on mitochondrial functions, and Hap4 is subject to glucose repression via the carbon catabolite repressor Mig1. In this study, we explored the regulatory link between a candidate ortholog of the Mig1 protein and the HapX component of the Hap complex in C. neoformans. This analysis revealed repression of MIG1 by HapX and activation of HAPX by Mig1 under low-iron conditions and Mig1 regulation of mitochondrial functions, including respiration, tolerance for reactive oxygen species, and expression of genes for iron consumption and iron acquisition functions. Consistently with these regulatory functions, a mig1Δ mutant had impaired growth on inhibitors of mitochondrial respiration and inducers of ROS. Furthermore, deletion of MIG1 provoked a dysregulation in nutrient sensing via the TOR pathway and impacted the pathway for cell wall remodeling. Importantly, loss of Mig1 increased susceptibility to fluconazole, thus further establishing a link between azole antifungal drugs and mitochondrial function. Mig1 and HapX were also required together for survival in macrophages, but Mig1 alone had a minimal impact on virulence in mice. Overall, these studies provide novel insights into a HapX/Mig1 regulatory network and reinforce an association between mitochondrial dysfunction and drug susceptibility that may provide new targets for the development of antifungal drugs. IMPORTANCE Fungal pathogens of humans are difficult to treat, and there is a pressing need to identify new targets for antifungal drugs and to obtain a detailed understanding of fungal proliferation in vertebrate hosts. In this study, we examined the roles of the regulatory proteins Mig1 and HapX in mitochondrial function and antifungal drug susceptibility in the fungus Cryptococcus neoformans. This pathogen is a particular threat to the large population of individuals infected with human immunodeficiency virus (HIV). Our analysis revealed regulatory interactions between Mig1 and HapX, and a role for Mig1 in mitochondrial functions, including respiration, tolerance for reactive oxygen species, and expression of genes for iron consumption and iron acquisition functions. Importantly, loss of Mig1 increased susceptibility to the antifungal drug fluconazole, which is commonly used to treat cryptococcal disease. These studies highlight an association between mitochondrial dysfunction and drug susceptibility that may provide new targets for the development of antifungal drugs.
Collapse
|
5
|
Petryk N, Zhou YF, Sybirna K, Mucchielli MH, Guiard B, Bao WG, Stasyk OV, Stasyk OG, Krasovska OS, Budin K, Reymond N, Imbeaud S, Coudouel S, Delacroix H, Sibirny A, Bolotin-Fukuhara M. Functional study of the Hap4-like genes suggests that the key regulators of carbon metabolism HAP4 and oxidative stress response YAP1 in yeast diverged from a common ancestor. PLoS One 2014; 9:e112263. [PMID: 25479159 PMCID: PMC4257542 DOI: 10.1371/journal.pone.0112263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/06/2014] [Indexed: 12/05/2022] Open
Abstract
The transcriptional regulator HAP4, induced by respiratory substrates, is involved in the balance between fermentation and respiration in S. cerevisiae. We identified putative orthologues of the Hap4 protein in all ascomycetes, based only on a conserved sixteen amino acid-long motif. In addition to this motif, some of these proteins contain a DNA-binding motif of the bZIP type, while being nonetheless globally highly divergent. The genome of the yeast Hansenula polymorpha contains two HAP4-like genes encoding the protein HpHap4-A which, like ScHap4, is devoid of a bZIP motif, and HpHap4-B which contains it. This species has been chosen for a detailed examination of their respective properties. Based mostly on global gene expression studies performed in the S. cerevisiae HAP4 disruption mutant (ScΔhap4), we show here that HpHap4-A is functionally equivalent to ScHap4, whereas HpHap4-B is not. Moreover HpHAP4-B is able to complement the H2O2 hypersensitivity of the ScYap1 deletant, YAP1 being, in S. cerevisiae, the main regulator of oxidative stress. Finally, a transcriptomic analysis performed in the ScΔyap1 strain overexpressing HpHAP4-B shows that HpHap4-B acts both on oxidative stress response and carbohydrate metabolism in a manner different from both ScYap1 and ScHap4. Deletion of these two genes in their natural host, H. polymorpha, confirms that HpHAP4-A participates in the control of the fermentation/respiration balance, while HpHAP4-B is involved in oxidative stress since its deletion leads to hypersensitivity to H2O2. These data, placed in an evolutionary context, raise new questions concerning the evolution of the HAP4 transcriptional regulation function and suggest that Yap1 and Hap4 have diverged from a unique regulatory protein in the fungal ancestor.
