1
|
Yu L, Gao Y, He Y, Liu Y, Shen J, Liang H, Gong R, Duan H, Price NPJ, Song X, Deng Z, Chen W. Developing the E. coli platform for efficient production of UMP-derived chemicals. Metab Eng 2024; 83:61-74. [PMID: 38522576 DOI: 10.1016/j.ymben.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
5-Methyluridine (5-MU) is a prominent intermediate for industrial synthesis of several antiviral-drugs, however, its availability over the past decades has overwhelmingly relied on chemical and enzymatic strategies. Here, we have realized efficient production of 5-MU in E. coli, for the first time, via a designer artificial pathway consisting of a two-enzyme cascade (UMP 5-methylase and phosphatase). More importantly, we have engineered the E. coli cell factory to boost 5-MU production by systematic evaluation of multiple strategies, and as a proof of concept, we have further developed an antibiotic-free fermentation strategy to realize 5-MU production (10.71 g/L) in E. coli MB229 (a ΔthyA strain). Remarkably, we have also established a versatile and robust platform with exploitation of the engineered E. coli for efficient production of diversified UMP-derived chemicals. This study paves the way for future engineering of E. coli as a synthetic biology platform for acceleratively accessing UMP-derived chemical diversities.
Collapse
Affiliation(s)
- Le Yu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yaojie Gao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuanyuan He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yang Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jianning Shen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Han Liang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rong Gong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - He Duan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Neil P J Price
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Xuemin Song
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenqing Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
4
|
Meyer P, Evrin C, Briozzo P, Joly N, Bârzu O, Gilles AM. Structural and functional characterization of Escherichia coli UMP kinase in complex with its allosteric regulator GTP. J Biol Chem 2008; 283:36011-8. [PMID: 18945668 DOI: 10.1074/jbc.m802614200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial UMP kinases are essential enzymes involved in the multistep synthesis of UTP. They are hexamers regulated by GTP (allosteric activator) and UTP (inhibitor). We describe here the 2.8 angstroms crystal structure of Escherichia coli UMP kinase bound to GTP. The GTP-binding site, situated at 15 angstroms from the UMP-binding site and at 24 angstroms from the ATP-binding site, is delineated by two contiguous dimers. The overall structure, as compared with those bound to UMP, UDP, or UTP, shows a rearrangement of its quaternary structure: GTP induces an 11 degrees opening of the UMP kinase dimer, resulting in a tighter dimer-dimer interaction. A nucleotide-free UMP kinase dimer has an intermediate opening. Superposition of our structure with that of archaeal UMP kinases, which are also hexamers, shows that a loop appears to hamper any GTP binding in archeal enzymes. This would explain the absence of activating effect of GTP on this group of UMP kinases. Among GTP-binding residues, the Asp-93 is the most conserved in bacterial UMP kinases. In the previously published structures of E. coli UMP kinase, this residue was shown to be involved in hydrogen bonds between the subunits of a dimer. Its substitution by an alanine decreases the cooperativity for UTP binding and suppresses the reversal by GTP of UTP inhibition. This demonstrates that the previously described mutual exclusion of these two nucleotides is mediated by Asp-93.
Collapse
Affiliation(s)
- Philippe Meyer
- Laboratoire d'Enzymologie et de Biochimie Structurales, CNRS, UPR 3082, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
5
|
Meier C, Carter LG, Sainsbury S, Mancini EJ, Owens RJ, Stuart DI, Esnouf RM. The crystal structure of UMP kinase from Bacillus anthracis (BA1797) reveals an allosteric nucleotide-binding site. J Mol Biol 2008; 381:1098-105. [PMID: 18625239 DOI: 10.1016/j.jmb.2008.06.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/12/2008] [Accepted: 06/26/2008] [Indexed: 11/17/2022]
Abstract
Uridine monophosphate (UMP) kinase is a conserved enzyme that catalyzes the ATP-driven conversion of uridylate monophosphate into uridylate diphosphate, an essential metabolic step. In prokaryotes, the enzyme exists as a homohexamer that is regulated by various metabolites. Whereas the enzymatic mechanism of UMP kinase (UK) is well-characterized, the molecular basis of its regulation remains poorly understood. Here we report the crystal structure of UK from Bacillus anthracis (BA1797) in complex with ATP at 2.82 A resolution. It reveals that the cofactor, in addition to binding in the active sites, also interacts with separate binding pockets located near the center of the hexameric structure. The existence of such an allosteric binding site had been predicted by biochemical studies, but it was not identified in previous crystal structures of prokaryotic UKs. We show that this putative allosteric pocket is conserved across different bacterial species, suggesting that it is a feature common to bacterial UKs, and we present a structural model for the allosteric regulation of this enzyme.
