1
|
Khetkorn W, Raksajit W, Maneeruttanarungroj C, Lindblad P. Photobiohydrogen Production and Strategies for H 2 Yield Improvements in Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:253-279. [PMID: 37009974 DOI: 10.1007/10_2023_216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Hydrogen gas (H2) is one of the potential future sustainable and clean energy carriers that may substitute the use of fossil resources including fuels since it has a high energy content (heating value of 141.65 MJ/kg) when compared to traditional hydrocarbon fuels [1]. Water is a primary product of combustion being a most significant advantage of H2 being environmentally friendly with the capacity to reduce global greenhouse gas emissions. H2 is used in various applications. It generates electricity in fuel cells, including applications in transportation, and can be applied as fuel in rocket engines [2]. Moreover, H2 is an important gas and raw material in many industrial applications. However, the high cost of the H2 production processes requiring the use of other energy sources is a significant disadvantage. At present, H2 can be prepared in many conventional ways, such as steam reforming, electrolysis, and biohydrogen production processes. Steam reforming uses high-temperature steam to produce hydrogen gas from fossil resources including natural gas. Electrolysis is an electrolytic process to decompose water molecules into O2 and H2. However, both these two methods are energy-intensive and producing hydrogen from natural gas, which is mostly methane (CH4) and in steam reforming generates CO2 and pollutants as by-products. On the other hand, biological hydrogen production is more environmentally sustainable and less energy intensive than thermochemical and electrochemical processes [3], but most concepts are not yet developed to production scale.
Collapse
Affiliation(s)
- Wanthanee Khetkorn
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Wuttinun Raksajit
- Faculty of Veterinary Technology, Program of Animal Health Technology, Kasetsart University, Bangkok, Thailand
| | - Cherdsak Maneeruttanarungroj
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
- Bioenergy Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Kourpa K, Manarolaki E, Lyratzakis A, Strataki V, Rupprecht F, Langer JD, Tsiotis G. Proteome Analysis of Enriched Heterocysts from Two Hydrogenase Mutants fromAnabaenasp. PCC 7120. Proteomics 2019; 19:e1800332. [DOI: 10.1002/pmic.201800332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 07/12/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Katerina Kourpa
- Division of BiochemistryDepartment of ChemistryUniversity of Crete P.O. Box 2208, GR‐71003 Voutes Greece
| | - Eftychia Manarolaki
- Division of BiochemistryDepartment of ChemistryUniversity of Crete P.O. Box 2208, GR‐71003 Voutes Greece
| | - Alexandros Lyratzakis
- Division of BiochemistryDepartment of ChemistryUniversity of Crete P.O. Box 2208, GR‐71003 Voutes Greece
| | - Vasso Strataki
- Division of BiochemistryDepartment of ChemistryUniversity of Crete P.O. Box 2208, GR‐71003 Voutes Greece
| | - Fiona Rupprecht
- Max Planck Institute for Brain Research Max‐von‐Laue‐Straße 4 D‐60438 Frankfurt am Main Germany
| | - Julian D. Langer
- Max Planck Institute for Brain Research Max‐von‐Laue‐Straße 4 D‐60438 Frankfurt am Main Germany
- Max Planck Institute for Biophysics Max‐von‐Laue‐Straße 3 D‐60438 Frankfurt am Main Germany
| | - Georgios Tsiotis
- Division of BiochemistryDepartment of ChemistryUniversity of Crete P.O. Box 2208, GR‐71003 Voutes Greece
| |
Collapse
|
3
|
Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:171-213. [PMID: 30091096 DOI: 10.1007/978-981-13-0854-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
With the demand for renewable energy growing, hydrogen (H2) is becoming an attractive energy carrier. Developing H2 production technologies with near-net zero carbon emissions is a major challenge for the "H2 economy." Certain cyanobacteria inherently possess enzymes, nitrogenases, and bidirectional hydrogenases that are capable of H2 evolution using sunlight, making them ideal cell factories for photocatalytic conversion of water to H2. With the advances in synthetic biology, cyanobacteria are currently being developed as a "plug and play" chassis to produce H2. This chapter describes the metabolic pathways involved and the theoretical limits to cyanobacterial H2 production and summarizes the metabolic engineering technologies pursued.