Collapse
Affiliation(s)
- Nataliya Petryk
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - You-Fang Zhou
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Kateryna Sybirna
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Marie-Hélène Mucchielli
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Wei-Guo Bao
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Oleh V. Stasyk
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
| | - Olena G. Stasyk
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- Department of Biochemistry, Ivan Franko Lviv National University, Lviv, Ukraine
| | | | - Karine Budin
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
| | - Nancie Reymond
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | | | | - Hervé Delacroix
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Andriy Sibirny
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- University of Rzeszow, Rzeszow, Poland
| | - Monique Bolotin-Fukuhara
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
6
|
Stein K, Chiang HL. Exocytosis and Endocytosis of Small Vesicles across the Plasma Membrane in Saccharomyces cerevisiae. MEMBRANES 2014; 4:608-29. [PMID: 25192542 PMCID: PMC4194051 DOI: 10.3390/membranes4030608] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/02/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022]
Abstract
When Saccharomyces cerevisiae is starved of glucose, the gluconeogenic enzymes fructose-1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase, isocitrate lyase, and malate dehydrogenase, as well as the non-gluconeogenic enzymes glyceraldehyde-3-phosphate dehydrogenase and cyclophilin A, are secreted into the periplasm. In the extracellular fraction, these secreted proteins are associated with small vesicles that account for more than 90% of the total number of extracellular structures observed. When glucose is added to glucose-starved cells, FBPase is internalized and associated with clusters of small vesicles in the cytoplasm. Specifically, the internalization of FBPase results in the decline of FBPase and vesicles in the extracellular fraction and their appearance in the cytoplasm. The clearance of extracellular vesicles and vesicle-associated proteins from the extracellular fraction is dependent on the endocytosis gene END3. This internalization is regulated when cells are transferred from low to high glucose. It is rapidly occurring and is a high capacity process, as clusters of vesicles occupy 10%–20% of the total volume in the cytoplasm in glucose re-fed cells. FBPase internalization also requires the VPS34 gene encoding PI3K. Following internalization, FBPase is delivered to the vacuole for degradation, whereas proteins that are not degraded may be recycled.
Collapse
Affiliation(s)
- Kathryn Stein
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Hui-Ling Chiang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
7
|
Xu W, Wang J, Li Q. Microarray studies on lager brewer's yeasts reveal cell status in the process of autolysis. FEMS Yeast Res 2014; 14:714-28. [DOI: 10.1111/1567-1364.12156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/22/2014] [Accepted: 04/03/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Weina Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| |
Collapse
|
8
|
Dueñas-Sánchez R, Gutiérrez G, Rincón AM, Codón AC, Benítez T. Transcriptional regulation of fermentative and respiratory metabolism in Saccharomyces cerevisiae industrial bakers' strains. FEMS Yeast Res 2012; 12:625-36. [PMID: 22591337 DOI: 10.1111/j.1567-1364.2012.00813.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022] Open
Abstract
Bakers' yeast-producing companies grow cells under respiratory conditions, at a very high growth rate. Some desirable properties of bakers' yeast may be altered if fermentation rather than respiration occurs during biomass production. That is why differences in gene expression patterns that take place when industrial bakers' yeasts are grown under fermentative, rather than respiratory conditions, were examined. Macroarray analysis of V1 strain indicated changes in gene expression similar to those already described in laboratory Saccharomyces cerevisiae strains: repression of most genes related to respiration and oxidative metabolism and derepression of genes related to ribosome biogenesis and stress resistance in fermentation. Under respiratory conditions, genes related to the glyoxylate and Krebs cycles, respiration, gluconeogenesis, and energy production are activated. DOG21 strain, a partly catabolite-derepressed mutant derived from V1, displayed gene expression patterns quite similar to those of V1, although lower levels of gene expression and changes in fewer number of genes as compared to V1 were both detected in all cases. However, under fermentative conditions, DOG21 mutant significantly increased the expression of SNF1 -controlled genes and other genes involved in stress resistance, whereas the expression of the HXK2 gene, involved in catabolite repression, was considerably reduced, according to the pleiotropic stress-resistant phenotype of this mutant. These results also seemed to suggest that stress-resistant genes control desirable bakers' yeast qualities.
