1
|
Murugan N, Krishnamoorthy R, Khan JM, Gatasheh MK, Malathi J, Madhavan HNR, Ramalingam G, Jayaramana S. Unveiling the ocular battlefield: Insights into Pseudomonas aeruginosa virulence factors and their implications for multidrug resistance. Int J Biol Macromol 2024; 267:131677. [PMID: 38641280 DOI: 10.1016/j.ijbiomac.2024.131677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The research investigates the virulence factors of Pseudomonas aeruginosa (P. aeruginosa), a pathogen known for its ability to cause human infections by releasing various exoenzymes and virulence factors. Particularly relevant in ocular infections, where tissue degeneration can occur, even after bacterial growth has ceased due to the potential role of secreted proteins/enzymes. Clinical isolates of P. aeruginosa, both ocular (146) and non-ocular (54), were examined to determine the frequency and mechanism of virulence factors. Phenotypic characterization revealed the production of alginate, biofilm, phospholipase C, and alkaline protease, while genotypic testing using internal uniplex PCR identified the presence of Exo U, S, T, Y, and LasB genes. Results showed a significant prevalence of Exo U and Y genes in ocular isolates, a finding unique to Indian studies. Additionally, the study noted that ocular isolates often contained all four secretomes, suggesting a potential link between these factors and ocular infections. These findings contribute to understanding the pathogenesis of P. aeruginosa infections, particularly in ocular contexts, and highlights the importance of comprehensive virulence factor analysis in clinical settings.
Collapse
Affiliation(s)
- Nandagopal Murugan
- Department of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai-6000 06, India; Valluvar Rosalind Diagnostic & Research Lab, Tiruvotriyur, Chennai-600019, India
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jambulingam Malathi
- Department of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai-6000 06, India; Valluvar Rosalind Diagnostic & Research Lab, Tiruvotriyur, Chennai-600019, India
| | - Hajib Narahari Rao Madhavan
- Department of Microbiology, L & T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya, Chennai-6000 06, India; Valluvar Rosalind Diagnostic & Research Lab, Tiruvotriyur, Chennai-600019, India
| | - Gopinath Ramalingam
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, Tamil Nadu-625512, India
| | - Selvaraj Jayaramana
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai-600077, India.
| |
Collapse
|
2
|
She P, Liu Y, Luo Z, Chen L, Zhou L, Hussain Z, Wu Y. PA2146 Gene Knockout Is Associated With Pseudomonas aeruginosa Pathogenicity in Macrophage and Host Immune Response. Front Cell Infect Microbiol 2020; 10:559803. [PMID: 33134189 PMCID: PMC7579411 DOI: 10.3389/fcimb.2020.559803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a common gram-negative bacterium that usually causes nosocomial infection. The main pathogenicity of P. aeruginosa is caused by its virulence factors. PA2146 is reported to be a potential virulence-regulating gene and is highly expressed in the biofilms of P. aeruginosa. However, the effect of PA2146 mutant (PAO1ΔPA2146) on the macrophage immune response and murine models has not been reported. In the present study, PA2146 knockout was performed by homologous recombination. We found that PAO1ΔPA2146 stimulation significantly increased pyocyanin production but inhibited interleukin-6 secretion by neutrophils compared to PAO1 stimulation. In addition, PAO1ΔPA2146 treatment significantly inhibited cytokine production in macrophages independent of cell killing. In an acute pneumonia murine infection model, treatment with P. aeruginosa infected with PAO1ΔPA2146 inhibited cytokine secretion in the lungs but increased the infiltration of inflammatory cells compared to the wild-type group. The paradoxical results indicate that PA2146 deletion may also increase the production of virulence factors other than pyocyanin, which may not only increase inflammatory cell infiltration in the lungs but also lead to immune cells “shock.” Overall, our findings suggest that PA2146 could serve as a P. aeruginosa virulence-regulating gene that regulates its macrophage and host immune response.
