1
|
Mearls EB, Jackter J, Colquhoun JM, Farmer V, Matthews AJ, Murphy LS, Fenton C, Camp AH. Transcription and translation of the sigG gene is tuned for proper execution of the switch from early to late gene expression in the developing Bacillus subtilis spore. PLoS Genet 2018; 14:e1007350. [PMID: 29702640 PMCID: PMC5942855 DOI: 10.1371/journal.pgen.1007350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/09/2018] [Accepted: 04/03/2018] [Indexed: 12/01/2022] Open
Abstract
A cascade of alternative sigma factors directs developmental gene expression during spore formation by the bacterium Bacillus subtilis. As the spore develops, a tightly regulated switch occurs in which the early-acting sigma factor σF is replaced by the late-acting sigma factor σG. The gene encoding σG (sigG) is transcribed by σF and by σG itself in an autoregulatory loop; yet σG activity is not detected until σF-dependent gene expression is complete. This separation in σF and σG activities has been suggested to be due at least in part to a poorly understood intercellular checkpoint pathway that delays sigG expression by σF. Here we report the results of a careful examination of sigG expression during sporulation. Unexpectedly, our findings argue against the existence of a regulatory mechanism to delay sigG transcription by σF and instead support a model in which sigG is transcribed by σF with normal timing, but at levels that are very low. This low-level expression of sigG is the consequence of several intrinsic features of the sigG regulatory and coding sequence—promoter spacing, secondary structure potential of the mRNA, and start codon identity—that dampen its transcription and translation. Especially notable is the presence of a conserved hairpin in the 5’ leader sequence of the sigG mRNA that occludes the ribosome-binding site, reducing translation by up to 4-fold. Finally, we demonstrate that misexpression of sigG from regulatory and coding sequences lacking these features triggers premature σG activity in the forespore during sporulation, as well as inappropriate σG activity during vegetative growth. Altogether, these data indicate that transcription and translation of the sigG gene is tuned to prevent vegetative expression of σG and to ensure the precise timing of the switch from σF to σG in the developing spore. Global changes in gene expression occur during normal cellular growth and development, as well as during cancer cell transformation and bacterial pathogenesis. In this study we have investigated the molecular mechanisms that drive the switch from early to late developmental gene expression during spore formation by the model bacterium Bacillus subtilis. At early times, gene expression in the developing spore is directed by the transcription factor σF; at later times σF is replaced by σG. An important, yet poorly understood aspect of this σF-to-σG transition is how σG activation is delayed until the early, σF-directed phase of gene expression is complete. Here we have carefully examined expression of the gene encoding σG, sigG, and found that its transcription and translation are ordinarily dampened by several features of its regulatory and coding sequences. Moreover, we have found that this “tuning” of sigG expression is required for proper timing of the switch to σG. These results reframe our understanding of how sigG is regulated during B. subtilis sporulation and, more broadly, advance our understanding of how global changes in gene expression can be precisely executed at the molecular/genetic level.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/physiology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Inverted Repeat Sequences
- Models, Genetic
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sigma Factor/biosynthesis
- Sigma Factor/genetics
- Signal Transduction
- Spores, Bacterial/genetics
- Spores, Bacterial/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Elizabeth B. Mearls
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Jacquelin Jackter
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | | | - Veronica Farmer
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Allison J. Matthews
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Laura S. Murphy
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Colleen Fenton
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Amy H. Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
- * E-mail:
| |
Collapse
|
2
|
Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet 2013; 9:e1003660. [PMID: 23950727 PMCID: PMC3738446 DOI: 10.1371/journal.pgen.1003660] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/28/2013] [Indexed: 12/19/2022] Open
Abstract
The Gram-positive, spore-forming pathogen Clostridium difficile is the leading definable cause of healthcare-associated diarrhea worldwide. C. difficile infections are difficult to treat because of their frequent recurrence, which can cause life-threatening complications such as pseudomembranous colitis. The spores of C. difficile are responsible for these high rates of recurrence, since they are the major transmissive form of the organism and resistant to antibiotics and many disinfectants. Despite the importance of spores to the pathogenesis of C. difficile, little is known about their composition or formation. Based on studies in Bacillus subtilis and other Clostridium spp., the sigma factors σ(F), σ(E), σ(G), and σ(K) are predicted to control the transcription of genes required for sporulation, although their specific functions vary depending on the organism. In order to determine the roles of σ(F), σ(E), σ(G), and σ(K) in regulating C. difficile sporulation, we generated loss-of-function mutations in genes encoding these sporulation sigma factors and performed RNA-Sequencing to identify specific sigma factor-dependent genes. This analysis identified 224 genes whose expression was collectively activated by sporulation sigma factors: 183 were σ(F)-dependent, 169 were σ(E)-dependent, 34 were σ(G)-dependent, and 31 were σ(K)-dependent. In contrast with B. subtilis, C. difficile σ(E) was dispensable for σ(G) activation, σ(G) was dispensable for σ(K) activation, and σ(F) was required for post-translationally activating σ(G). Collectively, these results provide the first genome-wide transcriptional analysis of genes induced by specific sporulation sigma factors in the Clostridia and highlight that diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes.