Collapse
|
4
|
Greening C, Cook GM. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr Opin Microbiol 2014; 18:30-8. [PMID: 24607643 DOI: 10.1016/j.mib.2014.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
Abstract
Hydrogenases are ubiquitous in ecosystems and widespread in microorganisms. In bacteria, hydrogen metabolism is a facultative trait that is tightly regulated in response to both external factors (e.g. gas concentrations) and internal factors (e.g. redox state). Here we consider how environmental and pathogenic bacteria regulate [NiFe]-hydrogenases to adapt to chemical changes and meet physiological needs. We introduce this concept by exploring how Ralstonia eutropha switches between heterotrophic and lithotrophic growth modes by sensing hydrogen and electron availability. The regulation and integration of hydrogen metabolism in the virulence of Salmonella enterica and Helicobacter pylori, persistence of mycobacteria and streptomycetes, and differentiation of filamentous cyanobacteria are subsequently discussed. We also consider how these findings are extendable to other systems.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
5
|
The uptake hydrogenase in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain PCC 7822 protects nitrogenase from oxygen toxicity. J Bacteriol 2013; 196:840-9. [PMID: 24317398 DOI: 10.1128/jb.01248-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanothece sp. strain PCC 7822 is a unicellular, diazotrophic cyanobacterium that can produce large quantities of H2 when grown diazotrophically. This strain is also capable of genetic manipulations and can represent a good model for improving H2 production from cyanobacteria. To this end, a knockout mutation was made in the hupL gene (ΔhupL), and we determined how this would affect the amount of H2 produced. The ΔhupL mutant demonstrated virtually no nitrogenase activity or H2 production when grown under N2-fixing conditions. To ensure that this mutation only affected the hupL gene, a complementation strain was constructed readily with wild-type properties; this indicated that the original insertion was only in hupL. The mutant had no uptake hydrogenase activity but had increased bidirectional hydrogenase (Hox) activity. Western blotting and immunocytochemistry under the electron microscope indicated that the mutant had neither HupL nor NifHDK, although the nif genes were transcribed. Interestingly, biochemical analysis demonstrated that both HupL and NifH could be membrane associated. The results indicated that the nif genes were transcribed but that NifHDK was either not translated or was translated but rapidly degraded. We hypothesized that the Nif proteins were made but were unusually susceptible to O2 damage. Thus, we grew the mutant cells under anaerobic conditions and found that they grew well under N2-fixing conditions. We conclude that in unicellular diazotrophs, like Cyanothece sp. strain PCC 7822, the HupLS complex helps remove oxygen from the nitrogenase, and that this is a more important function than merely oxidizing the H2 produced by the nitrogenase.
Collapse
|
6
|
Novel insights into the regulation of LexA in the cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 2011; 193:3804-14. [PMID: 21642463 DOI: 10.1128/jb.00289-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor LexA in the cyanobacterium Synechocystis sp. strain PCC 6803 has been shown to regulate genes that are not directly involved in DNA repair but instead in several different metabolic pathways. However, the signal transduction pathways remain largely uncharacterized. The present work gives novel insights into the regulation of LexA in this unicellular cyanobacterium. A combination of Northern and Western blotting, using specific antibodies against the cyanobacterial LexA, was employed to show that this transcription regulator is under posttranscriptional control, in addition to the classical and already-described transcriptional regulation. Moreover, detailed two-dimensional (2D) electrophoresis analyses of the protein revealed that LexA undergoes posttranslational modifications. Finally, a fully segregated LexA::GFP (green fluorescent protein) fusion-modified strain was produced to image LexA's spatial distribution in live cells. The fusion protein retains DNA binding capabilities, and the GFP fluorescence indicates that LexA is localized in the innermost region of the cytoplasm, decorating the DNA in an evenly distributed pattern. The implications of these findings for the overall role of LexA in Synechocystis sp. strain PCC 6803 are further discussed.
