1
|
Hobson C, Chan AN, Wright GD. The Antibiotic Resistome: A Guide for the Discovery of Natural Products as Antimicrobial Agents. Chem Rev 2021; 121:3464-3494. [PMID: 33606500 DOI: 10.1021/acs.chemrev.0c01214] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of life-saving antibiotics has long been plagued by the ability of pathogenic bacteria to acquire and develop an array of antibiotic resistance mechanisms. The sum of these resistance mechanisms, the antibiotic resistome, is a formidable threat to antibiotic discovery, development, and use. The study and understanding of the molecular mechanisms in the resistome provide the basis for traditional approaches to combat resistance, including semisynthetic modification of naturally occurring antibiotic scaffolds, the development of adjuvant therapies that overcome resistance mechanisms, and the total synthesis of new antibiotics and their analogues. Using two major classes of antibiotics, the aminoglycosides and tetracyclines as case studies, we review the success and limitations of these strategies when used to combat the many forms of resistance that have emerged toward natural product-based antibiotics specifically. Furthermore, we discuss the use of the resistome as a guide for the genomics-driven discovery of novel antimicrobials, which are essential to combat the growing number of emerging pathogens that are resistant to even the newest approved therapies.
Collapse
Affiliation(s)
- Christian Hobson
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Andrew N Chan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Hüttener M, Prieto A, Aznar S, Dietrich M, Paytubi S, Juárez A. Tetracycline alters gene expression in Salmonella strains that harbor the Tn10 transposon. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:202-209. [PMID: 29393572 DOI: 10.1111/1758-2229.12621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this report, we show that bacterial plasmids that harbor the Tn10 transposon (i.e., the IncHI1 plasmid R27) modify expression of different Salmonella regulons responding to the presence of tetracycline (Tc) in the medium. By using as a model the Tc-dependent upregulation of the ibpAB operon (which belongs to the heat shock regulon), we have identified Tn10-tetA (coding for a Tc efflux pump) and adjacent tetC sequences as required for ibpAB upregulation. Characterization of transcripts in the tetAC region showed that tetA transcription can continue into tetC sequences, generating a long 3'UTR sequence, which can protect transcripts from RNA processing, thus increasing the expression of TetA protein. In the presence of Tc, the DnaK and IbpA chaperones are overexpressed and translocated to the periplasm and to the membrane fraction respectively. DnaK targeting unfolded proteins is known to induce heat shock by avoiding RpoH proteolysis. We correlate expression levels of Tn10-encoded TetA protein with heat shock induction in Salmonella, likely because TetA activity compromises protein secretion.
Collapse
Affiliation(s)
- M Hüttener
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - A Prieto
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - S Aznar
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - M Dietrich
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - S Paytubi
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - A Juárez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and technology, Barcelona, Spain
| |
Collapse
|
3
|
Perez AM, Gomez MM, Kalvapalle P, O'Brien-Gilbert E, Bennett MR, Shamoo Y. Using cellular fitness to map the structure and function of a major facilitator superfamily effluxer. Mol Syst Biol 2017; 13:964. [PMID: 29273640 PMCID: PMC5740499 DOI: 10.15252/msb.20177635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The major facilitator superfamily (MFS) effluxers are prominent mediators of antimicrobial resistance. The biochemical characterization of MFS proteins is hindered by their complex membrane environment that makes in vitro biochemical analysis challenging. Since the physicochemical properties of proteins drive the fitness of an organism, we posed the question of whether we could reverse that relationship and derive meaningful biochemical parameters for a single protein simply from fitness changes it confers under varying strengths of selection. Here, we present a physiological model that uses cellular fitness as a proxy to predict the biochemical properties of the MFS tetracycline efflux pump, TetB, and a family of single amino acid variants. We determined two lumped biochemical parameters roughly describing Km and Vmax for TetB and variants. Including in vivo protein levels into our model allowed for more specified prediction of pump parameters relating to substrate binding affinity and pumping efficiency for TetB and variants. We further demonstrated the general utility of our model by solely using fitness to assay a library of tet(B) variants and estimate their biochemical properties.