Collapse
|
9
|
Giardina BJ, Stanley BA, Chiang HL. Comparative proteomic analysis of transition of saccharomyces cerevisiae from glucose-deficient medium to glucose-rich medium. Proteome Sci 2012; 10:40. [PMID: 22691627 PMCID: PMC3607935 DOI: 10.1186/1477-5956-10-40] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/29/2012] [Indexed: 12/26/2022] Open
Abstract
Background When glucose is added to Saccharomyces cerevisiae grown in non-fermentable carbon sources, genes encoding ribosomal, cell-cycle, and glycolytic proteins are induced. By contrast, genes involved in mitochondrial functions, gluconeogenesis, and the utilization of other carbon sources are repressed. Glucose also causes the activation of the plasma membrane ATPase and the inactivation of gluconeogenic enzymes and mitochondrial enzymes. The goals of this study were to use the iTRAQ-labeling mass spectrometry technique to identify proteins whose relative levels change in response to glucose re-feeding and to correlate changes in protein abundance with changes in transcription and enzymatic activities. We used an experimental condition that causes the degradation of gluconeogenic enzymes when glucose starved cells are replenished with glucose. Identification of these enzymes as being down-regulated by glucose served as an internal control. Furthermore, we sought to identify new proteins that were either up-regulated or down-regulated by glucose. Results We have identified new and known proteins that change their relative levels in cells that were transferred from medium containing low glucose to medium containing high glucose. Up-regulated proteins included ribosomal subunits, proteins involved in protein translation, and the plasma membrane ATPase. Down-regulated proteins included small heat shock proteins, mitochondrial proteins, glycolytic enzymes, and gluconeogenic enzymes. Ach1p is involved in acetate metabolism and is also down-regulated by glucose. Conclusions We have identified known proteins that have previously been reported to be regulated by glucose as well as new glucose-regulated proteins. Up-regulation of ribosomal proteins and proteins involved in translation may lead to an increase in protein synthesis and in nutrient uptake. Down-regulation of glycolytic enzymes, gluconeogenic enzymes, and mitochondrial proteins may result in changes in glycolysis, gluconeogenesis, and mitochondrial functions. These changes may be beneficial for glucose-starved cells to adapt to the addition of glucose.
Collapse
Affiliation(s)
- Bennett J Giardina
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| | | | | |
Collapse
|
10
|
Kotiadis VN, Leadsham JE, Bastow EL, Gheeraert A, Whybrew JM, Bard M, Lappalainen P, Gourlay CW. Identification of new surfaces of cofilin that link mitochondrial function to the control of multi-drug resistance. J Cell Sci 2012; 125:2288-99. [PMID: 22344251 DOI: 10.1242/jcs.099390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ADF/cofilin family proteins are essential regulators of actin cytoskeletal dynamics. Recent evidence also implicates cofilin in the regulation of mitochondrial function. Here, we identify new functional surfaces of cofilin that are linked with mitochondrial function and stress responses in the budding yeast Saccharomyces cerevisiae. Our data link surfaces of cofilin that are involved in separable activities of actin filament disassembly or stabilisation, to the regulation of mitochondrial morphology and the activation status of Ras, respectively. Importantly, charge alterations to conserved surfaces of cofilin that do not interfere with its actin regulatory activity lead to a dramatic increase in respiratory function that triggers a retrograde signal to upregulate a battery of ABC transporters and concurrent metabolic changes that support multi-drug resistance. We hypothesise that cofilin functions within a bio-sensing system that connects the cytoskeleton and mitochondrial function to environmental challenge.