Collapse
|
7
|
Schwarz C, Poss Z, Hoffmann D, Appel J. Hydrogenases and Hydrogen Metabolism in Photosynthetic Prokaryotes. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:305-48. [DOI: 10.1007/978-1-4419-1528-3_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Ferreira D, Stal LJ, Moradas-Ferreira P, Mendes MV, Tamagnini P. THE RELATION BETWEEN N2 FIXATION AND H2 METABOLISM IN THE MARINE FILAMENTOUS NONHETEROCYSTOUS CYANOBACTERIUM LYNGBYA AESTUARII CCY 9616(1). JOURNAL OF PHYCOLOGY 2009; 45:898-905. [PMID: 27034220 DOI: 10.1111/j.1529-8817.2009.00714.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The marine filamentous nonheterocystous nitrogen-fixing cyanobacterium Lyngbya aestuarii (F. K. Mert.) Liebman ex Gomont CCY 9616 was grown under diazotrophic and nondiazotrophic conditions and under an alternating 16:8 light:dark (L:D) regime. Nitrogenase activity appeared just before the onset of the dark period, reaching its maximum 1-2 h in the dark, subsequently decreasing to zero at the beginning of the following light period. Nitrogenase activity was only detected at low levels of O2 (5%) and when the culture was grown in the absence of combined nitrogen. Quantitative reverse transcriptase-PCR (RT-PCR) analysis of one of the structural genes encoding nitrogenase, nifK, showed that the highest levels of transcription preceded the maximum activity of nitrogenase by 2-4 h. nifK transcription was not completely abolished during the remaining time of the 24 h cycle. Even in the presence of nitrate, when nitrogenase activity was undetectable, nifK was still transcribed. The H2 -uptake activity seemed to follow the nitrogenase, but the transcription of hupL (gene encoding the large subunit of uptake hydrogenase) preceded the nifK transcription. However, H2 -uptake and hupL transcription occurred throughout the 24 h cycle as well as under nondiazotrophic conditions, albeit at much lower levels. The hoxH transcript levels (a structural gene coding for the bidirectional hydrogenase) were similar under diazotrophic or nondiazotrophic conditions but slightly higher during the dark period. All three enzymes investigated are involved in H2 metabolism. It is concluded that the uptake hydrogenase is mainly responsible for H2 uptake. Nevertheless, uptake hydrogenase and nitrogenase do not seem to be coregulated.
Collapse
Affiliation(s)
- Daniela Ferreira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/nº 4169-007 Porto, PortugalDepartment of Marine Microbiology, NIOO-KNAW, PO Box 140, 4400 AC Yerseke, the NetherlandsIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Largo Abel Salazar 2, 4099-003 Porto, PortugalIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, PortugalIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/nº 4169-007 Porto, Portugal
| | - Lucas J Stal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/nº 4169-007 Porto, PortugalDepartment of Marine Microbiology, NIOO-KNAW, PO Box 140, 4400 AC Yerseke, the NetherlandsIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Largo Abel Salazar 2, 4099-003 Porto, PortugalIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, PortugalIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/nº 4169-007 Porto, Portugal
| | - Pedro Moradas-Ferreira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/nº 4169-007 Porto, PortugalDepartment of Marine Microbiology, NIOO-KNAW, PO Box 140, 4400 AC Yerseke, the NetherlandsIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Largo Abel Salazar 2, 4099-003 Porto, PortugalIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, PortugalIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/nº 4169-007 Porto, Portugal
| | - Marta V Mendes
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/nº 4169-007 Porto, PortugalDepartment of Marine Microbiology, NIOO-KNAW, PO Box 140, 4400 AC Yerseke, the NetherlandsIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Largo Abel Salazar 2, 4099-003 Porto, PortugalIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, PortugalIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/nº 4169-007 Porto, Portugal
| | - Paula Tamagnini
