1
|
Raynes Y, Weinreich D. Selection on mutators is not frequency-dependent. eLife 2019; 8:51177. [PMID: 31697233 PMCID: PMC6867826 DOI: 10.7554/elife.51177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/05/2019] [Indexed: 11/29/2022] Open
Abstract
The evolutionary fate of mutator mutations – genetic variants that raise the genome-wide mutation rate – in asexual populations is often described as being frequency (or number) dependent. Mutators can invade a population by hitchhiking with a sweeping beneficial mutation, but motivated by earlier experiments results, it has been repeatedly suggested that mutators must be sufficiently frequent to produce such a driver mutation before non-mutators do. Here, we use stochastic, agent-based simulations to show that neither the strength nor the sign of selection on mutators depend on their initial frequency, and while the overall probability of hitchhiking increases predictably with frequency, the per-capita probability of fixation remains unchanged.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, United States
| | - Daniel Weinreich
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, United States
| |
Collapse
|
2
|
Deihim B, Hassanzadeh M, Shafiei-Jandaghi NZ, Amanlou M, Douraghi M. Characterization of the DNA mismatch repair proteins MutS and MutL in a hypermutator Acinetobacter baumannii. Microb Pathog 2017; 113:74-84. [PMID: 28988868 DOI: 10.1016/j.micpath.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Mutations of mutS and mutL genes have been linked with the emergence of hypermutator (HPM) phenotype in several bacteria. Nevertheless, there is scarce evidence that these mutations occurred in HPM Acinetobacter baumannii, therefore, it remains unknown whether the mutations located in domains mediating the functions of MutS and MutL. To address this information gap, the nucleotide sequences of mutS and mutL were characterized and their mutations were identified. Additionally, we proposed in silico models of mutated proteins and analyzed the secondary and tertiary structures, and the interaction interfaces of MutL and MutS. The HPM A. baumannii and a wild-type strain were subjected to PCR amplification of full length mutS and mutL, cloning, and sequencing. Following several reads of both strands of each gene and sequence assembly, the mutations were identified. Thereafter, the three-dimensional (3-D) structure of A. baumannii ATCC 19606 was developed and utilized as a template for homology modeling of the mutated amino acid sequences using the Phyre2 and I-TASSER, VMD 1.9.3, LigPlus v.1.4.5, PyMOL v.0.99 software. Regardless of silent mutations (n = 43), 11 missense mutations were identified in the MutS domains of HPM strain such as A4T, T272S, D278N in N-terminus, connector, and core domains, respectively. Three mutations -I357T, A408S, N447S- and 16 silent mutations were observed in MutL. Secondary structure prediction of MutS revealed that the amount of alpha helices, beta sheets, and coils in HPM were 35, 29, and 63, respectively, while these values were 36, 28, and 63 for A. baumannii ATCC 19606 as non mutator. In the case of MutL, for both HPM and non-mutator, 20, 21, and 39 of complete protein were alpha helices, beta sheets, and coils, respectively. Superimposition of structures of MutS of HPM on non-mutator revealed that T272, D278, G457, S528, A533, Y715, and E747 are closely matched with S272, D278, A457, P528, V533, C715, and K747, respectively in non-mutator strain. When the structure of MutL model in HPM was superimposed on its counterpart in non-mutator, all but residues S447, S408, and T357 were identical. Many mutations along the mutS and mutL were noted, but most of the mutations were observed in the interaction interfaces of MutS and MutL. Other substitutions were predominantly detected in C-terminus of MutS that may lead to reduced ATP binding and hydrolysis. Three substitution mutations were adjacent to C-terminus of MutL and are raising the suggestion of reduction in MutL dimerization. It seems that a combination of these mutations is implicated in increased mutation frequency and accordingly emergence of HPM strain.
