1
|
Functional Dissection of P1 Bacteriophage Holin-like Proteins Reveals the Biological Sense of P1 Lytic System Complexity. Int J Mol Sci 2022; 23:ijms23084231. [PMID: 35457047 PMCID: PMC9025707 DOI: 10.3390/ijms23084231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
P1 is a model temperate myovirus. It infects different Enterobacteriaceae and can develop lytically or form lysogens. Only some P1 adaptation strategies to propagate in different hosts are known. An atypical feature of P1 is the number and organization of cell lysis-associated genes. In addition to SAR-endolysin Lyz, holin LydA, and antiholin LydB, P1 encodes other predicted holins, LydC and LydD. LydD is encoded by the same operon as Lyz, LydA and LydB are encoded by an unlinked operon, and LydC is encoded by an operon preceding the lydA gene. By analyzing the phenotypes of P1 mutants in known or predicted holin genes, we show that all the products of these genes cooperate with the P1 SAR-endolysin in cell lysis and that LydD is a pinholin. The contributions of holins/pinholins to cell lysis by P1 appear to vary depending on the host of P1 and the bacterial growth conditions. The pattern of morphological transitions characteristic of SAR-endolysin–pinholin action dominates during lysis by wild-type P1, but in the case of lydC lydD mutant it changes to that characteristic of classical endolysin-pinholin action. We postulate that the complex lytic system facilitates P1 adaptation to various hosts and their growth conditions.
Collapse
|
2
|
Activity of the lyases LysSSE1 and HolSSE1 against common pathogenic bacteria and their antimicrobial efficacy in biofilms. Bioorg Chem 2021; 116:105322. [PMID: 34488127 DOI: 10.1016/j.bioorg.2021.105322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022]
Abstract
Bacillary dysentery is a common foodborne disease with an exaggerated mortality rate because of Shigella infection. With the increasing severity of Shigella infection, lyase has been considered as the most promising alternative to antimicrobial agents, owing to the emergence of resistant bacteria and the difficulty in disrupting and eliminating bacterial biofilms. In this study, we cloned and characterised HolSSE1 and LysSSE1, holin, and lysozyme from the S. dysenteriae phage SSE1 with extended bacterial host range against common gram-negative and gram-positive bacteria. In addition, the efficacy of HolSSE1 and LysSSE1 in removing bacterial biofilms was observed on polystyrene surfaces. Moreover, synergistic bacteriostasis was observed when they were used together. Alignment and structural model analysis showed that both HolSSE1 and LysSSE1 are T4 phage proteins that have not yet been identified. Therefore, HolSSE1 and LysSSE1 can be promising biocontrol agents for the prevention and treatment of various pathogenic infections.
Collapse
|
3
|
Aslam B, Arshad MI, Aslam MA, Muzammil S, Siddique AB, Yasmeen N, Khurshid M, Rasool M, Ahmad M, Rasool MH, Fahim M, Hussain R, Xia X, Baloch Z. Bacteriophage Proteome: Insights and Potentials of an Alternate to Antibiotics. Infect Dis Ther 2021; 10:1171-1193. [PMID: 34170506 PMCID: PMC8322358 DOI: 10.1007/s40121-021-00446-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION The mounting incidence of multidrug-resistant bacterial strains and the dearth of novel antibiotics demand alternate therapies to manage the infections caused by resistant superbugs. Bacteriophages and phage=derived proteins are considered as potential alternates to treat such infections, and have several applications in health care systems. The aim of this review is to explore the hidden potential of bacteriophage proteins which may be a practical alternative approach to manage the threat of antibiotic resistance. RESULTS Clinical trials are in progress for the use of phage therapy as a tool for routine medical use; however, the existing regulations may hamper their development of routine antimicrobial agents. The advancement of molecular techniques and the advent of sequencing have opened new potentials for the design of engineered bacteriophages as well as recombinant bacteriophage proteins. The phage enzymes and proteins encoded by the lysis cassette genes, especially endolysins, holins, and spanins, have shown plausible potentials as therapeutic candidates. CONCLUSION This review offers an integrated viewpoint that aims to decipher the insights and abilities of bacteriophages and their derived proteins as potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nafeesa Yasmeen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Maria Rasool
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Moeed Ahmad
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Mohammad Fahim
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Riaz Hussain
- University College of Veterinary and Animal Sciences, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China.