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/nº 4169-007 Porto, PortugalDepartment of Marine Microbiology, NIOO-KNAW, PO Box 140, 4400 AC Yerseke, the NetherlandsIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Largo Abel Salazar 2, 4099-003 Porto, PortugalIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, PortugalIBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/nº 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Ferreira D, Pinto F, Moradas-Ferreira P, Mendes MV, Tamagnini P. Transcription profiles of hydrogenases related genes in the cyanobacterium Lyngbya majuscula CCAP 1446/4. BMC Microbiol 2009; 9:67. [PMID: 19351394 PMCID: PMC2674450 DOI: 10.1186/1471-2180-9-67] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 04/07/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Lyngbya majuscula CCAP 1446/4 is a N2-fixing filamentous nonheterocystous strain that contains two NiFe-hydrogenases: an uptake (encoded by hupSL) and a bidirectional enzyme (encoded by hoxEFUYH). The biosynthesis/maturation of NiFe-hydrogenases is a complex process requiring several accessory proteins for e.g. for the incorporation of metals and ligands in the active center (large subunit), and the insertion of the FeS clusters (small subunit). The last step in the maturation of the large subunit is the cleavage of a C-terminal peptide from its precursor by a specific endopeptidase. Subsequently, the mature large and small subunits can assemble forming a functional enzyme. RESULTS In this work we demonstrated that, in L. majuscula, the structural genes encoding the bidirectional hydrogenase are cotranscribed, and that hoxW (the gene encoding its putative specific endopeptidase) is in the same chromosomal region but transcribed from a different promoter. The gene encoding the putative specific uptake hydrogenase endopeptidase, hupW, can be cotranscribed with the structural genes but it has its own promoter. hoxH, hupL, hoxW and hupW transcription was followed in L. majuscula cells grown under N2-fixing and non-N2-fixing conditions over a 12 h light/12 h dark cycle. The transcription of hoxH, hoxW and hupW did not vary remarkably in the conditions tested, while the hupL transcript levels are significantly higher under N2-fixing conditions with a peak occurring in the transition between the light and the dark phase. Furthermore, the putative endopeptidases transcript levels, in particular hoxW, are lower than those of the respective hydrogenase structural genes. CONCLUSION The data presented here indicate that in L. majuscula the genes encoding the putative hydrogenases specific endopeptidases, hoxW and hupW, are transcribed from their own promoters. Their transcript levels do not vary notably in the conditions tested, suggesting that HoxW and HupW are probably constantly present and available in the cells. These results, together with the fact that the putative endopeptidases transcript levels, in particular for hoxW, are lower than those of the structural genes, imply that the activity of the hydrogenases is mainly correlated to the transcription levels of the structural genes. The analysis of the promoter regions indicates that hupL and hupW might be under the control of different transcription factor(s), while both hoxH and xisH (hoxW) promoters could be under the control of LexA.
Collapse
Affiliation(s)
- Daniela Ferreira
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
| | - Filipe Pinto
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
| | - Pedro Moradas-Ferreira
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Largo Abel Salazar 2, 4099-003 Porto, Portugal
| | - Marta V Mendes
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Paula Tamagnini
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- Faculdade de Ciências, Universidade do Porto, Departamento de Botânica, Edifício FC4, Rua do Campo Alegre, s/n°, 4169-007 Porto, Portugal
| |
Collapse
|
10
|
Devine E, Holmqvist M, Stensjö K, Lindblad P. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120. BMC Microbiol 2009; 9:53. [PMID: 19284580 PMCID: PMC2670836 DOI: 10.1186/1471-2180-9-53] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. RESULTS In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW) and LexA (hoxW). In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. CONCLUSION Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer has occurred. This co-evolution could be the result of a close interaction between the protease and the large subunit of the [NiFe]-hydrogenases, a theory supported by protein-protein docking experiments performed with 3D-models. Finally we present data that may explain the specificity seen among hydrogenase specific proteases, the so called "HOXBOX"; an amino acid sequence specific for proteases of Hox-type. This opens the door for more detailed studies of the specificity found among hydrogenase specific proteases and the structural properties behind it.