Collapse
Affiliation(s)
- Anisha M Perez
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Marcella M Gomez
- Department of Applied Mathematics & Statistics, University of California, Santa Cruz, CA, USA
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | | | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, TX, USA.,Department of Bioengineering, Rice University, Houston, TX, USA
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
4
|
Meisel JW, Patel MB, Garrad E, Stanton RA, Gokel GW. Reversal of Tetracycline Resistance in Escherichia coli by Noncytotoxic bis(Tryptophan)s. J Am Chem Soc 2016; 138:10571-7. [DOI: 10.1021/jacs.6b05578] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph W. Meisel
- Center for Nanoscience, Departments of ‡Chemistry & Biochemistry and §Biology, University of Missouri − St. Louis, 1 University Blvd., St. Louis, Missouri 63121, United States
| | - Mohit B. Patel
- Center for Nanoscience, Departments of ‡Chemistry & Biochemistry and §Biology, University of Missouri − St. Louis, 1 University Blvd., St. Louis, Missouri 63121, United States
| | - Evan Garrad
- Center for Nanoscience, Departments of ‡Chemistry & Biochemistry and §Biology, University of Missouri − St. Louis, 1 University Blvd., St. Louis, Missouri 63121, United States
| | - Ryan A. Stanton
- Center for Nanoscience, Departments of ‡Chemistry & Biochemistry and §Biology, University of Missouri − St. Louis, 1 University Blvd., St. Louis, Missouri 63121, United States
| | - George W. Gokel
- Center for Nanoscience, Departments of ‡Chemistry & Biochemistry and §Biology, University of Missouri − St. Louis, 1 University Blvd., St. Louis, Missouri 63121, United States
| |
Collapse
|
5
|
K Redhu A, Shah AH, Prasad R. MFS transporters of Candida species and their role in clinical drug resistance. FEMS Yeast Res 2016; 16:fow043. [PMID: 27188885 DOI: 10.1093/femsyr/fow043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
ABC (ATP-binding cassette) and MFS (major facilitator superfamily) exporters, belonging to two different superfamilies, are one of the most prominent contributors of multidrug resistance (MDR) in yeast. While the role of ABC efflux pump proteins in the development of MDR is well documented, the MFS transporters which are also implicated in clinical drug resistance have not received due attention. The MFS superfamily is the largest known family of secondary active membrane carriers, and MFS exporters are capable of transporting a host of substrates ranging from small molecules, including organic and inorganic ions, to complex biomolecules, such as peptide and lipid moieties. A few of the members of the drug/H(+) antiporter family of the MFS superfamily function as multidrug transporters and employ downhill transport of protons to efflux their respective substrates. This review focuses on the recent developments in MFS of Candida and highlights their role in drug transport by using the example of the relatively well characterized promiscuous Mdr1 efflux pump of the pathogenic yeast C. albicans.
Collapse
Affiliation(s)
- Archana K Redhu
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul H Shah
- Department of Bioresources, University of Kashmir, Srinagar 190006, India
| | - Rajendra Prasad
- Institute of Integrative Sciences and Health and Institute of Biotechnology, Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| |
Collapse
|
6
|
Abstract
Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.
Collapse
|
7
|
Wright DJ, Tate CG. Isolation and characterisation of transport-defective substrate-binding mutants of the tetracycline antiporter TetA(B). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2261-70. [PMID: 26143388 PMCID: PMC4579554 DOI: 10.1016/j.bbamem.2015.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 11/20/2022]
Abstract
The tetracycline antiporter TetA(B) is a member of the Major Facilitator Superfamily which confers tetracycline resistance to cells by coupling the efflux of tetracycline to the influx of protons down their chemical potential gradient. Although it is a medically important transporter, its structure has yet to be determined. One possibility for why this has proven difficult is that the transporter may be conformationally heterogeneous in the purified state. To overcome this, we developed two strategies to rapidly identify TetA(B) mutants that were transport-defective and that could still bind tetracycline. Up to 9 amino acid residues could be deleted from the loop between transmembrane α-helices 6 and 7 with only a slight decrease in affinity of tetracycline binding as measured by isothermal titration calorimetry, although the mutant was transport-defective. Scanning mutagenesis where all the residues between 2 and 389 were mutated to either valine, alanine or glycine (VAG scan) identified 15 mutants that were significantly impaired in tetracycline transport. Of these mutants, 12 showed no evidence of tetracycline binding by isothermal titration calorimetry performed on the purified transporters. In contrast, the mutants G44V and G346V bound tetracycline 4–5 fold more weakly than TetA(B), with Kds of 28 μM and 36 μM, respectively, whereas the mutant R70G bound tetracycline 3-fold more strongly (Kd 2.1 μM). Systematic mutagenesis is thus an effective strategy for isolating transporter mutants that may be conformationally constrained and which represent attractive targets for crystallisation and structure determination. A rapid method was developed for the identification of transport-defective mutants of TetA(B). ITC was used to determine the affinity of tetracycline binding to the mutants. Fifteen transport-defective point mutations were identified. Three mutants bound tetracycline whereas the remainder did not The transport-defective mutants may facilitate crystallisation of TetA(B).
Collapse
Affiliation(s)
- David J Wright
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
8
|
Wang W, Guo Q, Xu X, Sheng ZK, Ye X, Wang M. High-level tetracycline resistance mediated by efflux pumps Tet(A) and Tet(A)-1 with two start codons. J Med Microbiol 2014; 63:1454-1459. [PMID: 25102906 DOI: 10.1099/jmm.0.078063-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efflux is the most common mechanism of tetracycline resistance. Class A tetracycline efflux pumps, which often have high prevalence in Enterobacteriaceae, are encoded by tet(A) and tet(A)-1 genes. These genes have two potential start codons, GTG and ATG, located upstream of the genes. The purpose of this study was to determine the start codon(s) of the class A tetracycline resistance (tet) determinants tet(A) and tet(A)-1, and the tetracycline resistance level they mediated. Conjugation, transformation and cloning experiments were performed and the genetic environment of tet(A)-1 was analysed. The start codons in class A tet determinants were investigated by site-directed mutagenesis of ATG and GTG, the putative translation initiation codons. High-level tetracycline resistance was transferred from the clinical strain of Klebsiella pneumoniae 10-148 containing tet(A)-1 plasmid pHS27 to Escherichia coli J53 by conjugation. The transformants harbouring recombinant plasmids that carried tet(A) or tet(A)-1 exhibited tetracycline MICs of 256–512 µg ml−1, with or without tetR(A). Once the ATG was mutated to a non-start codon, the tetracycline MICs were not changed, while the tetracycline MICs decreased from 512 to 64 µg ml−1 following GTG mutation, and to ≤4 µg ml−1 following mutation of both GTG and ATG. It was presumed that class A tet determinants had two start codons, which are the primary start codon GTG and secondary start codon ATG. Accordingly, two putative promoters were predicted. In conclusion, class A tet determinants can confer high-level tetracycline resistance and have two start codons.