Collapse
Affiliation(s)
- Pengfei She
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yiqing Liu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Luo
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Chen
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zubair Hussain
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yong Wu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Li Y, Xia H, Bai F, Song X, Zhuang L, Xu H, Zhang X, Zhang X, Qiao M. PA5001 gene involves in swimming motility and biofilm formation in Pseudomonas aeruginosa. Microb Pathog 2020; 144:103982. [PMID: 32105802 DOI: 10.1016/j.micpath.2020.103982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Pseudomonas aeruginosa is a nosocomial human pathogen causing infections in immunocompromised patients. To explore new genes involved in P. aeruginosa swimming motility, Mu transposon mutagenesis library was screened for isolates with altered swimming motility. Eleven nonmobile mutants were identified. Sequence analysis shows the nonmobile phenotype of one isolate was attributed to the inactivation of PA5001 gene. PA5001 knockout mutant based on the PAK lab strain also displayed comparable phenotypes suggesting the universal gene function regardless of strain. Exotic PA5001 gene fragment provided on expressing plasmid was capable of storing nonmobile phenotype of PA5001 mutant, suggesting the functional involvement of PA5001 gene on bacterial swimming. Impact of PA5001 inactivation on biofilm formation was examined, as adhesion and interaction during biofilm formation is highly dependent of bacterial mobility. The result shows that normal architecture of biofilm was disrupted in the mutant. Complementing by exotic PA5001 gene fragment resulted in the restoration of biofilm phenotype. Our results provide evidences suggesting the functional participation of PA5001 gene in bacterial mobility and biofilm formation. The critical function by PA5001 in bacterial motility and biofilm might serve as hint for the novel target for the treatment of chronic infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Yingli Li
- College of Life Sciences, Nankai University, Tianjin, 300071, China; School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Huiming Xia
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fang Bai
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xuyang Song
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Luning Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Haijin Xu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiuming Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiuming Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mingqiang Qiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Naorem SS, Han J, Zhang SY, Zhang J, Graham LB, Song A, Smith CV, Rashid F, Guo H. Efficient transposon mutagenesis mediated by an IPTG-controlled conditional suicide plasmid. BMC Microbiol 2018; 18:158. [PMID: 30355324 PMCID: PMC6201506 DOI: 10.1186/s12866-018-1319-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022] Open
Abstract
Background Transposon mutagenesis is highly valuable for bacterial genetic and genomic studies. The transposons are usually delivered into host cells through conjugation or electroporation of a suicide plasmid. However, many bacterial species cannot be efficiently conjugated or transformed for transposon saturation mutagenesis. For this reason, temperature-sensitive (ts) plasmids have also been developed for transposon mutagenesis, but prolonged incubation at high temperatures to induce ts plasmid loss can be harmful to the hosts and lead to enrichment of mutants with adaptive genetic changes. In addition, the ts phenotype of a plasmid is often strain- or species-specific, as it may become non-ts or suicidal in different bacterial species. Results We have engineered several conditional suicide plasmids that have a broad host range and whose loss is IPTG-controlled. One construct, which has the highest stability in the absence of IPTG induction, was then used as a curable vector to deliver hyperactive miniTn5 transposons for insertional mutagenesis. Our analyses show that these new tools can be used for efficient and regulatable transposon mutagenesis in Escherichia coli, Acinetobacter baylyi and Pseudomonas aeruginosa. In P. aeruginosa PAO1, we have used this method to generate a Tn5 insertion library with an estimated diversity of ~ 108, which is ~ 2 logs larger than the best transposon insertional library of PAO1 and related Pseudomonas strains previously reported. Conclusion We have developed a number of IPTG-controlled conditional suicide plasmids. By exploiting one of them for transposon delivery, a highly efficient and broadly useful mutagenesis system has been developed. As the assay condition is mild, we believe that our methodology will have broad applications in microbiology research. Electronic supplementary material The online version of this article (10.1186/s12866-018-1319-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santa S Naorem
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Jin Han