Collapse
Affiliation(s)
- Ellenor Devine
- Department of Photochemistry and Molecular Science, The Angström Laboratories, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
11
|
Holmqvist M, Stensjö K, Oliveira P, Lindberg P, Lindblad P. Characterization of the hupSL promoter activity in Nostoc punctiforme ATCC 29133. BMC Microbiol 2009; 9:54. [PMID: 19284581 PMCID: PMC2661322 DOI: 10.1186/1471-2180-9-54] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 03/11/2009] [Indexed: 01/09/2023] Open
Abstract
Background In cyanobacteria three enzymes are directly involved in the hydrogen metabolism; a nitrogenase that produces molecular hydrogen, H2, as a by-product of nitrogen fixation, an uptake hydrogenase that recaptures H2 and oxidize it, and a bidirectional hydrogenase that can both oxidize and produce H2.Nostoc punctiforme ATCC 29133 is a filamentous dinitrogen fixing cyanobacterium containing a nitrogenase and an uptake hydrogenase but no bidirectional hydrogenase. Generally, little is known about the transcriptional regulation of the cyanobacterial uptake hydrogenases. In this study gel shift assays showed that NtcA has a specific affinity to a region of the hupSL promoter containing a predicted NtcA binding site. The predicted NtcA binding site is centred at 258.5 bp upstream the transcription start point (tsp). To further investigate the hupSL promoter, truncated versions of the hupSL promoter were fused to either gfp or luxAB, encoding the reporter proteins Green Fluorescent Protein and Luciferase, respectively. Results Interestingly, all hupsSL promoter deletion constructs showed heterocyst specific expression. Unexpectedly the shortest promoter fragment, a fragment covering 57 bp upstream and 258 bp downstream the tsp, exhibited the highest promoter activity. Deletion of the NtcA binding site neither affected the expression to any larger extent nor the heterocyst specificity. Conclusion Obtained data suggest that the hupSL promoter in N. punctiforme is not strictly dependent on the upstream NtcA cis element and that the shortest promoter fragment (-57 to tsp) is enough for a high and heterocyst specific expression of hupSL. This is highly interesting because it indicates that the information that determines heterocyst specific gene expression might be confined to this short sequence or in the downstream untranslated leader sequence.
Collapse
Affiliation(s)
- Marie Holmqvist
- Department of Photochemistry and Molecular Science, The Angström Laboratories, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Transcription of hupSL in Anabaena variabilis ATCC 29413 is regulated by NtcA and not by hydrogen. Appl Environ Microbiol 2008; 74:2103-10. [PMID: 18281430 DOI: 10.1128/aem.02855-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen-fixing cyanobacteria such as Anabaena variabilis ATCC 29413 use an uptake hydrogenase, encoded by hupSL, to recycle hydrogen gas that is produced as an obligate by-product of nitrogen fixation. The regulation of hupSL in A. variabilis is likely to differ from that of the closely related Anabaena sp. strain PCC 7120 because A. variabilis lacks the excision element-mediated regulation that characterizes hupSL regulation in strain PCC 7120. An analysis of the hupSL transcript in a nitrogenase mutant of A. variabilis that does not produce any detectable hydrogen indicated that neither nitrogen fixation nor hydrogen gas was required for the induction of hupSL. Furthermore, exogenous addition of hydrogen gas did not stimulate hupSL transcription. Transcriptional reporter constructs indicated that the accumulation of hupSL transcript after nitrogen step-down was restricted primarily to the microaerobic heterocysts. Anoxic conditions were not sufficient to induce hupSL transcription. The induction of hupSL after nitrogen step-down was reduced in a mutant in the global nitrogen regulator NtcA, but was not reduced in a mutant unable to form heterocysts. A consensus NtcA-binding site was identified upstream of hupSL, and NtcA was found to bind to this region. Thus, while neither hydrogen gas nor anoxia controlled the expression of hupSL, its expression was controlled by NtcA. Heterocyst differentiation was not required for hupSL induction in response to nitrogen step-down, but heterocyst-localized cues may add an additional level of regulation to hupSL.
Collapse
|
13
|
Oliveira P, Lindblad P. An AbrB-Like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC 6803. J Bacteriol 2008; 190:1011-9. [PMID: 18039761 PMCID: PMC2223582 DOI: 10.1128/jb.01605-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 11/05/2007] [Indexed: 11/20/2022] Open
Abstract
In the unicellular cyanobacterium Synechocystis sp. strain PCC 6803, the pentameric bidirectional Ni-Fe hydrogenase (HoxEFUYH) is the sole enzyme involved in hydrogen metabolism. Recent investigations implicated the transcription factor LexA in the regulation of the hox genes in this cyanobacterium, suggesting the factor to work as an activator. In this work, we show evidence that LexA cannot account exclusively for the regulation of the hox genes in this cyanobacterium. Therefore, we investigated which additional transcription factors interact in and may regulate the expression of the hox genes in Synechocystis sp. strain PCC 6803. By using DNA affinity assays, a transcription factor with similarity to the transition state regulator AbrB from Bacillus subtilis was isolated. Electrophoretic mobility shift assays showed that the AbrB-like protein specifically interacts with the promoter region of the hox genes as well as with its own promoter region. In addition, results obtained with two genetically modified strains of Synechocystis sp. strain PCC 6803, one with a not fully segregated inactivation mutation of the abrB-like gene and the other overexpressing the same abrB-like gene, suggest that this transcription factor functions as a regulator of hox gene expression.