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China.
| |
Collapse
|
4
|
Obořilová R, Šimečková H, Pastucha M, Klimovič Š, Víšová I, Přibyl J, Vaisocherová-Lísalová H, Pantůček R, Skládal P, Mašlaňová I, Farka Z. Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria. NANOSCALE 2021; 13:13538-13549. [PMID: 34477758 DOI: 10.1039/d1nr02921e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
Collapse
Affiliation(s)
- Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
6
|
Hopf J, Waters M, Kalwajtys V, Carothers KE, Roeder RK, Shrout JD, Lee SW, Nallathamby PD. Phage-mimicking antibacterial core-shell nanoparticles. NANOSCALE ADVANCES 2019; 1:4812-4826. [PMID: 36133139 PMCID: PMC9417579 DOI: 10.1039/c9na00461k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/08/2019] [Indexed: 06/16/2023]
Abstract
The increasing frequency of nosocomial infections caused by antibiotic-resistant microorganisms concurrent with the stagnant discovery of new classes of antibiotics has made the development of new antibacterial agents a critical priority. Our approach is an antibiotic-free strategy drawing inspiration from bacteriophages to combat antibiotic-resistant bacteria. We developed a nanoparticle-based antibacterial system that structurally mimics the protein-turret distribution on the head structure of certain bacteriophages and explored a combination of different materials arranged hierarchically to inhibit bacterial growth and ultimately kill pathogenic bacteria. Here, we describe the synthesis of phage-mimicking antibacterial nanoparticles (ANPs) consisting of silver-coated gold nanospheres distributed randomly on a silica core. The silver-coating was deposited in an anisotropic fashion on the gold nanospheres. Structurally, our nanoparticles mimicked the bacteriophages of the family Microviridae by up to 88%. These phage-mimicking ANPs were tested for bactericidal efficacy against four clinically relevant nosocomial pathogens (Staphylococcus aureus USA300, Pseudomonas aeruginosa FRD1, Enterococcus faecalis, and Corynebacterium striatum) and for biocompatibility with skin cells. Bacterial growth of all four bacteria was inhibited (21% to 90%) as well as delayed (by up to 5 h). The Gram-positive organisms were shown to be more sensitive to the nanoparticle treatment. Importantly, the phage-mimicking ANPs did not show any significant cytotoxic effects against human skin keratinocytes. Our results indicate the potential for phage-mimicking antimicrobial nanoparticles as a highly effective, alternative antibacterial agent, which may be suitable for co-administration with existing available formulations.
Collapse
Affiliation(s)
- Juliane Hopf
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame Notre Dame IN USA
| | - Margo Waters
- Department of Aerospace and Mechanical Engineering, University of Notre Dame Notre Dame IN USA +1 574 631 7868
| | - Veronica Kalwajtys
- Department of Biological Sciences, University of Notre Dame Notre Dame IN USA
| | - Katelyn E Carothers
- Department of Biological Sciences, University of Notre Dame Notre Dame IN USA
| | - Ryan K Roeder
- Department of Aerospace and Mechanical Engineering, University of Notre Dame Notre Dame IN USA +1 574 631 7868
- Center for Nanoscience and Technology (NDnano), University of Notre Dame Notre Dame IN USA
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame Notre Dame IN USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame Notre Dame IN USA
| | - Prakash D Nallathamby
- Department of Aerospace and Mechanical Engineering, University of Notre Dame Notre Dame IN USA +1 574 631 7868
- Center for Nanoscience and Technology (NDnano), University of Notre Dame Notre Dame IN USA
- Center for Advanced Diagnostics and Therapeutics (AD&T), University of Notre Dame Notre Dame IN USA
| |
Collapse
|
7
|