Collapse
Affiliation(s)
- Vassilios N Kotiadis
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p. Appl Environ Microbiol 2011; 77:1981-9. [PMID: 21257817 DOI: 10.1128/aem.02219-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the aim to reduce fermentation by-products and to promote respiratory metabolism by shifting the fermentative/oxidative balance, we evaluated the constitutive overexpression of the SAK1 and HAP4 genes in Saccharomyces cerevisiae. Sak1p is one of three kinases responsible for the phosphorylation, and thereby the activation, of the Snf1p complex, while Hap4p is the activator subunit of the Hap2/3/4/5 transcriptional complex. We compared the physiology of a SAK1-overexpressing strain with that of a strain overexpressing the HAP4 gene in wild-type and sdh2 deletion (respiratory-deficient) backgrounds. Both SAK1 and HAP4 overexpressions led to the upregulation of glucose-repressed genes and to reduced by-product formation rates (ethanol and glycerol). SAK1 overexpression had a greater impact on growth rates than did HAP4 overexpression. Elevated transcript levels of SAK1, but not HAP4, resulted in increased biomass yields in batch cultures grown on glucose (aerobic and excess glucose) as well as on nonfermentable carbon sources. SAK1 overexpression, but not the combined overexpression of SAK1 and HAP4 or the overexpression of HAP4 alone, restored growth on ethanol in an sdh2 deletion strain. In glucose-grown shake flask cultures, the sdh2 deletion strain with SAK1 and HAP4 overexpression produced succinic acid at a titer of 8.5 g liter(-1) and a yield of 0.26 mol (mol glucose)(-1) within 216 h. We here report for the first time that a constitutively high level of expression of SAK1 alleviates glucose repression and shifts the fermentative/oxidative balance under both glucose-repressed and -derepressed conditions.
Collapse
|
12
|
Leadsham JE, Gourlay CW. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol 2010; 11:92. [PMID: 21108829 PMCID: PMC3001716 DOI: 10.1186/1471-2121-11-92] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 12/31/2022] Open
Abstract
Background Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. Results We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. Conclusions We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast.
Collapse
Affiliation(s)
- Jane E Leadsham
- Department of Biosciences, University of Kent, Canterbury Kent, England, UK
| | | |
Collapse
|
13
|
Integration of metabolic modeling and phenotypic data in evaluation and improvement of ethanol production using respiration-deficient mutants of Saccharomyces cerevisiae. Appl Environ Microbiol 2008; 74:5809-16. [PMID: 18586960 DOI: 10.1128/aem.00009-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flux balance analysis and phenotypic data were used to provide clues to the relationships between the activities of gene products and the phenotypes resulting from the deletion of genes involved in respiratory function in Saccharomyces cerevisiae. The effect of partial or complete respiratory deficiency on the ethanol production and growth characteristics of hap4Delta/hap4Delta, mig1Delta/mig1Delta, qdr3Delta/qdr3Delta, pdr3Delta/pdr3Delta, qcr7Delta/qcr7Delta, cyt1Delta/cyt1Delta, and rip1Delta/rip1Delta mutants grown in microaerated chemostats was investigated. The study provided additional evidence for the importance of the selection of a physiologically relevant objective function, and it may improve quantitative predictions of exchange fluxes, as well as qualitative estimations of changes in intracellular fluxes. Ethanol production was successfully predicted by flux balance analysis in the case of the qdr3Delta/qdr3Delta mutant, with maximization of ethanol production as the objective function, suggesting an additional role for Qdr3p in respiration. The absence of similar changes in estimated intracellular fluxes in the qcr7Delta/qcr7Delta mutant compared to the rip1Delta/rip1Delta and cyt1Delta/cyt1Delta mutants indicated that the effect of the deletion of this subunit of complex III was somehow compensated for. Analysis of predicted flux distributions indicated self-organization of intracellular fluxes to avoid NAD(+)/NADH imbalance in rip1Delta/rip1Delta and cyt1Delta/cyt1Delta mutants, but not the qcr7Delta/qcr7Delta mutant. The flux through the glycerol efflux channel, Fps1p, was estimated to be zero in all strains under the investigated conditions. This indicates that previous strategies for improving ethanol production, such as the overexpression of the glutamate synthase gene GLT1 in a GDH1 deletion background or deletion of the glycerol efflux channel gene FPS1 and overexpression of GLT1, are unnecessary in a respiration-deficient background.