Collapse
Affiliation(s)
- Paulo Oliveira
- Department of Photochemistry and Molecular Science, Angström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| | | |
Collapse
|
14
|
Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 2007; 31:692-720. [PMID: 17903205 DOI: 10.1111/j.1574-6976.2007.00085.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cyanobacteria may possess two distinct nickel-iron (NiFe)-hydrogenases: an uptake enzyme found in N(2)-fixing strains, and a bidirectional one present in both non-N(2)-fixing and N(2)-fixing strains. The uptake hydrogenase (encoded by hupSL) catalyzes the consumption of the H(2) produced during N(2) fixation, while the bidirectional enzyme (hoxEFUYH) probably plays a role in fermentation and/or acts as an electron valve during photosynthesis. hupSL constitute a transcriptional unit, and are essentially transcribed under N(2)-fixing conditions. The bidirectional hydrogenase consists of a hydrogenase and a diaphorase part, and the corresponding five hox genes are not always clustered or cotranscribed. The biosynthesis/maturation of NiFe-hydrogenases is highly complex, requiring several core proteins. In cyanobacteria, the genes that are thought to affect hydrogenases pleiotropically (hyp), as well as the genes presumably encoding the hydrogenase-specific endopeptidases (hupW and hoxW) have been identified and characterized. Furthermore, NtcA and LexA have been implicated in the transcriptional regulation of the uptake and the bidirectional enzyme respectively. Recently, the phylogenetic origin of cyanobacterial and algal hydrogenases was analyzed, and it was proposed that the current distribution in cyanobacteria reflects a differential loss of genes according to their ecological needs or constraints. In addition, the possibilities and challenges of cyanobacterial-based H(2) production are addressed.
Collapse
Affiliation(s)
- Paula Tamagnini
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ferreira D, Leitão E, Sjöholm J, Oliveira P, Lindblad P, Moradas-Ferreira P, Tamagnini P. Transcription and regulation of the hydrogenase(s) accessory genes, hypFCDEAB, in the cyanobacterium Lyngbya majuscula CCAP 1446/4. Arch Microbiol 2007; 188:609-17. [PMID: 17639348 DOI: 10.1007/s00203-007-0281-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/18/2007] [Accepted: 06/22/2007] [Indexed: 11/29/2022]
Abstract
Lyngbya majuscula CCAP 1446/4 is a filamentous cyanobacterium possessing both an uptake and a bi-directional hydrogenase. The presence of a single copy of the hyp operon in the cyanobacterial genomes suggests that these accessory genes might be responsible for the maturation of both hydrogenases. We investigated the concomitant transcription of hypFCDEAB with the hydrogenases structural genes--hup and hox. RT-PCRs performed with L. majuscula cells grown under different physiological conditions showed a substantial decrease in the relative amount of hupL transcript under non-N2-fixing conditions. In contrast, no significant differences were observed for the transcript levels of hypFCDEAB in all conditions tested, while minor fluctuations could be discerned for hoxH. Previously, it was demonstrated that the transcriptional regulators NtcA and LexA interact with the promoter regions of hup and hox, respectively, and that putative binding sites for both proteins are present in the hyp promoter of L. majuscula. Therefore, a putative involvement of NtcA and LexA in the regulation of the hyp transcription was investigated. Electrophoretic mobility shift assays resulted in NtcA or LexA-bound retarded fragments, suggesting the involvement of these proteins in the transcriptional regulation of hypFCDEAB.