Borysowski J, Weber-Dabrowska B, Górski A. Bacteriophage Endolysins as a Novel Class of Antibacterial Agents. Exp Biol Med (Maywood) 2016; 231:366-77. [PMID: 16565432 DOI: 10.1177/153537020623100402] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Endolysins are double-stranded DNA bacteriophage-encoded peptidoglycan hydrolases produced in phage-infected bacterial cells toward the end of the lytic cycle. They reach the peptidoglycan through membrane lesions formed by holins and cleave it, thus, inducing lysis of the bacterial cell and enabling progeny virions to be released. Endolysins are also capable of degrading peptidoglycan when applied externally (as purified recombinant proteins) to the bacterial cell wall, which also results in a rapid lysis of the bacterial cell. The unique ability of endolysins to rapidly cleave peptidoglycan in a generally species-specific manner renders them promising potential antibacterial agents. Originally developed with a view to killing bacteria colonizing mucous membranes (with the first report published in 2001), endolysins also hold promise for the treatment of systemic infections. As potential antibacterials, endolysins possess several important features, for instance, a novel mode of action, a narrow antibacterial spectrum, activity against bacteria regardless of their antibiotic sensitivity, and a low probability of developing resistance. However, there is only one report directly comparing the activity of an endolysin with that of an antibiotic, and no general conclusions can be drawn regarding whether lysins are more effective than traditional antibiotics. The results of the first preclinical studies indicate that the most apparent potential problems associated with endolysin therapy (e.g., their immunogenicity, the release of proinflammatory components during bacteriolysis, or the development of resistance), in fact, may not seriously hinder their use. However, all data regarding the safety and therapeutic effectiveness of endolysins obtained from preclinical studies must be ultimately verified by clinical trials. This review discusses the prophylactic and therapeutic applications of endolysins, especially with respect to their potential use in human medicine. Additionally, we outline current knowledge regarding the structure and natural function of the enzymes in phage biology, including the most recent findings.
Collapse
Affiliation(s)
- Jan Borysowski
- Department of Clinical Immunology, Institute of Transplantology, the Medical University of Warsaw, 02-006 Warsaw, Poland.
| | | | | |
Collapse
|
8
|
Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages. Curr Microbiol 2016; 74:277-283. [PMID: 27896482 PMCID: PMC5243869 DOI: 10.1007/s00284-016-1166-x] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
The therapeutic use of bacteriophages has seen a renewal of interest blossom in the last few years. This reversion is due to increased difficulties in the treatment of antibiotic-resistant strains of bacteria. Bacterial resistance to antibiotics, a serious problem in contemporary medicine, does not implicate resistance to phage lysis mechanisms. Lytic bacteriophages are able to kill antibiotic-resistant bacteria at the end of the phage infection cycle. Thus, the development of phage therapy is potentially a way to improve the treatment of bacterial infections. However, there are antibacterial phage therapy difficulties specified by broadening the knowledge of the phage nature and influence on the host. It has been shown during experiments that both innate and adaptive immunity are involved in the clearance of phages from the body. Immunological reactions against phages are related to the route of administration and may vary depending on the type of bacterial viruses. For that reason, it is very important to test the immunological response of every single phage, particularly if intravenous therapy is being considered. The lack of these data in previous years was one of the reasons for phage therapy abandonment despite its century-long study. Promising results of recent research led us to look forward to a phage therapy that can be applied on a larger scale and subsequently put it into practice.