Collapse
Affiliation(s)
- Behnaz Deihim
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Hassanzadeh
- Department of Medicinal Chemistry and Drug Design and Development Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Massoud Amanlou
- Department of Medicinal Chemistry and Drug Design and Development Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Turrientes MC, Baquero F, Levin BR, Martínez JL, Ripoll A, González-Alba JM, Tobes R, Manrique M, Baquero MR, Rodríguez-Domínguez MJ, Cantón R, Galán JC. Normal mutation rate variants arise in a Mutator (Mut S) Escherichia coli population. PLoS One 2013; 8:e72963. [PMID: 24069167 PMCID: PMC3771984 DOI: 10.1371/journal.pone.0072963] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023] Open
Abstract
The rate at which mutations are generated is central to the pace of evolution. Although this rate is remarkably similar amongst all cellular organisms, bacterial strains with mutation rates 100 fold greater than the modal rates of their species are commonly isolated from natural sources and emerge in experimental populations. Theoretical studies postulate and empirical studies teort the hypotheses that these “mutator” strains evolved in response to selection for elevated rates of generation of inherited variation that enable bacteria to adapt to novel and/or rapidly changing environments. Less clear are the conditions under which selection will favor reductions in mutation rates. Declines in rates of mutation for established populations of mutator bacteria are not anticipated if such changes are attributed to the costs of augmented rates of generation of deleterious mutations. Here we report experimental evidence of evolution towards reduced mutation rates in a clinical isolate of Escherichia coli with an hyper-mutable phenotype due a deletion in a mismatch repair gene, (ΔmutS). The emergence in a ΔmutS background of variants with mutation rates approaching those of the normal rates of strains carrying wild-type MutS was associated with increase in fitness with respect to ancestral strain. We postulate that such an increase in fitness could be attributed to the emergence of mechanisms driving a permanent “aerobic style of life”, the negative consequence of this behavior being regulated by the evolution of mechanisms protecting the cell against increased endogenous oxidative radicals involved in DNA damage, and thus reducing mutation rate. Gene expression assays and full sequencing of evolved mutator and normo-mutable variants supports the hypothesis. In conclusion, we postulate that the observed reductions in mutation rate are coincidental to, rather than, the selective force responsible for this evolution.
Collapse
Affiliation(s)
- María-Carmen Turrientes
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
- Joint Unit for Research in Antibiotic Resistance and Virulence, Madrid, Spain
- * E-mail: (FB); (JCG)
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta Georgia, United States of America
| | - José-Luis Martínez
- Joint Unit for Research in Antibiotic Resistance and Virulence, Madrid, Spain
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Madrid, Spain
| | - Aida Ripoll
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
| | - José-María González-Alba
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
| | - Raquel Tobes
- Research Department, Era7 Bioinformatics, Granada, Spain
| | | | | | | | - Rafael Cantón
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, Madrid, Spain
| | - Juan-Carlos Galán
- Department of Microbiology, Ramón y Cajal Institute for Health Research, Madrid, Spain
- Centro de Investigación Biomedica en Red de Epidemiología y Salud Pública, Carlos III Health Institute, Madrid, Spain
- Joint Unit for Research in Antibiotic Resistance and Virulence, Madrid, Spain
- * E-mail: (FB); (JCG)
| |
Collapse
|
4
|
Abstract
Hypermutability is a phenotype characterized by a moderate to high elevation of spontaneous mutation rates and could result from DNA replication errors, defects in error correction mechanisms and many other causes. The elevated mutation rates are helpful to organisms to adapt to sudden and unforeseen threats to survival. At the same time hypermutability also leads to the generation of many deleterious mutations which offset its adaptive value and therefore disadvantageous. Nevertheless, it is very common in nature, especially among clinical isolates of pathogens. Hypermutability is inherited by indirect (second order) selection along with the beneficial mutations generated. At large population sizes and high mutation rates many cells in the population could concurrently acquire beneficial mutations of varying adaptive (fitness) values. These lineages compete with the ancestral cells and also among themselves for fixation. The one with the 'fittest' mutation gets fixed ultimately while the others are lost. This has been called 'clonal interference' which puts a speed limit on adaptation. The original clonal interference hypothesis has been modified recently. Nonheritable (transient) hypermtability conferring significant adaptive benefits also occur during stress response although its molecular basis remains controversial. The adaptive benefits of heritable hypermutability are discussed with emphasis on host-pathogen interactions.
Collapse
|
5
|
Turse JE, Pei J, Ficht TA. Lipopolysaccharide-Deficient Brucella Variants Arise Spontaneously during Infection. Front Microbiol 2011; 2:54. [PMID: 21833310 PMCID: PMC3153030 DOI: 10.3389/fmicb.2011.00054] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/10/2011] [Indexed: 12/22/2022] Open
Abstract
Lipopolysaccharide-deficient mutants of smooth Brucella species (rough mutants) have been shown to arise spontaneously in culture. However, in situ analysis of Brucella infected macrophages using antibody directed against O-polysaccharide suggested a loss of reactivity of Brucella consistent with the appearance of rough organisms, and a potential contribution to infection. The experiments reported describe the direct recovery of Brucella from macrophages infected in vitro and from the spleens of infected mice at a frequency similar to that described in vitro, suggesting that Brucella dissociation is not simply an in vitro artifact. The frequency of appearance of spontaneous rough organisms deficient in O-polysaccharide expression measured in vitro is approximately 2–3 logs higher than the appearance of mutation to antibiotic resistance, purine auxotrophy, or reversion of erythritol sensitive ΔeryC mutants to tolerance. Genetic trans-complementation using a plasmid-based expression of Brucella manBA successfully restored O-polysaccharide expression in only one-third of O-polysaccharide deficient spontaneous mutants. Suggesting that the appearance of rough mutants is caused by mutation at more than one locus. In addition, Sanger sequencing of the manBA structural genes detected multiple sequence changes that may explain the observed phenotypic differences. The presence of O-polysaccharide resulted in macrophage and neutrophil infiltration into the peritoneal cavity and systemic distribution of the organism. In contrast, rough organisms are controlled by resident macrophages or by extracellular killing mechanisms and rapidly cleared from this compartment consistent with the inability to cause disease. Loss of O-polysaccharide expression appears to be stochastic giving rise to organisms with biological properties distinct from the parental smooth organism during the course of infection.