Collapse
Affiliation(s)
- Daniela Ferreira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
16
|
Sjöholm J, Oliveira P, Lindblad P. Transcription and regulation of the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Appl Environ Microbiol 2007; 73:5435-46. [PMID: 17630298 PMCID: PMC2042057 DOI: 10.1128/aem.00756-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous, heterocystous cyanobacterium Nostoc sp. strain PCC 7120 (Anabaena sp. strain PCC 7120) possesses an uptake hydrogenase and a bidirectional enzyme, the latter being capable of catalyzing both H2 production and evolution. The completely sequenced genome of Nostoc sp. strain PCC 7120 reveals that the five structural genes encoding the bidirectional hydrogenase (hoxEFUYH) are separated in two clusters at a distance of approximately 8.8 kb. The transcription of the hox genes was examined under nitrogen-fixing conditions, and the results demonstrate that the cluster containing hoxE and hoxF can be transcribed as one polycistronic unit together with the open reading frame alr0750. The second cluster, containing hoxU, hoxY, and hoxH, is transcribed together with alr0763 and alr0765, located between the hox genes. Moreover, alr0760 and alr0761 form an additional larger operon. Nevertheless, Northern blot hybridizations revealed a rather complex transcription pattern in which the different hox genes are expressed differently. Transcriptional start points (TSPs) were identified 66 and 57 bp upstream from the start codon of alr0750 and hoxU, respectively. The transcriptions of the two clusters containing the hox genes are both induced under anaerobic conditions concomitantly with the induction of a higher level of hydrogenase activity. An additional TSP, within the annotated alr0760, 244 bp downstream from the suggested translation start codon, was identified. Electrophoretic mobility shift assays with purified LexA from Nostoc sp. strain PCC 7120 demonstrated specific interactions between the transcriptional regulator and both hox promoter regions. However, when LexA from Synechocystis sp. strain PCC 6803 was used, the purified protein interacted only with the promoter region of the alr0750-hoxE-hoxF operon. A search of the whole Nostoc sp. strain PCC 7120 genome demonstrated the presence of 216 putative LexA binding sites in total, including recA and recF. This indicates that, in addition to the bidirectional hydrogenase gene, a number of other genes, including open reading frames connected to DNA replication, recombination, and repair, may be part of the LexA regulatory network in Nostoc sp. strain PCC 7120.
Collapse
Affiliation(s)
- Johannes Sjöholm
- Department of Photochemistry and Molecular Science, The Angström Laboratories, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | | | | |
Collapse
|
17
|
Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M. Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:71-91. [PMID: 17150028 DOI: 10.1146/annurev.arplant.58.032806.103848] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The photobiological production of H2 gas, using water as the only electron donor, is a property of two types of photosynthetic microorganisms: green algae and cyanobacteria. In these organisms, photosynthetic water splitting is functionally linked to H(2) production by the activity of hydrogenase enzymes. Interestingly, each of these organisms contains only one of two major types of hydrogenases, [FeFe] or [NiFe] enzymes, which are phylogenetically distinct but perform the same catalytic reaction, suggesting convergent evolution. This idea is supported by the observation that each of the two classes of hydrogenases has a different metallo-cluster, is encoded by entirely different sets of genes (apparently under the control of different promoter elements), and exhibits different maturation pathways. The genetics, biosynthesis, structure, function, and O2 sensitivity of these enzymes have been the focus of extensive research in recent years. Some of this effort is clearly driven by the potential for using these enzymes in future biological or biohybrid systems to produce renewable fuel or in fuel cell applications.
Collapse
|
18
|
|
19
|
Oliveira P, Lindblad P. LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 2006; 251:59-66. [PMID: 16102913 DOI: 10.1016/j.femsle.2005.07.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 07/15/2005] [Accepted: 07/20/2005] [Indexed: 11/23/2022] Open
Abstract
The unicellular cyanobacterium Synechocystis PCC 6803 contains a single pentameric bidirectional hydrogenase encoded by hoxEFUYH. Transcriptional experiments demonstrated that the five hox genes are part of a single transcript together with three ORFs with unknown functions. The transcription start point was localized by 5' RACE to 168bp upstream the hoxE ATG start codon. DNA affinity assays demonstrated a specific interaction between the hox regulatory promoter region and a protein which, using mass spectrometry, was identified to be LexA. Overexpressed His-tagged Synechocystis LexA and EMSA showed a specific binding to the promoter region of the hox operon. Increasing concentrations of the purified LexA resulted in two retarded LexA-DNA complexes, in agreement with the presence of two putative LexA binding sites upstream the determined TSP.