Collapse
|
3
|
Pleiotropic functions of catabolite control protein CcpA in Butanol-producing Clostridium acetobutylicum. BMC Genomics 2012; 13:349. [PMID: 22846451 PMCID: PMC3507653 DOI: 10.1186/1471-2164-13-349] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/28/2012] [Indexed: 12/24/2022] Open
Abstract
Background Clostridium acetobutylicum has been used to produce butanol in industry. Catabolite control protein A (CcpA), known to mediate carbon catabolite repression (CCR) in low GC gram-positive bacteria, has been identified and characterized in C. acetobutylicum by our previous work (Ren, C. et al. 2010, Metab Eng 12:446–54). To further dissect its regulatory function in C. acetobutylicum, CcpA was investigated using DNA microarray followed by phenotypic, genetic and biochemical validation. Results CcpA controls not only genes in carbon metabolism, but also those genes in solvent production and sporulation of the life cycle in C. acetobutylicum: i) CcpA directly repressed transcription of genes related to transport and metabolism of non-preferred carbon sources such as d-xylose and l-arabinose, and activated expression of genes responsible for d-glucose PTS system; ii) CcpA is involved in positive regulation of the key solventogenic operon sol (adhE1-ctfA-ctfB) and negative regulation of acidogenic gene bukII; and iii) transcriptional alterations were observed for several sporulation-related genes upon ccpA inactivation, which may account for the lower sporulation efficiency in the mutant, suggesting CcpA may be necessary for efficient sporulation of C. acetobutylicum, an important trait adversely affecting the solvent productivity. Conclusions This study provided insights to the pleiotropic functions that CcpA displayed in butanol-producing C. acetobutylicum. The information could be valuable for further dissecting its pleiotropic regulatory mechanism in C. acetobutylicum, and for genetic modification in order to obtain more effective butanol-producing Clostridium strains.
Collapse
|
4
|
Song K. Recognition of prokaryotic promoters based on a novel variable-window Z-curve method. Nucleic Acids Res 2011; 40:963-71. [PMID: 21954440 PMCID: PMC3273801 DOI: 10.1093/nar/gkr795] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcription is the first step in gene expression, and it is the step at which most of the regulation of expression occurs. Although sequenced prokaryotic genomes provide a wealth of information, transcriptional regulatory networks are still poorly understood using the available genomic information, largely because accurate prediction of promoters is difficult. To improve promoter recognition performance, a novel variable-window Z-curve method is developed to extract general features of prokaryotic promoters. The features are used for further classification by the partial least squares technique. To verify the prediction performance, the proposed method is applied to predict promoter fragments of two representative prokaryotic model organisms (Escherichia coli and Bacillus subtilis). Depending on the feature extraction and selection power of the proposed method, the promoter prediction accuracies are improved markedly over most existing approaches: for E. coli, the accuracies are 96.05% (σ70 promoters, coding negative samples), 90.44% (σ70 promoters, non-coding negative samples), 92.13% (known sigma-factor promoters, coding negative samples), 92.50% (known sigma-factor promoters, non-coding negative samples), respectively; for B. subtilis, the accuracies are 95.83% (known sigma-factor promoters, coding negative samples) and 99.09% (known sigma-factor promoters, non-coding negative samples). Additionally, being a linear technique, the computational simplicity of the proposed method makes it easy to run in a matter of minutes on ordinary personal computers or even laptops. More importantly, there is no need to optimize parameters, so it is very practical for predicting other species promoters without any prior knowledge or prior information of the statistical properties of the samples.