Collapse
|
9
|
Song J, Xia F, Jiang H, Li X, Hu L, Gong P, Lei L, Feng X, Sun C, Gu J, Han W. Identification and characterization of HolGH15: the holin of Staphylococcus aureus bacteriophage GH15. J Gen Virol 2016; 97:1272-1281. [PMID: 26873847 DOI: 10.1099/jgv.0.000428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Holins are phage-encoded hydrophobic membrane proteins that spontaneously and non-specifically accumulate and form lesions in the cytoplasmic membrane. The ORF72 gene (also designated HolGH15) derived from the genome of the Staphylococcus aureus phage GH15 was predicted to encode a membrane protein. An analysis indicated that the protein encoded by HolGH15 potentially consisted of two hydrophobic transmembrane helices. This protein exhibited the structural characteristics of class II holins and belonged to the phage_holin_1 superfamily. Expression of HolGH15 in Escherichia coli BL21 cells resulted in growth retardation of the host cells, which was triggered prematurely by the addition of 2,4-dinitrophenol. The expression of HolGH15 caused morphological alterations in engineered E. coli cells, including loss of the cell wall and cytoplasmic membrane integrity and release of intracellular components, which were visualized by transmission electron microscopy. HolGH15 exerted efficient antibacterial activity at 37 °C and pH 5.2. Mutation analysis indicated that the two transmembrane domains of HolGH15 were indispensable for the activity of the full-length protein. HolGH15 showed a broad antibacterial range: it not only inhibited Staphylococcus aureus, but also demonstrated antibacterial activity against other species, including Listeria monocytogenes, Bacillus subtilis, Pseudomonas aeruginosa, Klebsiella pneumoniae and E. coli. At the minimal inhibitory concentration, HolGH15 evoked the release of cellular contents and resulted in the shrinkage and death of Staphylococcus aureus and Listeria monocytogenes cells. To the best of our knowledge, this study is the first report of a Staphylococcus aureus phage holin that exerts antibacterial activity against heterogeneous pathogens.
Collapse
Affiliation(s)
- Jun Song
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Feifei Xia
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Haiyan Jiang
- The First Affiliated Hospital to Changchun University of Chinese Medicine,Changchun 130021, PRChina
| | - Xinwei Li
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Liyuan Hu
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Pengjuan Gong
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Liancheng Lei
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Xin Feng
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Changjiang Sun
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Jingmin Gu
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina
| | - Wenyu Han
- College of Veterinary Medicine,Jilin University, Changchun 130062, PRChina.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses,Yangzhou 225009, PRChina
| |
Collapse
|
10
|
Bacteriophages and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/382539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The application of bacteriophages for the elimination of pathogenic bacteria has received significantly increased attention world-wide in the past decade. This is borne out by the increasing prevalence of bacteriophage-specific conferences highlighting significant and diverse advances in the exploitation of bacteriophages. While bacteriophage therapy has been associated with the Former Soviet Union historically, since the 1990s, it has been widely and enthusiastically adopted as a research topic in Western countries. This has been justified by the increasing prevalence of antibiotic resistance in many prominent human pathogenic bacteria. Discussion of the therapeutic aspects of bacteriophages in this review will include the uses of whole phages as antibacterials and will also describe studies on the applications of purified phage-derived peptidoglycan hydrolases, which do not have the constraint of limited bacterial host-range often observed with whole phages.
Collapse
|
11
|
A highly active and negatively charged Streptococcus pyogenes lysin with a rare D-alanyl-L-alanine endopeptidase activity protects mice against streptococcal bacteremia. Antimicrob Agents Chemother 2014; 58:3073-84. [PMID: 24637688 DOI: 10.1128/aac.00115-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC.
Collapse
|
12
|
Tiwari R, Dhama K, Chakrabort S, Kapoor S. Enzybiotics: New Weapon in the Army of Antimicrobials: A Review. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajava.2014.144.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Xia G, Wolz C. Phages of Staphylococcus aureus and their impact on host evolution. INFECTION GENETICS AND EVOLUTION 2013; 21:593-601. [PMID: 23660485 DOI: 10.1016/j.meegid.2013.04.022] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/25/2013] [Accepted: 04/18/2013] [Indexed: 01/01/2023]
Abstract
Most of the dissimilarity between Staphylococcus aureus strains is due to the presence of mobile genetic elements such as bacteriophages or pathogenicity islands. These elements provide the bacteria with additional genes that enable them to establish a new lifestyle that is often accompanied by a shift to increased pathogenicity or a jump to a new host. S. aureus phages may carry genes coding for diverse virulence factors such as Panton-Valentine leukocidin, staphylokinase, enterotoxins, chemotaxis-inhibitory proteins, or exfoliative toxins. Phages also mediate the transfer of pathogenicity islands in a highly coordinated manner and are the primary vehicle for the horizontal transfer of chromosomal and extra-chromosomal genes. Here, we summarise recent advances regarding phage classification, genome organisation and function of S. aureus phages with a particular emphasis on their role in the evolution of the bacterial host.