Collapse
|
14
|
Badotti F, Dário MG, Alves SL, Cordioli MLA, Miletti LC, de Araujo PS, Stambuk BU. Switching the mode of sucrose utilization by Saccharomyces cerevisiae. Microb Cell Fact 2008; 7:4. [PMID: 18304329 PMCID: PMC2268662 DOI: 10.1186/1475-2859-7-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Accepted: 02/27/2008] [Indexed: 11/17/2022] Open
Abstract
Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.
Collapse
Affiliation(s)
- Fernanda Badotti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
15
|
Schuurmans JM, Boorsma A, Lascaris R, Hellingwerf KJ, Teixeira de Mattos MJ. Physiological and transcriptional characterization of Saccharomyces cerevisiae strains with modified expression of catabolic regulators. FEMS Yeast Res 2007; 8:26-34. [PMID: 17892474 DOI: 10.1111/j.1567-1364.2007.00309.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A comparative physiological and transcriptional study is presented on wild-type Saccharomyces cerevisiae and mutants with altered levels of catabolic regulators: hxk2Delta lacking hexokinase2, HAP4 / overproducing hap4p and hxk2 Delta HAP4 upward arrow. Relative to the wild-type, HAP4 / showed the same growth rate with some increased yield on glucose, and hxk2Delta grew 28% slower but with a dramatically improved yield. Hxk2 Delta HAP4 / grew 14% slower but showed fully oxidative growth. A higher yield correlated with increased respiration. For both hxk2 Delta strains, glucose repression was suppressed (upregulation of high-affinity sugar transporters, invertase and oxidative phosphorylation). T-profiler analysis showed that genes under control of the hap2/3/4/5-binding motif were significantly altered in expression in all strains. HAP4 overexpression, directly or in hxk2 knockouts, led to repression of the genes containing the Zap1p motif including ZAP1 itself, indicating altered zinc metabolism. Whereas HAP4 overexpression resulted in a shift towards oxidative metabolism only, deletion of HXK2 resulted in a strain that, in addition to being oxidative, almost completely lacked the ability to sense glucose. As the double mutant had an energy efficiency close to the maximum even with excess glucose and was derepressed to a larger extent and over a broader range, the functioning of the two regulators is in general considered to be additive.
Collapse
Affiliation(s)
- J Merijn Schuurmans
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Dueñas-Sánchez R, Codón AC, Benítez T. Overexpression of transcriptional factor HAP4 in industrial bakers’ yeast. J Biotechnol 2007. [DOI: 10.1016/j.jbiotec.2007.07.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Wiebe MG, Rintala E, Tamminen A, Simolin H, Salusjärvi L, Toivari M, Kokkonen JT, Kiuru J, Ketola RA, Jouhten P, Huuskonen A, Maaheimo H, Ruohonen L, Penttilä M. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res 2007; 8:140-54. [PMID: 17425669 DOI: 10.1111/j.1567-1364.2007.00234.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saccharomyces cerevisiae CEN.PK113-1A was grown in glucose-limited chemostat culture with 0%, 0.5%, 1.0%, 2.8% or 20.9% O2 in the inlet gas (D=0.10 h(-1), pH 5, 30 degrees C) to determine the effects of oxygen on 17 metabolites and 69 genes related to central carbon metabolism. The concentrations of tricarboxylic acid cycle (TCA) metabolites and all glycolytic metabolites except 2-phosphoglycerate+3-phosphoglycerate and phosphoenolpyruvate were higher in anaerobic than in fully aerobic conditions. Provision of only 0.5-1% O2 reduced the concentrations of most metabolites, as compared with anaerobic conditions. Transcription of most genes analyzed was reduced in 0%, 0.5% or 1.0% O2 relative to cells grown in 2.8% or 20.9% O2. Ethanol production was observed with 2.8% or less O2. After steady-state analysis in defined oxygen concentrations, the conditions were switched from aerobic to anaerobic. Metabolite and transcript levels were monitored for up to 96 h after the transition, and this showed that more than 30 h was required for the cells to fully adapt to anaerobiosis. Levels of metabolites of upper glycolysis and the TCA cycle increased following the transition to anaerobic conditions, whereas those of metabolites of lower glycolysis generally decreased. Gene regulation was more complex, with some genes showing transient upregulation or downregulation during the adaptation to anaerobic conditions.