Collapse
Affiliation(s)
- Kai Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Serrano M, Real G, Santos J, Carneiro J, Moran CP, Henriques AO. A negative feedback loop that limits the ectopic activation of a cell type-specific sporulation sigma factor of Bacillus subtilis. PLoS Genet 2011; 7:e1002220. [PMID: 21935351 PMCID: PMC3174212 DOI: 10.1371/journal.pgen.1002220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/18/2011] [Indexed: 11/18/2022] Open
Abstract
Two highly similar RNA polymerase sigma subunits, σF and σG, govern the early and late phases of forespore-specific gene expression during spore differentiation in Bacillus subtilis. σF drives synthesis of σG but the latter only becomes active once engulfment of the forespore by the mother cell is completed, its levels rising quickly due to a positive feedback loop. The mechanisms that prevent premature or ectopic activation of σG while discriminating between σF and σG in the forespore are not fully comprehended. Here, we report that the substitution of an asparagine by a glutamic acid at position 45 of σG (N45E) strongly reduced binding by a previously characterized anti-sigma factor, CsfB (also known as Gin), in vitro, and increased the activity of σG in vivo. The N45E mutation caused the appearance of a sub-population of pre-divisional cells with strong activity of σG. CsfB is normally produced in the forespore, under σF control, but sigGN45E mutant cells also expressed csfB and did so in a σG-dependent manner, autonomously from σF. Thus, a negative feedback loop involving CsfB counteracts the positive feedback loop resulting from ectopic σG activity. N45 is invariant in the homologous position of σG orthologues, whereas its functional equivalent in σF proteins, E39, is highly conserved. While CsfB does not bind to wild-type σF, a E39N substitution in σF resulted in efficient binding of CsfB to σF. Moreover, under certain conditions, the E39N alteration strongly restrains the activity of σF in vivo, in a csfB-dependent manner, and the efficiency of sporulation. Therefore, a single amino residue, N45/E39, is sufficient for the ability of CsfB to discriminate between the two forespore-specific sigma factors in B. subtilis. Positive auto-regulation of a transcriptional activator during cell differentiation or development often allows the rapid and robust deployment of cell- and stage-specific genes and the routing of the differentiating cell down a specific path. Positive auto-regulation however, raises the potential for inappropriate activity of the transcription factor. Here we unravel the role of a previously characterized anti-sigma factor, CsfB, in a negative feedback loop that prevents ectopic expression of the sporulation-specific sigma factor σG of Bacillus subtilis. σG is activated in the forespore, one of the two chambers of the developing cell, at an intermediate stage in spore development. Once active, a positive feedback loop allows the rapid accumulation of σG. Synthesis of both σG and CsfB is under the control of the early forespore regulator σF, and CsfB may help prevent the premature activity of σG in the forespore. However, CsfB is also produced under σG control in non-sporulating cells, setting a negative feedback loop that we show limits its ectopic activation. We further show that an asparagine residue conserved among σG orthologues is critical for binding and inhibition by CsfB, whereas the exclusion of asparagine from the homologous position in σF confers immunity to CsfB.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Gonçalo Real
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joana Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Charles P. Moran
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
6
|
Doan T, Morlot C, Meisner J, Serrano M, Henriques AO, Moran CP, Rudner DZ. Novel secretion apparatus maintains spore integrity and developmental gene expression in Bacillus subtilis. PLoS Genet 2009; 5:e1000566. [PMID: 19609349 PMCID: PMC2703783 DOI: 10.1371/journal.pgen.1000566] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 06/18/2009] [Indexed: 11/23/2022] Open
Abstract
Sporulation in Bacillus subtilis involves two cells that follow separate but coordinately regulated developmental programs. Late in sporulation, the developing spore (the forespore) resides within a mother cell. The regulation of the forespore transcription factor σG that acts at this stage has remained enigmatic. σG activity requires eight mother-cell proteins encoded in the spoIIIA operon and the forespore protein SpoIIQ. Several of the SpoIIIA proteins share similarity with components of specialized secretion systems. One of them resembles a secretion ATPase and we demonstrate that the ATPase motifs are required for σG activity. We further show that the SpoIIIA proteins and SpoIIQ reside in a multimeric complex that spans the two membranes surrounding the forespore. Finally, we have discovered that these proteins are all required to maintain forespore integrity. In their absence, the forespore develops large invaginations and collapses. Importantly, maintenance of forespore integrity does not require σG. These results support a model in which the SpoIIIA-SpoIIQ proteins form a novel secretion apparatus that allows the mother cell to nurture the forespore, thereby maintaining forespore physiology and σG activity during spore maturation. During development, cell–cell signaling pathways coordinate programs of gene expression in neighboring cells. Cell–cell signaling is typically achieved by the secretion of a signaling ligand followed by its binding to a membrane receptor on the surface of a neighboring cell (or cells). The ligand-bound receptor directly or indirectly triggers transcription factor activation. Here we present evidence for a non-canonical signaling pathway that links developmental gene expression in the forespore and mother cell during spore formation in Bacillus subtilis. Our data support a model in which a novel secretion system is assembled in the double membrane that encases the spore within the mother cell. This apparatus is not involved in transducing a specific activating signal but rather allows the mother cell to nurture the spore and thereby maintain the spore program of developmental gene expression.