Collapse
Affiliation(s)
- Guoqing Xia
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhornstrasse-6, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhornstrasse-6, 72076 Tübingen, Germany.
| |
Collapse
|
14
|
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 2012; 13:699-722. [PMID: 23305359 PMCID: PMC3594737 DOI: 10.2174/138920312804871193] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/12/2012] [Accepted: 09/20/2012] [Indexed: 12/18/2022]
Abstract
The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application.
Collapse
Affiliation(s)
- Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
15
|
Shi Y, Yan Y, Ji W, Du B, Meng X, Wang H, Sun J. Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virol J 2012; 9:70. [PMID: 22436471 PMCID: PMC3359269 DOI: 10.1186/1743-422x-9-70] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 03/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Holins are a group of phage-encoded membrane proteins that control access of phage-encoded endolysins to the peptidoglycan, and thereby trigger the lysis process at a precise time point as the 'lysis clock'. SMP is an isolated and characterized Streptococcus suis lytic phage. The aims of this study were to determine the holin gene, HolSMP, in the genome of SMP, and characterized the function of holin, HolSMP, in phage infection. RESULTS HolSMP was predicted to encode a small membrane protein with three hydrophobic transmembrane helices. During SMP infections, HolSMP was transcribed as a late gene and HolSMP accumulated harmlessly in the cell membrane before host cell lysis. Expression of HolSMP in Escherichia coli induced an increase in cytoplasmic membrane permeability, an inhibition of host cell growth and significant cell lysis in the presence of LySMP, the endolysin of phage SMP. HolSMP was prematurely triggered by the addition of energy poison to the medium. HolSMP complemented the defective λ S allele in a non-suppressing Escherichia coli strain to produce phage plaques. CONCLUSIONS Our results suggest that HolSMP is the holin protein of phage SMP and a two-step lysis system exists in SMP.
Collapse
Affiliation(s)
- Yibo Shi
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Fenton M, Ross P, McAuliffe O, O'Mahony J, Coffey A. Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 2011; 1:9-16. [PMID: 21327123 DOI: 10.4161/bbug.1.1.9818] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/14/2009] [Indexed: 01/01/2023] Open
Abstract
With the increasing worldwide prevalence of antibiotic resistant bacteria, bacteriophage endolysins (lysins) represent a very promising novel alternative class of antibacterial in the fight against infectious disease. Lysins are phage-encoded peptidoglycan hydrolases which, when applied exogenously (as purified recombinant proteins) to Gram-positive bacteria, bring about rapid lysis and death of the bacterial cell. A number of studies have recently demonstrated the strong potential of these enzymes in human and veterinary medicine to control and treat pathogens on mucosal surfaces and in systemic infections. They also have potential in diagnostics and detection, bio-defence, elimination of food pathogens and control of phytopathogens. This review discusses the extensive research on recombinant bacteriophage lysins in the context of antibacterials, and looks forward to future development and potential.
Collapse
Affiliation(s)
- Mark Fenton
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | | | |
Collapse
|
17
|
Abstract
The mycobacteriophage Ms6 is a temperate double-stranded DNA (dsDNA) bacteriophage which, in addition to the predicted endolysin (LysA)-holin (Gp4) lysis system, encodes three additional proteins within its lysis module: Gp1, LysB, and Gp5. Ms6 Gp4 was previously described as a class II holin-like protein. By analysis of the amino acid sequence of Gp4, an N-terminal signal-arrest-release (SAR) domain was identified, followed by a typical transmembrane domain (TMD), features which have previously been observed for pinholins. A second putative holin gene (gp5) encoding a protein with a predicted single TMD at the N-terminal region was identified at the end of the Ms6 lytic operon. Neither the putative class II holin nor the single TMD polypeptide could trigger lysis in pairwise combinations with the endolysin LysA in Escherichia coli. One-step growth curves and single-burst-size experiments of different Ms6 derivatives with deletions in different regions of the lysis operon demonstrated that the gene products of gp4 and gp5, although nonessential for phage viability, appear to play a role in controlling the timing of lysis: an Ms6 mutant with a deletion of gp4 (Ms6(Δgp4)) caused slightly accelerated lysis, whereas an Ms6(Δgp5) deletion mutant delayed lysis, which is consistent with holin function. Additionally, cross-linking experiments showed that Ms6 Gp4 and Gp5 oligomerize and that both proteins interact. Our results suggest that in Ms6 infection, the correct and programmed timing of lysis is achieved by the combined action of Gp4 and Gp5.