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Stephanie Y Zhang
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Junyi Zhang
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Lindsey B Graham
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Angelou Song
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Cameron V Smith
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Fariha Rashid
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huatao Guo
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
5
|
Rossello J, Lima A, Gil M, Rodríguez Duarte J, Correa A, Carvalho PC, Kierbel A, Durán R. The EAL-domain protein FcsR regulates flagella, chemotaxis and type III secretion system in Pseudomonas aeruginosa by a phosphodiesterase independent mechanism. Sci Rep 2017; 7:10281. [PMID: 28860517 PMCID: PMC5579053 DOI: 10.1038/s41598-017-09926-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
The second messenger c-di-GMP regulates the switch between motile and sessile bacterial lifestyles. A general feature of c-di-GMP metabolism is the presence of a surprisingly large number of genes coding for diguanylate cyclases and phosphodiesterases, the enzymes responsible for its synthesis and degradation respectively. However, the physiological relevance of this apparent redundancy is not clear, emphasizing the need for investigating the functions of each of these enzymes. Here we focused on the phosphodiesterase PA2133 from Pseudomonas aeruginosa, an important opportunistic pathogen. We phenotypically characterized P. aeruginosa strain K overexpressing PA2133 or its inactive mutant. We showed that biofilm formation and motility are severely impaired by overexpression of PA2133. Our quantitative proteomic approach applied to the membrane and exoprotein fractions revealed that proteins involved in three processes were mostly affected: flagellar motility, type III secretion system and chemotaxis. While inhibition of biofilm formation can be ascribed to the phosphodiesterase activity of PA2133, down-regulation of flagellar, chemotaxis, and type III secretion system proteins is independent of this enzymatic activity. Based on these unexpected effects of PA2133, we propose to rename this gene product FcsR, for Flagellar, chemotaxis and type III secretion system Regulator.
Collapse
Affiliation(s)
- Jessica Rossello
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Analía Lima
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Magdalena Gil
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| | - Jorge Rodríguez Duarte
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Agustín Correa
- Unidad de Proteínas Recombinantes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paulo C Carvalho
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, Brazil
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo/Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
6
|
Sun D, Han Y, Wang W, Wang Z, Ma X, Hou Y, Bai G. Screening and identification of Caulis Sinomenii bioactive ingredients with dual-target NF-κB inhibition and β 2- AR agonizing activities. Biomed Chromatogr 2016; 30:1843-1853. [PMID: 27187693 DOI: 10.1002/bmc.3761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 11/07/2022]
Abstract
Caulis Sinomenii (CS) is a valuable traditional medicine in China. Its extract can act as an anti-inflammatory agent and a vascular smooth muscle relaxant. However, the underlying mechanisms remain unknown. In this study, we developed a simple dual-target method based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry combined with a dual-target bioactive screening assay for anti-inflammatory and antispasmodic activities to characterize the chemical structure of various bioactive compounds of CS rapidly. Seven potential NF-κB inhibitors were identified, including laudanosoline-1-O-xylopyranose, 6-O-methyl-laudanosoline-1-O-glucopyranoside, menisperine, sinomenine, laurifoline, magnoflorine and norsinoacutin. Furthermore, IL-6 and IL-8 assays confirmed the anti-inflammatory effects of these potential NF-κB inhibitors, in which laudanosoline-1-O-d-xylopyranose and menisperine were revealed as novel NF-κB inhibitors. Among the seven identified alkaloids, three potential β2 -adrenergic receptor agonists, including sinomenine, magnoflorine and laurifoline, were characterized using a luciferase reporter system to measure for the activity of β2 -adrenergic receptor agonists. Finally, sinomenine, magnoflorine and laurifoline were identified not only as potential NF-κB inhibitors but also as potential β2 -adrenegic receptor agonists, which is the first time this has been reported. Molecular dynamic simulation and docking results suggest that the three dual-bioactive constituents could not only inhibit Pseudomonas aeruginosa PAK strain-induced inflammatory responses via a negative regulation of the Braf protein that participates in MAPK signaling pathway but also activate the β2 -adrenegic receptor. These results suggest that CS extract has dual signaling activities with potential clinical application as a novel drug for asthma.