Collapse
Affiliation(s)
- Joshua E Turse
- Veterinary Pathobiology and Faculty of Genetics, Texas A&M University and Texas AgriLife Research College Station, TX, USA
| | | | | |
Collapse
|
6
|
Eisenstark A. Genetic diversity among offspring from archived Salmonella enterica ssp. enterica serovar typhimurium (Demerec Collection): in search of survival strategies. Annu Rev Microbiol 2010; 64:277-92. [PMID: 20825350 DOI: 10.1146/annurev.micro.091208.073614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extensive phenotypic and genomic diversity was detected among offspring of Salmonella enterica ssp. enterica serovar Typhimurium LT2 (nonmutator) and LT7 (mutator, mutL) strains after decades of storage in sealed nutrient agar stabs. In addition to numerous losses in carbon and nitrogen metabolism, the acquired new metabolites indicated that alternate pathways were established. Particularly striking was the array of phage types when this phenotype was expected to be a stable feature. Evidence is presented regarding the role of mutator gene mutL(-) in the establishment of diversity as well as the ability of cells to return to mutL(+) genetic stabilization. Mutations included deletions, duplications, frameshifts, inversions and transpositions. In competition tests, survivors were more fit than were wild type. Because survival strategies continue to intrigue microbiologists, observations are compared with those of others who have addressed related questions. A brief genealogy of the archived strains is also recorded.
Collapse
Affiliation(s)
- Abraham Eisenstark
- Cancer Research Center and Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA.
| |
Collapse
|
7
|
Trindade S, Perfeito L, Gordo I. Rate and effects of spontaneous mutations that affect fitness in mutator Escherichia coli. Philos Trans R Soc Lond B Biol Sci 2010; 365:1177-86. [PMID: 20308092 PMCID: PMC2871818 DOI: 10.1098/rstb.2009.0287] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Knowledge of the mutational parameters that affect the evolution of organisms is of key importance in understanding the evolution of several characteristics of many natural populations, including recombination and mutation rates. In this study, we estimated the rate and mean effect of spontaneous mutations that affect fitness in a mutator strain of Escherichia coli and review some of the estimation methods associated with mutation accumulation (MA) experiments. We performed an MA experiment where we followed the evolution of 50 independent mutator lines that were subjected to repeated bottlenecks of a single individual for approximately 1150 generations. From the decline in mean fitness and the increase in variance between lines, we estimated a minimum mutation rate to deleterious mutations of 0.005 (+/-0.001 with 95% confidence) and a maximum mean fitness effect per deleterious mutation of 0.03 (+/-0.01 with 95% confidence). We also show that any beneficial mutations that occur during the MA experiment have a small effect on the estimate of the rate and effect of deleterious mutations, unless their rate is extremely large. Extrapolating our results to the wild-type mutation rate, we find that our estimate of the mutational effects is slightly larger and the inferred deleterious mutation rate slightly lower than previous estimates obtained for non-mutator E. coli.
Collapse
Affiliation(s)
- Sandra Trindade
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, No. 6, 2780-156 Oeiras, Portugal
| | - Lilia Perfeito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, No. 6, 2780-156 Oeiras, Portugal
- Institute for Genetics of the University of Cologne, Zuelpicher Street 47, Cologne 50674, Germany
- Institute for Theoretical Physics of the University of Cologne, Zuelpicher Street 77, Cologne 50937, Germany
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, No. 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
8
|
Wylie CS, Ghim CM, Kessler D, Levine H. The fixation probability of rare mutators in finite asexual populations. Genetics 2009; 181:1595-612. [PMID: 19153261 PMCID: PMC2666523 DOI: 10.1534/genetics.108.094532] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 01/08/2009] [Indexed: 11/18/2022] Open
Abstract
A mutator is an allele that increases the mutation rate throughout the genome by disrupting some aspect of DNA replication or repair. Mutators that increase the mutation rate by the order of 100-fold have been observed to spontaneously emerge and achieve high frequencies in natural populations and in long-term laboratory evolution experiments with Escherichia coli. In principle, the fixation of mutator alleles is limited by (i) competition with mutations in wild-type backgrounds, (ii) additional deleterious mutational load, and (iii) random genetic drift. Using a multiple-locus model and employing both simulation and analytic methods, we investigate the effects of these three factors on the fixation probability Pfix of an initially rare mutator as a function of population size N, beneficial and deleterious mutation rates, and the strength of mutations s. Our diffusion-based approximation for Pfix successfully captures effects ii and iii when selection is fast compared to mutation (micro/s<<1). This enables us to predict the conditions under which mutators will be evolutionarily favored. Surprisingly, our simulations show that effect i is typically small for strong-effect mutators. Our results agree semiquantitatively with existing laboratory evolution experiments and suggest future experimental directions.