Collapse
|
18
|
Chang KC, Lin NT, Hu A, Lin YS, Chen LK, Lai MJ. Genomic analysis of bacteriophage ϕAB1, a ϕKMV-like virus infecting multidrug-resistant Acinetobacter baumannii. Genomics 2011; 97:249-55. [PMID: 21241792 DOI: 10.1016/j.ygeno.2011.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/29/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
We present the complete genomic sequence of a lytic bacteriophage ϕAB1 which can infect many clinical isolates of multidrug-resistant Acinetobacter baumannii. The recently isolated bacteriophage displays morphology resembling Podoviridae family. The ϕAB1 genome is a linear double-stranded DNA of 41,526 bp containing 46 possible open reading frames (ORFs). The majority of the predicted structural proteins were identified as part of the phage particle by mass spectrometry analysis. According to the virion morphology, overall genomic structure, and the phylogenetic tree of RNA polymerase, we propose that ϕAB1 is a new member of the ϕKMV-like phages. Additionally, we identified four ORFs encoding putative HNH endonucleases, one of which is presumed to integrate and create a genes-in-pieces DNA polymerase. Also, a potential lysis cassette was identified in the late genome. The lytic power of this bacteriophage combined with its specificity for A. baumannii makes ϕAB1 an attractive agent for therapeutic or disinfection applications.
Collapse
Affiliation(s)
- Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Kozlov DG, Cheperegin SE, Chestkov AV, Krylov VN, Tsygankov YD. Cloning and expression of bacteriophage FMV lysocyme gene in cells of yeasts Saccharomyces cerevisiae and Pichia pastoris. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410030063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol 2009; 86:1439-49. [PMID: 20013118 DOI: 10.1007/s00253-009-2386-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
Antibacterial and biofilm removal activity of a new podoviridae Staphylococcus aureus bacteriophage (SAP-2), which belongs to the phi29-like phage genus of the Podoviridae family, and a cell-wall-degrading enzyme (SAL-2), which is derived from bacteriophage SAP-2, have been characterized. The cell-wall-degrading enzyme SAL-2 was expressed in Escherichia coli in a soluble form using a low-temperature culture. The cell-wall-degrading enzyme SAL-2 had specific lytic activity against S. aureus, including methicillin-resistant strains, and showed a minimum inhibitory concentration of about 1 microg/ml. In addition, this enzyme showed a broader spectrum of activity within the Staphylococcus genus compared with bacteriophage SAP-2 in its ability to remove the S. aureus biofilms. Thus, the cell-wall-degrading enzyme SAL-2 can be used to prevent and treat biofilm-associated S. aureus infections either on its own or in combination with other cell-wall-degrading enzymes with anti-S. aureus activity.