Collapse
Affiliation(s)
- Christoph Meier
- Oxford Protein Production Facility, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Lee SE, Kim SY, Kim CM, Kim MK, Kim YR, Jeong K, Ryu HJ, Lee YS, Chung SS, Choy HE, Rhee JH. The pyrH gene of Vibrio vulnificus is an essential in vivo survival factor. Infect Immun 2007; 75:2795-801. [PMID: 17371864 PMCID: PMC1932866 DOI: 10.1128/iai.01499-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have suggested an important role of the pyrH gene during the infectious process of Vibrio vulnificus. Previously, we have identified 12 genes expressed preferentially during human infections by using in vivo-induced antigen technology. Among the in vivo-expressed genes, pyrH encodes UMP kinase catalyzing UMP phosphorylation. Introduction of a deletion mutation to the pyrH gene was lethal to V. vulnificus, and an insertional mutant showed a high frequency of curing. We constructed a site-directed mutant strain (R62H/D77N) on Arg-62 and Asp-77, both predicted to be involved in UMP binding, and characterized the R62H/D77N strain compared with the previously reported insertional mutant. We further investigated the essential role of the pyrH gene in the establishment of infection using the R62H/D77N strain. Cytotoxicity was decreased in the R62H/D77N strain, and the defect was restored by an in trans complementation. The intraperitoneal 50% lethal dose of the R62H/D77N strain increased by 26- and 238,000-fold in normal and iron-overloaded mice, respectively. The growth of the R62H/D77N strain in 50% HeLa cell lysate, 100% human ascitic fluid, and 50% human serum was significantly retarded compared to that of the isogenic wild-type strain. The R62H/D77N mutant also had a critical defect in the ability to survive and replicate even in iron-overloaded mice. These results demonstrate that pyrH is essential for the in vivo survival and growth of V. vulnificus and should be an attractive new target for the development of antibacterial drugs and replication-controllable live attenuated vaccines.
Collapse
Affiliation(s)
- Shee Eun Lee
- Clinical Vaccine R&D Center and Department of Biomedical Sciences and Microbiology, Chonnam National University Medical School, 5 Hak-Dong, Dong-Ku, Gwangju 501-746, South Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Evrin C, Straut M, Slavova-Azmanova N, Bucurenci N, Onu A, Assairi L, Ionescu M, Palibroda N, Bârzu O, Gilles AM. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria. J Biol Chem 2007; 282:7242-53. [PMID: 17210578 DOI: 10.1074/jbc.m606963200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.
Collapse
Affiliation(s)
- Cécile Evrin
- UnitédeGénétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Marco-Marín C, Gil-Ortiz F, Rubio V. The crystal structure of Pyrococcus furiosus UMP kinase provides insight into catalysis and regulation in microbial pyrimidine nucleotide biosynthesis. J Mol Biol 2005; 352:438-54. [PMID: 16095620 DOI: 10.1016/j.jmb.2005.07.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 07/12/2005] [Accepted: 07/14/2005] [Indexed: 11/21/2022]
Abstract
UMP kinase (UMPK), the enzyme responsible for microbial UMP phosphorylation, plays a key role in pyrimidine nucleotide biosynthesis, regulating this process via feed-back control and via gene repression of carbamoyl phosphate synthetase (the first enzyme of the pyrimidine biosynthesis pathway). We present crystal structures of Pyrococcus furiosus UMPK, free or complexed with AMPPNP or AMPPNP and UMP, at 2.4 A, 3 A and 2.55 A resolution, respectively, providing a true snapshot of the catalytically competent bisubstrate complex. The structure proves that UMPK does not resemble other nucleoside monophosphate kinases, including the UMP/CMP kinase found in animals, and thus UMPK may be a potential antimicrobial target. This enzyme has a homohexameric architecture centred around a hollow nucleus, and is organized as a trimer of dimers. The UMPK polypeptide exhibits the amino acid kinase family (AAKF) fold that has been reported in carbamate kinase and acetylglutamate kinase. Comparison with acetylglutamate kinase reveals that the substrates bind within each subunit at equivalent, adequately adapted sites. The UMPK structure contains two bound Mg ions, of which one helps stabilize the transition state, thus having the same catalytic role as one lysine residue found in acetylglutamate kinase, which is missing from P.furiosus UMPK. Relative to carbamate kinase and acetylglutamate kinase, UMPK presents a radically different dimer architecture, lacking the characteristic 16-stranded beta-sheet backbone that was considered a signature of AAKF enzymes. Its hexameric architecture, also a novel trait, results from equatorial contacts between the A and B subunits of adjacent dimers combined with polar contacts between A or B subunits, and may be required for the UMPK regulatory functions, such as gene regulation, proposed here to be mediated by hexamer-hexamer interactions with the DNA-binding protein PepA.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig 11,Valencia 46010, Spain
| | | | | |
Collapse
|