Collapse
Affiliation(s)
- Paulo Oliveira
- Department of Physiological Botany, EBC, Uppsala University, Villavägen 6, SE-752 36 Uppsala, Sweden.
| | | |
Collapse
|
20
|
Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J. LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 2006; 58:810-23. [PMID: 16238629 DOI: 10.1111/j.1365-2958.2005.04867.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The bidirectional NiFe-hydrogenase of Synechocystis sp. PCC 6803 is encoded by five genes (hoxEFUYH) which are transcribed as one unit. The transcription of the hox-operon is regulated by a promoter situated upstream of hoxE. The transcription start point was located at -168 by 5'Race. Several promoter probe vectors carrying different promoter fragments revealed two regions to be essential for the promoter activity. One is situated in the untranslated 5'leader region and the other is found -569 to -690 nucleotides upstream of the ATG. The region further upstream was shown to bind a protein. Even though an imperfect NtcA binding site was identified, NtcA did not bind to this region. The protein binding to the DNA was purified and found to be LexA by MALDI-TOF. The complete LexA and its DNA binding domain were overexpressed in Escherichia coli. Both were able to bind to two sites in the examined region in band-shift-assays. Accordingly, the hydrogenase activity of a LexA-depleted mutant was reduced. This is the first report on LexA acting not as a repressor but as a transcriptional activator. Furthermore, LexA is the first transcription factor identified so far for the expression of bidirectional hydrogenases in cyanobacteria.
Collapse
Affiliation(s)
- Kirstin Gutekunst
- Botanisches Institut, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Leitão E, Oxelfelt F, Oliveira P, Moradas-Ferreira P, Tamagnini P. Analysis of the hupSL operon of the nonheterocystous cyanobacterium Lyngbya majuscula CCAP 1446/4: regulation of transcription and expression under a light-dark regimen. Appl Environ Microbiol 2005; 71:4567-76. [PMID: 16085850 PMCID: PMC1183275 DOI: 10.1128/aem.71.8.4567-4576.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work presents the characterization of an uptake hydrogenase from a marine filamentous nonheterocystous cyanobacterium, Lyngbya majuscula CCAP 1446/4. The structural genes encoding the uptake hydrogenase (hupSL) were isolated and characterized, and regulatory sequences were identified upstream of hupS. In silico analysis highlighted various sets of long repetitive sequences within the hupSL intergenic region and downstream of hupL. The transcriptional regulator that operates global nitrogen control in cyanobacteria (NtcA) was shown to bind to the promoter region, indicating its involvement in the transcriptional regulation of hupSL. Under N2-fixing conditions and a 12-h light/12-h dark regime, H2 uptake activity was shown to follow a daily pattern with a clear maximum towards the end of the dark period, preceded by an increase in the transcript levels initiated in the end of the light phase. Novel antibodies directed against HupL of Lyngbya majuscula CCAP 1446/4 were used to monitor the protein levels throughout the 24-h period. The results suggest that protein turnover occurs, with degradation taking place during the light phase and de novo synthesis occurring during the dark phase, coinciding with the pattern of H2 uptake. Taking into account our results and the established correlation between the uptake hydrogenase activity and N2 fixation in cyanobacteria, it seems probable that both processes are confined to the dark period in aerobically grown cells of Lyngbya majuscula CCAP 1446/4.
Collapse
Affiliation(s)
- Elsa Leitão
- Institute for Molecular and Cell Biology (IBMC)-Cellular and Applied Microbiology Unit, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
22
|
Tamagnini P, Leitão E, Oxelfelt F. Uptake hydrogenase in cyanobacteria: novel input from non-heterocystous strains. Biochem Soc Trans 2005; 33:67-9. [PMID: 15667267 DOI: 10.1042/bst0330067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most of the research to date on cyanobacterial uptake hydrogenases has been performed on filamentous heterocystous strains. However, recent results on the hup gene cluster organization and its transcriptional regulation in non-heterocystous strains has contributed to the widening of knowledge in this field. In the present study, we outline the recent findings on uptake hydrogenases from non-heterocystous cyanobacteria, comparing it with the presently available data from heterocystous strains, and draw attention to potential areas for future research.
Collapse
Affiliation(s)
- P Tamagnini
- Institute for Molecular and Cell Biology, Cellular and Applied Microbiology Unit, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | |
Collapse
|