Collapse
Affiliation(s)
- Weixia Wang
- Institute of Biomedical Science, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Qinglan Guo
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xiaogang Xu
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zi-ke Sheng
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xinyu Ye
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Minggui Wang
- Institute of Biomedical Science, Fudan University, Shanghai, PR China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, PR China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
9
|
Abstract
A major multidrug transporter, MDR1 (multidrug resistance 1), a member of the MFS (major facilitator superfamily), invariably contributes to an increased efflux of commonly used azoles and thus corroborates their direct involvement in MDR in Candida albicans. The Mdr1 protein has two transmembrane domains, each comprising six transmembrane helices, interconnected with extracellular loops and ICLs (intracellular loops). The introduction of deletions and insertions through mutagenesis was used to address the role of the largest interdomain ICL3 of the MDR1 protein. Most of the progressive deletants, when overexpressed, eliminated the drug resistance. Notably, restoration of the length of the ICL3 by insertional mutagenesis did not restore the functionality of the protein. Interestingly, most of the insertion and deletion variants of ICL3 became amenable to trypsinization, yielding peptide fragments. The homology model of the Mdr1 protein showed that the molecular surface-charge distribution was perturbed in most of the ICL3 mutant variants. Taken together, these results provide the first evidence that the CCL (central cytoplasmic loop) of the fungal MFS transporter of the DHA1 (drug/proton antiporter) family is critical for the function of MDR. Unlike other homologous proteins, ICL3 has no apparent role in imparting substrate specificity or in the recruitment of the transporter protein.
Collapse
|
10
|
Huet AA, Raygada JL, Mendiratta K, Seo SM, Kaatz GW. Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. MICROBIOLOGY-SGM 2008; 154:3144-3153. [PMID: 18832320 DOI: 10.1099/mic.0.2008/021188-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Biocides and dyes are commonly employed in hospital and laboratory settings. Many of these agents are substrates for multiple-drug resistance (MDR)-conferring efflux pumps of both Gram-positive and Gram-negative organisms. Several such pumps have been identified in Staphylococcus aureus, and mutants overexpressing the NorA and MepA MDR pumps following exposure to fluoroquinolones have been identified. The effect of exposure to low concentrations of biocides and dyes on the expression of specific pump genes has not been evaluated. Using quantitative reverse-transcription PCR we found that exposure of clinical isolates to low concentrations of a variety of biocides and dyes in a single step, or to gradually increasing concentrations over several days, resulted in the appearance of mutants overexpressing mepA, mdeA, norA and norC, with mepA overexpression predominating. Overexpression was frequently associated with promoter-region or regulatory protein mutations. Mutants having significant increases in MICs of common pump substrates but no changes in expression of studied pump genes were also observed; in these cases changes in expression of as-yet-unidentified MDR pump genes may have occurred. Strains of S. aureus that exist in relatively protected environments and are repeatedly exposed to sublethal concentrations of biocides can develop efflux-related resistance to those agents, and acquisition of such strains poses a threat to patients treated with antimicrobial agents that are also substrates for those pumps, such as ciprofloxacin and moxifloxacin.
Collapse
Affiliation(s)
- Aurélie A Huet
- École Supérieure de Microbiologie et Sécurité Alimentaire de Brest, Université de Bretagne Occidentale, Technopôle Brest-Iroise, 29280 Plouzané, France.,John D. Dingell Department of Veterans Affairs Medical Center, Detroit, MI 48201, USA
| | - Jose L Raygada
- Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kabir Mendiratta
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, MI 48201, USA
| | - Susan M Seo
- Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Glenn W Kaatz
- Department of Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI 48201, USA.,John D. Dingell Department of Veterans Affairs Medical Center, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Van Dyk TK. Bacterial Efflux Transport in Biotechnology. ADVANCES IN APPLIED MICROBIOLOGY 2008; 63:231-47. [DOI: 10.1016/s0065-2164(07)00006-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Sapunaric FM, Levy SB. Interdomain Loop Mutation Asp190Cys of the Tetracycline Efflux Transporter TetA(B) Decreases Affinity for Substrate. Antimicrob Agents Chemother 2007; 51:3036-7. [PMID: 17517833 PMCID: PMC1932504 DOI: 10.1128/aac.00357-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|