Collapse
Affiliation(s)
- Dan Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Yanqi Han
- Department of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research Co. Ltd, Tianjin, People's Republic of China
| | - Weiya Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Zengyong Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China.
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Li Y, Bai F, Xia H, Zhuang L, Xu H, Jin Y, Zhang X, Bai Y, Qiao M. A novel regulator PA5022 (aefA) is involved in swimming motility, biofilm formation and elastase activity of Pseudomonas aeruginosa. Microbiol Res 2015; 176:14-20. [DOI: 10.1016/j.micres.2015.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
|
8
|
Sun D, Zhou M, Ying X, Cheng B, Han Y, Nie Y, Hou Y, Bai G. Identification of nuclear factor-κB inhibitors in the folk herb Rhizoma Menispermi via bioactivity-based ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry analysis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:356. [PMID: 25252930 PMCID: PMC4195958 DOI: 10.1186/1472-6882-14-356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Rhizoma Menispermi (RM) is the dried root of Menispermum dauricum DC, which is traditionally used to treat swelling and pain for sore throat, enteritis and rheumatic arthralgia in the clinic, but its bioactive compounds remain unclear. METHODS In this study, RM extract was administered orally to ICR mice followed by challenging with an intratracheal Pseudomonas aeruginosa suspension. Then mortality, histological features of lung, and inflammatory cytokines were evaluated. RM treatment significantly ameliorated Pseudomonas aeruginosa-induced acute lung inflammation and reduced levels of inflammatory mediators. To screen for potential anti-inflammatory constituents of the RM extract, a simple and rapid method based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) coupled with a luciferase reporter assay system to detect nuclear factor-κB (NF-κB) activity was established. RESULTS Using this system, seven potential NF-κB inhibitors were detected, including sinomenine, norsinoacutin, N-norsinoacutin-β-D-glucopyranoside, 6-O-methyl-laudanosoline-13-O-glucopyranoside, magnoflorine, laurifloline and dauricinoline. Furthermore, IL-6 and IL-8 assays confirmed the anti-inflammatory effects of these potential NF-κB inhibitors, in which norsinoacutin, 6-O-methyl-laudanosoline-13-O-glucopyranoside laurifloline, dauricinoline and N-norsinoacutin-β-D-glucopyranoside were revealed as new NF-κB inhibitors. CONCLUSION This method of UPLC-Q/TOF coupled with the luciferase reporter assay system was initially applied to the study of RM and was demonstrated to represent a simple, rapid and practical approach to screen for anti-inflammatory compounds. This study provided useful results for further investigation on the anti-inflammatory mechanism of RM.
Collapse
Affiliation(s)
- Dan Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071 China
| | - Mengge Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071 China
| | - Xuhui Ying
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071 China
| | - Binfeng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071 China
| | - Yanqi Han
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071 China
| | - Yan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071 China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071 China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071 China
| |
Collapse
|
9
|
Involvement of stress-related genes polB and PA14_46880 in biofilm formation of Pseudomonas aeruginosa. Infect Immun 2014; 82:4746-57. [PMID: 25156741 DOI: 10.1128/iai.01915-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic infections of Pseudomonas aeruginosa are generally established through production of biofilm. During biofilm formation, production of an extracellular matrix and establishment of a distinct bacterial phenotype make these infections difficult to eradicate. However, biofilm studies have been hampered by the fact that most assays utilize nonliving surfaces as biofilm attachment substrates. In an attempt to better understand the mechanisms behind P. aeruginosa biofilm formation, we performed a genetic screen to identify novel factors involved in biofilm formation on biotic and abiotic surfaces. We found that deletion of genes polB and PA14_46880 reduced biofilm formation significantly compared to that in the wild-type strain PA14 in an abiotic biofilm system. In a biotic biofilm model, wherein biofilms form on cultured airway cells, the ΔpolB and ΔPA14_46880 strains showed increased cytotoxic killing of the airway cells independent of the total number of bacteria bound. Notably, deletion mutant strains were more resistant to ciprofloxacin treatment. This phenotype was linked to decreased expression of algR, an alginate transcriptional regulatory gene, under ciprofloxacin pressure. Moreover, we found that pyocyanin production was increased in planktonic cells of mutant strains. These results indicate that inactivation of polB and PA14_46880 may inhibit transition of P. aeruginosa from a more acute infection lifestyle to the biofilm phenotype. Future investigation of these genes may lead to a better understanding of P. aeruginosa biofilm formation and chronic biofilm infections.