Collapse
Affiliation(s)
- Thierry Doan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cecile Morlot
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeffrey Meisner
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Monica Serrano
- Microbial Development Group, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O. Henriques
- Microbial Development Group, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Charles P. Moran
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David Z. Rudner
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Karmazyn-Campelli C, Rhayat L, Carballido-López R, Duperrier S, Frandsen N, Stragier P. How the early sporulation sigma factor sigmaF delays the switch to late development in Bacillus subtilis. Mol Microbiol 2008; 67:1169-80. [PMID: 18208527 DOI: 10.1111/j.1365-2958.2008.06121.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sporulation in Bacillus subtilis is a primitive differentiation process involving two cell types, the forespore and the mother cell. Each cell implements two successive transcription programmes controlled by specific sigma factors. We report that activity of sigma(G), the late forespore sigma factor, is kept in check by Gin, the product of csfB, a gene controlled by sigma(F), the early forespore sigma factor. Gin abolishes sigma(G) transcriptional activity when sigma(G) is artificially synthesized during growth, but has no effect on sigma(F). Gin interacts strongly with sigma(G) but not with sigma(F) in a yeast two-hybrid experiment. The absence of Gin allows sigma(G) to be active during sporulation independently of the mother-cell development to which it is normally coupled. Premature sigma(G) activity leads to the formation of slow-germinating spores, and complete deregulation of sigma(G) synthesis is lethal when combined with gin inactivation. Gin allows sigma(F) to delay the switch to the late forespore transcription programme by preventing sigma(G) to take over before the cell has reached a critical stage of development. A similar strategy, following a completely unrelated route, is used by the mother cell.
Collapse
Affiliation(s)
- Céline Karmazyn-Campelli
- Université Paris-Diderot, CNRS-UPR9073, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
8
|
Expression of the sigmaF-directed csfB locus prevents premature appearance of sigmaG activity during sporulation of Bacillus subtilis. J Bacteriol 2007; 189:8754-7. [PMID: 17921305 DOI: 10.1128/jb.01265-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During sporulation, sigma(G) becomes active in the prespore upon the completion of engulfment. We show that the inactivation of the sigma(F)-directed csfB locus resulted in premature activation of sigma(G). CsfB exerted control distinct from but overlapping with that exerted by LonA to prevent inappropriate sigma(G) activation. The artificial induction of csfB severely compromised spore formation.
Collapse
|
9
|
Chary VK, Xenopoulos P, Piggot PJ. Blocking chromosome translocation during sporulation of Bacillus subtilis can result in prespore-specific activation of sigmaG that is independent of sigmaE and of engulfment. J Bacteriol 2006; 188:7267-73. [PMID: 17015665 PMCID: PMC1636243 DOI: 10.1128/jb.00744-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of spores by Bacillus subtilis is characterized by cell compartment-specific gene expression directed by four RNA polymerase sigma factors, which are activated in the order sigma(F)-sigma(E)-sigma(G)-sigma(K). Of these, sigma(G) becomes active in the prespore upon completion of engulfment of the prespore by the mother cell. Transcription of the gene encoding sigma(G), spoIIIG, is directed in the prespore by RNA polymerase containing sigma(F) but also requires the activity of sigma(E) in the mother cell. When first formed, sigma(G) is not active. Its activation requires expression of additional sigma(E)-directed genes, including the genes required for completion of engulfment. Here we report conditions in which sigma(G) becomes active in the prespore in the absence of sigma(E) activity and of completion of engulfment. The conditions are (i) having an spoIIIE mutation, so that only the origin-proximal 30% of the chromosome is translocated into the prespore, and (ii) placing spoIIIG in an origin-proximal location on the chromosome. The main function of the sigma(E)-directed regulation appears to be to coordinate sigma(G) activation with the completion of engulfment, not to control the level of sigma(G) activity. It seems plausible that the role of sigma(E) in sigma(G) activation is to reverse some inhibitory signal (or signals) in the engulfed prespore, a signal that is not present in the spoIIIE mutant background. It is not clear what the direct activator of sigma(G) in the prespore is. Competition for core RNA polymerase between sigma(F) and sigma(G) is unlikely to be of major importance.
Collapse
Affiliation(s)
- Vasant K Chary
- Department of Microbiology and Immunology, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|