Collapse
|
18
|
Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 2007; 96:134-45. [PMID: 16878332 DOI: 10.1002/bit.21135] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glucose repression in the yeast Saccharomyces cerevisiae has evolved as a complex regulatory system involving several different pathways. There are two main pathways involved in signal transduction. One has a role in glucose sensing and regulation of glucose transport, while another takes part in repression of a wide range of genes involved in utilization of alternative carbon sources. In this work, we applied a systems biology approach to study the interaction between these two pathways. Through genome-wide transcription analysis of strains with disruption of HXK2, GRR1, MIG1, the combination of MIG1 and MIG2, and the parental strain, we identified 393 genes to have significantly changed expression levels. To identify co-regulation patterns in the different strains we applied principal component analysis. Disruption of either GRR1 or HXK2 were both found to have profound effects on transcription of genes related to TCA cycle and respiration, as well as ATP synthesis coupled proton transport, all displaying an increased expression. The hxk2Delta strain showed reduced overflow metabolism towards ethanol relative to the parental strain. We also used a genome-scale metabolic model to identify reporter metabolites, and found that there is a high degree of consistency between the identified reporter metabolites and the physiological effects observed in the different mutants. Our systems biology approach points to close interaction between the two pathways, and our metabolism driven analysis of transcription data may find a wider application for analysis of cross-talk between different pathways involved in regulation of metabolism.
Collapse
Affiliation(s)
- Steen Lund Westergaard
- Center for Microbial Biotechnology, BioCentrum, Technical University of Denmark, Building 223, DK-2800 Kgs, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
19
|
Raghevendran V, Patil KR, Olsson L, Nielsen J. Hap4 is not essential for activation of respiration at low specific growth rates in Saccharomyces cerevisiae. J Biol Chem 2006; 281:12308-14. [PMID: 16522629 DOI: 10.1074/jbc.m512972200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Saccharomyces cerevisiae, the heme-activated protein complex Hap2/3/4/5 plays a major role in the transcription of genes involved in respiration. Thus, overexpression of HAP4 has been shown to result in a 10% increase in the respiratory capacity. Here the physiology of a HAP4-deleted S. cerevisiae strain was investigated, and we found that the hap4delta S. cerevisiae exhibited poor growth on ethanol, although the growth rate on glucose was indifferent from the wild type in aerobic as well as anaerobic cultures. Moreover, it exhibited a large (75%) reduction in the critical glucose uptake rate at which fermentative metabolism is onset, indicating a substantial reduction in respiratory capacity. We also performed whole genome transcription analysis for the hap4delta and the wild type, grown in carbon-limited chemostat cultures operated at a dilution rate of 0.05 h(-1). Although both strains exhibited respiratory metabolism, there was significant change in expression of many genes in the hap4delta strain. These genes are involved in several different parts of the metabolism, including oxidative stress response, peroxisomal functions, and energy generation. This study strongly indicates that Hap4 activation only occurs at intermediate specific growth rates, below which the transcription of genes responsible for respiration is dependent on the Hap2/3/5 complex and above which the Hap4 protein augments the transcription. Furthermore, statistical analysis of the transcription data and integration of the data with a genome scale metabolic network provided new insight and evidence for the role of Hap4 in transcriptional regulation of mitochondrial respiration.
Collapse
Affiliation(s)
- Vijayendran Raghevendran
- Center for Microbial Biotechnology, Building 223, BioCentrum-DTU, Technical University of Denmark, DK 2800, Kongens Lyngby, Denmark
| | | | | | | |
Collapse
|
20
|
Current awareness on yeast. Yeast 2004; 21:1233-40. [PMID: 15580707 DOI: 10.1002/yea.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|