Collapse
|
10
|
Li M, Guan X, Wang X, Xu H, Bai Y, Zhang X, Qiao M. DsbM affects aminoglycoside resistance in Pseudomonas aeruginosa by the reduction of OxyR. FEMS Microbiol Lett 2014; 352:184-9. [PMID: 24456559 DOI: 10.1111/1574-6968.12384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 11/28/2013] [Accepted: 01/13/2014] [Indexed: 11/29/2022] Open
Abstract
DsbM is a novel disulfide oxidoreductase that affects aminoglycoside resistance in Pseudomonas aeruginosa by an OxyR-regulated process. However, the detailed mechanism of interaction between DsbM and OxyR had not yet been elucidated. In this study, we expressed DsbM in Escherichia coli and showed that DsbM can oxidize and reduce disulfide. We also used a yeast two-hybrid assay to identify interactions between DsbM and OxyR. A subsequent GSH oxidation experiment revealed that DsbM could alter both the oxidized and reduced state of OxyR. We hypothesized that OxyR can be reduced by DsbM, and thus DsbM may be required for aminoglycoside resistance in P. aeruginosa. Our findings contribute to the understanding of the mechanisms underlying aminoglycoside resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Mingxuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang X, Li M, Liu L, Mou R, Zhang X, Bai Y, Xu H, Qiao M. DsbM, a novel disulfide oxidoreductase affects aminoglycoside resistance in Pseudomonas aeruginosa by OxyR-regulated response. J Microbiol 2012; 50:932-8. [PMID: 23274979 DOI: 10.1007/s12275-012-2177-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022]
Abstract
A Pseudomonas aeruginosa mutant strain M122 was isolated from a Mu transposon insertion mutant library. In our prophase research, we have found that PA0058, a novel gene encodes a 234-residue conserved protein, was disrupted in the M122 mutant. In this study, the bacteriostatic experiment in vitro indicates that M122 has abnormally high aminoglycoside resistance. We expressed PA0058 in E. coli and found that PA0058 oxidizes and reduces disulfide. This biochemical characterization suggests that PA0058 is a novel disulfide oxidoreductase. Hence, the protein was designated as DsbM. Microarray analysis of the M122 mutant showed its unusual phenotype might be related to the bacterial antioxidant defense system mediated by the oxyR regulon. Meanwhile, we detected -SH content in the periplasm of M122 and wild strain and found a lower -SH/S-S ratio in M122. Therefore, we consider that the loss of dsbM function decreased the -SH/S-S ratio, which then prolongs the OxyR-regulated response, thereby conferring high aminoglycoside resistance to the M122 mutant strain. Our findings have important implications for understanding the mechanisms underlying aminoglycoside resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Xuehan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu Y, Zheng Z, Zara JN, Hsu C, Soofer DE, Lee KS, Siu RK, Miller LS, Zhang X, Carpenter D, Wang C, Ting K, Soo C. The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel. Biomaterials 2012; 33:8745-56. [PMID: 22959466 DOI: 10.1016/j.biomaterials.2012.08.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/05/2012] [Indexed: 02/07/2023]
Abstract
Implant-associated bacterial infections are one of the most serious complications in orthopedic surgery. Treatment of these infections often requires multiple operations, device removal, long-term systemic antibiotics, and extended rehabilitation, and is frequently ineffective, leading to worse clinical outcomes and increased financial costs. In this study, we evaluated silver nanoparticle/poly(DL-lactic-co-glycolic acid) (PLGA)-coated stainless steel alloy(SNPSA) as a potential antimicrobial implant material. We found that SNPSA exhibited strong antibacterial activity in vitro and ex vivo, and promoted MC3T3-E1 pre-osteoblasts proliferation and maturation in vitro. Furthermore, SNPSA implants induced osteogenesis while suppressing bacterial survival in contaminated rat femoral canals. Our results indicate that SNPSA has simultaneous antimicrobial and osteoinductive properties that make it a promising therapeutic material in orthopedic surgery.