Collapse
Affiliation(s)
- C Scott Wylie
- Center for Theoretical Biological Physics, University of California, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
9
|
Neisseria meningitidis escape from the bactericidal activity of a monoclonal antibody is mediated by phase variation of lgtG and enhanced by a mutator phenotype. Infect Immun 2008; 76:5038-48. [PMID: 18694967 DOI: 10.1128/iai.00395-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bacteria adapt to environmental changes through high-frequency switches in expression of specific phenotypes. Localized hypermutation mediated by simple sequence repeats is an important mechanism of such phase variation (PV) in Neisseria meningitidis. Loss or gain of nucleotides in a poly(C) tract located in the reading frame results in switches in expression of lgtG and determines whether a glucose or a phosphoethanolamine (PEtn) is added at a specific position in the inner core lipopolysaccharide (LPS). Monoclonal antibody (MAb) B5 is bactericidal for N. meningitidis strain 8047 when PEtn is present in the inner core LPS and lgtG is switched "off." Escape from the bactericidal activity of this antibody was examined by subjecting strain 8047 to multiple cycles of growth in the presence of MAb B5 and human serum. Escape variants with alterations in the lgtG repeat tract rapidly accumulated in bacterial populations during selection with this antibody. Strain 8047 was outcompeted in this assay by the 8047 Delta mutS strain due to the elevated PV rate of this mismatch repair mutant and hence the greater proportion of preexisting phase variants of lgtG in the inoculum. This mutS mutant was also more virulent than strain 8047 during escape from passive protection by MAb B5 in an in vivo infant rat model of bacteremia. These results provide an example of how PV rates can modulate the occurrence and severity of infection and have important implications for understanding the evolution of bacterial fitness in species subject to environmental variations that occur during persistence within and transmission between hosts.
Collapse
|
10
|
Harrison F, Buckling A. High relatedness selects against hypermutability in bacterial metapopulations. Proc Biol Sci 2007; 274:1341-7. [PMID: 17374597 PMCID: PMC2176179 DOI: 10.1098/rspb.2006.0408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mutation rate and cooperation have important ecological and evolutionary consequences and, moreover, can affect pathogen virulence. While hypermutability accelerates adaptation to novel environments, hypermutable lineages ('mutators') are selected against in well-adapted populations. Using the model organism Pseudomonas aeruginosa, we previously demonstrated a further potential disadvantage to hypermutability, namely, that it can accelerate the breakdown of cooperation. We now investigate how this property of mutators can affect their persistence in metapopulations. Mutator and wild-type bacteria were competed for 250 generations in globally competing metapopulations, imposing conditions of high or low intra-deme relatedness. High relatedness favours cooperating groups, so we predicted that mutators should achieve lower equilibrium frequencies under high relatedness than under low relatedness. This was observed in our study. Consistent with our hypothesis, there was a positive correlation between mean mutator and cheat frequencies. We conclude that when dense population growth requires cooperation, and when cooperation is favoured (high relatedness), demes containing high frequencies of mutators are likely to be selected against because they also contain high frequencies of non-cooperating cheats. We have also identified conditions where mutator lineages are likely to dominate metapopulations; namely, when low relatedness reduces kin selection for cooperation. These results may help to explain clinical distributions of mutator bacteria.
Collapse
Affiliation(s)
- Freya Harrison
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | |
Collapse
|
11
|
Abstract
Evolutionary success of bacteria relies on the constant fine-tuning of their mutation rates, which optimizes their adaptability to constantly changing environmental conditions. When adaptation is limited by the mutation supply rate, under some conditions, natural selection favours increased mutation rates by acting on allelic variation of the genetic systems that control fidelity of DNA replication and repair. Mutator alleles are carried to high frequency through hitchhiking with the adaptive mutations they generate. However, when fitness gain no longer counterbalances the fitness loss due to continuous generation of deleterious mutations, natural selection favours reduction of mutation rates. Selection and counter-selection of high mutation rates depends on many factors: the number of mutations required for adaptation, the strength of mutator alleles, bacterial population size, competition with other strains, migration, and spatial and temporal environmental heterogeneity. Such modulations of mutation rates may also play a role in the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Erick Denamur
- INSERM U722, Faculté de Médecine, Université Denis Diderot -- Paris 7, 16 rue Henri Huchard, 75018 Paris, France
| | | |
Collapse
|