Collapse
|
21
|
Functional analysis of a putative holin-like peptide-coding gene in the genome of Bacillus licheniformis AnBa9. Arch Microbiol 2009; 192:51-6. [DOI: 10.1007/s00203-009-0530-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/03/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
|
22
|
Manoharadas S, Witte A, Bläsi U. Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. J Biotechnol 2008; 139:118-23. [PMID: 18940209 DOI: 10.1016/j.jbiotec.2008.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/09/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Phage lytic enzymes (enzybiotics) have gained attention as prospective tools to eradicate Gram-positive pathogens resistant to antibiotics. Attempts to purify the P16 endolysin of Staphylococcus aureus phage P68 were unsuccessful owing to the poor solubility of the protein. To overcome this limitation, we constructed a chimeric endolysin (P16-17) comprised of the inferred N-terminal d-alanyl-glycyl endopeptidase domain and the C-terminal cell wall targeting domain of the S. aureus phage P16 endolysin and the P17 minor coat protein, respectively. The domain swapping approach and the applied purification procedure resulted in soluble P16-17 protein, which exhibited antimicrobial activity towards S. aureus. In addition, P16-17 augmented the antimicrobial efficacy of the antibiotic gentamicin. This synergistic effect could be useful to reduce the effective dose of aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Salim Manoharadas
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
23
|
The Lysis System of the Streptomyces aureofaciens Phage μ1/6. Curr Microbiol 2008; 57:631-7. [DOI: 10.1007/s00284-008-9255-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
|
24
|
Obeso JM, Martínez B, Rodríguez A, García P. Lytic activity of the recombinant staphylococcal bacteriophage PhiH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol 2008; 128:212-8. [PMID: 18809219 DOI: 10.1016/j.ijfoodmicro.2008.08.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/18/2008] [Accepted: 08/19/2008] [Indexed: 11/16/2022]
Abstract
The endolysin gene (lysH5) from the genome of the Staphylococcus aureus bacteriophage PhiH5 was cloned in Escherichia coli and characterized. The lysH5 gene encoded a protein (LysH5) whose calculated molecular mass and pI were 53.7 kDa and 8.7, respectively. Comparative analysis revealed that LysH5 significantly resembled other murein hydrolases encoded by staphylococcal phages. The modular organization of LysH5 comprised three putative domains, namely, CHAP (cysteine, histidine-dependent amidohydrolase/peptidase), amidase (L-muramoyl-L-alanine amidase), and SH3b (cell wall recognition). In turbidity reduction assays, the purified protein lysed bovine and human S. aureus, and human Staphylococcus epidermidis strains. Other bacteria belonging to different genera were not affected. The lytic activity was optimal at pH 7.0, 37 degrees C, and sensitive to high temperatures. The purified protein was able to kill rapidly S. aureus growing in pasteurized milk and the pathogen was not detected after 4 h of incubation at 37 degrees C. As far as we know, this is the first report to assess the antimicrobial activity of a phage endolysin which might be useful for novel biocontrol strategies in dairying.
Collapse
Affiliation(s)
- José María Obeso
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Apdo. 85. 33300-Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
25
|
Krupovic M, Daugelavicius R, Bamford DH. A novel lysis system in PM2, a lipid-containing marine double-stranded DNA bacteriophage. Mol Microbiol 2007; 64:1635-48. [PMID: 17555443 DOI: 10.1111/j.1365-2958.2007.05769.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study we investigated the lysis system of the lipid-containing double-stranded DNA bacteriophage PM2 infecting Gram-negative marine Pseudoalteromonas species. We analysed wt and lysis-deficient phage-induced changes in the host physiology and ascribed functions to two PM2 gene products (gp) involved in lysis. We show that bacteriophage PM2 uses a novel system to disrupt the infected cell. The novelty is based on the following findings: (i) gp k is needed for the permeabilization of the cytoplasmic membrane and appears to play the role of a typical holin. However, its unique primary structure [53 aa, 1 transmembrane domain (TMD)] places it into a new class of holins. (ii) We have proposed that, unlike other bacteriophages studied, PM2 relies on lytic factors of the cellular origin for digestion of the peptidoglycan. (iii) gp l (51 aa, no TMDs) is needed for disruption of the outer membrane, which is highly rigidified by the divalent cations abundant in the marine environment. The gp l has no precedent in other phage lytic systems studied so far. However, the presence of open reading frame l-like genes in genomes of other bacterial viruses suggests that the same system might be used by other phages and is not unique to PM2.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Biological and Environmental Sciences and Institute of Biotechnology, Biocenter 2, PO Box 56 (Viikinkaari 5), 00014 University of Helsinki, Finland
| | | | | |
Collapse
|