Collapse
Affiliation(s)
- Yi Liu
- Shandong Provincial Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, Jinan, Shandong 250012, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J Bacteriol 2012; 194:4285-94. [PMID: 22685276 DOI: 10.1128/jb.00803-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that utilizes polar type IV pili (T4P) for twitching motility and adhesion in the environment and during infection. Pilus assembly requires FimX, a GGDEF/EAL domain protein that binds and hydrolyzes cyclic di-GMP (c-di-GMP). Bacteria lacking FimX are deficient in twitching motility and microcolony formation. We carried out an extragenic suppressor screen in PA103ΔfimX bacteria to identify additional regulators of pilus assembly. Multiple suppressor mutations were mapped to PA0171, PA1121 (yfiR), and PA3703 (wspF), three genes previously associated with small-colony-variant phenotypes. Multiple independent techniques confirmed that suppressors assembled functional surface pili, though at both polar and nonpolar sites. Whole-cell c-di-GMP levels were elevated in suppressor strains, in agreement with previous studies that had shown that the disrupted genes encoded negative regulators of diguanylate cyclases. Overexpression of the regulated diguanylate cyclases was sufficient to suppress the ΔfimX pilus assembly defect, as was overexpression of an unrelated diguanylate cyclase from Caulobacter crescentus. Furthermore, under natural conditions of high c-di-GMP, PA103ΔfimX formed robust biofilms that showed T4P staining and were structurally distinct from those formed by nonpiliated bacteria. These results are the first demonstration that P. aeruginosa assembles a surface organelle, type IV pili, over a broad range of c-di-GMP concentrations. Assembly of pili at low c-di-GMP concentrations requires a polarly localized c-di-GMP binding protein and phosphodiesterase, FimX; this requirement for FimX is bypassed at high c-di-GMP concentrations. Thus, P. aeruginosa can assemble the same surface organelle in distinct ways for motility or adhesion under very different environmental conditions.
Collapse
|
14
|
Bai F, Xu H, Zhang Q, Qi X, Mou R, Bai G, Qiao M. Functional characterization of pfm in protein secretion and lung infection of Pseudomonas aeruginosa. Can J Microbiol 2011; 57:829-37. [PMID: 21950738 DOI: 10.1139/w11-075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lung infections caused by Pseudomonas aeruginosa in cystic fibrosis (CF) patients cause progressive airway obstruction and tissue damage, which is the predominant cause of morbidity and mortality in patients with CF. This paper describes the functional characterization of the pfm gene (open reading frame PA2950) of P. aeruginosa. Using DNA microarrays, we found that the transcriptional levels of type II secretory system genes were significantly reduced in the pfm mutant strain. The type-II-dependent exoprotein LasB could not be secreted normally. The pfm gene was identified as a gene involved in bacterial protein secretion that was critical for the extracellular release of elastase in P. aeruginosa. The abilities to induce lung injury by wild-type and pfm mutant P. aeruginosa were evaluated in a murine acute lung infection model. The results showed that the pathogenicity and virulence of the pfm mutant strain was significantly reduced compared with that of the wild-type strain. The pfm gene and its expression product, as potential new drug targets against P. aeruginosa infection, have important research significance.
Collapse
Affiliation(s)
- Fang Bai
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Klebensberger J, Birkenmaier A, Geffers R, Kjelleberg S, Philipp B. SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environ Microbiol 2009; 11:3073-86. [PMID: 19638175 DOI: 10.1111/j.1462-2920.2009.02012.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell aggregation is a stress response and serves as a survival strategy for Pseudomonas aeruginosa strain PAO1 during growth with the toxic detergent Na-dodecylsulfate (SDS). This process involves the psl operon and is linked to c-di-GMP signalling. The induction of cell aggregation in response to SDS was studied. Transposon and site-directed mutagenesis revealed that the cupA-operon and the co-transcribed genes siaA (PA0172) and siaD (PA0169) were essential for SDS-induced aggregation. While siaA encodes a putative membrane protein with a HAMP and a PP2C-like phosphatase domain, siaD encodes a putative diguanylate cyclase involved in the biosynthesis of c-di-GMP. Complementation studies uncovered that the loss of SDS-induced aggregation in the formerly isolated spontaneous mutant strain N was caused by a non-functional siaA allele. DNA-microarray analysis of SDS-grown cells revealed consistent activation of eight genes, including cupA1, with known or presumptive important functions in cell aggregation in the parent strain compared with non-aggregating siaA and siaD mutants. A siaAD-dependent increase of cupA1 mRNA levels in SDS-grown cells was also shown by Northern blots. These results clearly demonstrate that SiaAD are essential for inducing cell aggregation as a specific response to SDS and suggest that they are responsible for perceiving and transducing SDS-related stress.
Collapse
Affiliation(s)
- Janosch Klebensberger
- Universität Konstanz, Fachbereich Biologie, Mikrobielle Okologie, Fach M654, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
16
|
Kukavica-Ibrulj I, Sanschagrin F, Peterson A, Whiteley M, Boyle B, MacKay J, Levesque RC. Functional genomics of PycR, a LysR family transcriptional regulator essential for maintenance of Pseudomonas aeruginosa in the rat lung. Microbiology (Reading) 2008; 154:2106-2118. [DOI: 10.1099/mic.0.2007/011239-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Irena Kukavica-Ibrulj
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Biologie Médicale, Faculté de Médecine, Université Laval, QC G1K 7P4, Canada
| | - François Sanschagrin
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Biologie Médicale, Faculté de Médecine, Université Laval, QC G1K 7P4, Canada
| | - Ashley Peterson
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marvin Whiteley
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Brian Boyle
- Centre d'étude de la forêt, Pavillon Charles-Eugène Marchand, Université Laval, QC G1K 7P4, Canada
| | - John MacKay
- Centre d'étude de la forêt, Pavillon Charles-Eugène Marchand, Université Laval, QC G1K 7P4, Canada
| | - Roger C. Levesque
- Centre de Recherche sur la Fonction, Structure et Ingénierie des Protéines, Biologie Médicale, Faculté de Médecine, Université Laval, QC G1K 7P4, Canada
| |
Collapse
|
17
|
Yuan MQ, Shi ZY, Wei XX, Wu Q, Chen SF, Chen GQ. Microbial production of medium-chain-length 3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ. FEMS Microbiol Lett 2008; 283:167-75. [PMID: 18422622 DOI: 10.1111/j.1574-6968.2008.01164.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Monomers of microbial polyhydroxyalkanoates, mainly 3-hydroxyhexanoic acid (3HHx) and 3-hydroxyoctanoic acid (3HO), were produced by overexpressing polyhydroxyalkanoates depolymerase gene phaZ, together with putative long-chain fatty acid transport protein fadL of Pseudomonas putida KT2442 and acyl-CoA synthetase (fadD) of Escherichia coli MG1655 in P. putida KT2442. FadL(Pp), which is responsible for free fatty acid transportation from the extracellular environment to the cytoplasm, and FadD(Ec), which activates fatty acid to acyl-CoA, jointly reinforce the fatty acid beta-oxidation pathway. Pseudomonas putida KT2442 (pYZPst01) harboring polyhydroxyalkanoates depolymerase gene phaZ of Pseudomonas stutzeri 1317 produced 1.37 g L(-1) extracellular 3HHx and 3HO in shake flask studies after 48 h in the presence of sodium octanoate as a sole carbon source, while P. putida KT2442 (pYZPst06) harboring phaZ(Pst), fadD(Ec) and fadL(Pp) achieved 2.32 g L(-1) extracellular 3HHx and 3HO monomer production under the same conditions. In a 48-h fed-batch fermentation process conducted in a 6-L fermentor with 3 L sodium octanoate mineral medium, 5.8 g L(-1) extracellular 3HHx and 3HO were obtained in the fermentation broth. This is the first time that medium-chain-length 3-hydroxyalkanoic acids (mcl-3HA) were produced using fadL(Pp) and fadD(Ec) genes combined with the polyhydroxyalkanoates depolymerase gene phaZ.
Collapse
Affiliation(s)
- Mei-Qing Yuan
- College of Biology Science, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
18
|
Bai F, Li Y, Xu H, Xia H, Yin T, Yao H, Zhang L, Zhang X, Bai Y, Jin S, Qiao M. Identification and functional characterization of pfm, a novel gene involved in swimming motility of Pseudomonas aeruginosa. Gene 2007; 401:19-27. [PMID: 17714889 DOI: 10.1016/j.gene.2007.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/09/2007] [Accepted: 06/14/2007] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa, an important opportunistic pathogen, has a single polar flagellum which is an important virulence and colonization factor by providing swimming motility. This paper describes the functional characterization of a novel gene pfm (PA2950) of P. aeruginosa. The pfm encodes a protein that is similar to a number of short-chain alcohol dehydrogenases of other bacterial species. Mutation of this gene results in a defect in swimming motility which can be completed back to that of wild type by a plasmid containing the pfm. Interestingly, the pfm mutant possesses an intact flagellum which does not rotate, thus giving rise to a non-motile phenotype. The pfm gene is encoded on an operon together with two upstream genes which code for electron transfer flavoprotein (ETF). Yeast two-hybrid tests indicated that the PFM interacts with the ETF, suggesting that the putative dehydrogenase (PFM) is involved in energy metabolism that is critical for the rotation of flagellum in P. aeruginosa.
Collapse
Affiliation(s)
- Fang Bai
- College of Life Sciences, Nankai University, Tianjin, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xu H, Lin W, Xia H, Xu S, Li Y, Yao H, Bai F, Zhang X, Bai Y, Saris P, Qiao M. Influence of ptsP gene on pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiol Lett 2006; 253:103-9. [PMID: 16239083 DOI: 10.1016/j.femsle.2005.09.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/01/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022] Open
Abstract
A pyocyanin overproducer with insertional inactivation of ptsP gene was isolated from a mini-Mu insertion library in Pseudomonas aeruginosa PA68. The mutation was complemented by a functional ptsP gene in trans. The pyocyanin-overproducing phenotype was also found in a ptsP mutant constructed by gene replacement in the P. aeruginosa PAO1 strain. Reporter plasmids with P(qscR)-lacZ, P(lasI)-lacZ and P(rhlI)-lacZ were constructed and the beta-galactosidase activity in the ptsP mutant/wild-type background was measured. The results showed that lack of Enzyme I(Ntr) (EI(Ntr), encoded by ptsP) decreased transcription from the P(qscR) promoter and increased the activity of the P(lasI) and P(rhlI) promoters. Normally, QscR represses the quorum-sensing LasR-LasI and RhlR-RhlI systems involved in pyocyanin regulation. Our results showed that the ptsP gene has an important role in the regulation of pyocyanin production and that two quorum-sensing systems and their repressor QscR are involved in this regulation.
Collapse
Affiliation(s)
- Haijin Xu
- Tianjin Key Laboratory of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|