1
|
Hwang Y, Na JG, Lee SJ. Transcriptional regulation of soluble methane monooxygenase via enhancer-binding protein derived from Methylosinus sporium 5. Appl Environ Microbiol 2023; 89:e0210422. [PMID: 37668365 PMCID: PMC10537576 DOI: 10.1128/aem.02104-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/07/2023] [Indexed: 09/06/2023] Open
Abstract
Methane is a major greenhouse gas, and methanotrophs regulate the methane level in the carbon cycle. Soluble methane monooxygenase (sMMO) is expressed in various methanotroph genera, including Alphaproteobacteria and Gammaproteobacteria, and catalyzes the hydroxylation of methane to methanol. It has been proposed that MmoR regulates the expression of sMMO as an enhancer-binding protein under copper-limited conditions; however, details on this transcriptional regulation remain limited. Herein, we elucidate the transcriptional pathway of sMMO depending on copper ion concentration, which affects the interaction of MmoR and sigma factor. MmoR and sigma-54 (σ54) from Methylosinus sporium 5 were successfully overexpressed in Escherichia coli and purified to investigate sMMO transcription in methanotrophs. The results indicated that σ54 binds to a promoter positioned -24 (GG) and -12 (TGC) upstream between mmoG and mmoX1. The binding affinity and selectivity are lower (Kd = 184.6 ± 6.2 nM) than those of MmoR. MmoR interacts with the upstream activator sequence (UAS) with a strong binding affinity (Kd = 12.5 ± 0.5 nM). Mutational studies demonstrated that MmoR has high selectivity to its binding partner (ACA-xx-TGT). Titration assays have demonstrated that MmoR does not coordinate with copper ions directly; however, its binding affinity to UAS decreases in a low-copper-containing medium. MmoR strongly interacts with adenosine triphosphate (Kd = 62.8 ± 0.5 nM) to generate RNA polymerase complex. This study demonstrated that the binding events of both MmoR and σ54 that regulate transcription in M. sporium 5 depend on the copper ion concentration. IMPORTANCE This study provides biochemical evidence of transcriptional regulation of soluble methane monooxygenase (sMMO) in methanotrophs that control methane levels in ecological systems. Previous studies have proposed transcriptional regulation of MMOs, including sMMO and pMMO, while we provide further evidence to elucidate its mechanism using a purified enhancer-binding protein (MmoR) and transcription factor (σ54). The characterization studies of σ54 and MmoR identified the promoter binding sites and enhancer-binding sequences essential for sMMO expression. Our findings also demonstrate that MmoR functions as a trigger for sMMO expression due to the high specificity and selectivity for enhancer-binding sequences. The UV-visible spectrum of purified MmoR suggested an iron coordination like other GAF domain, and that ATP is essential for the initiation of enhancer elements. Binding assays indicated that these interactions are blocked by the copper ion. These results provide novel insights into gene regulation of methanotrophs.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Chemistry, Jeonbuk National University , Jeonju, South Korea
| | - Jeong-Geol Na
- Department of Chemical Engineering, Sogang University , Seoul, South Korea
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University , Jeonju, South Korea
- Institute of Molecular Biology and Genetics, Jeonbuk National University , Jeonju, South Korea
| |
Collapse
|
2
|
Garza-Rubalcava U, Hatzinger PB, Schanzle D, Lavorgna G, Hedman P, Jackson WA. Improved assessment and performance monitoring of a biowall at a chlorinated solvent site using high-resolution passive sampling. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 246:103962. [PMID: 35123108 DOI: 10.1016/j.jconhyd.2022.103962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/06/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
This study contrasts the use of high-resolution passive sampling and traditional groundwater monitoring wells (GWMW) to characterize a chlorinated solvent site and assess the effectiveness of a biowall (mulch, compost and sand) that was installed to remediate trichloroethene (TCE), the primary contaminant of concern. High-resolution passive profilers (HRPPs) were direct driven hydraulically upgradient, within, and hydraulically downgradient of the biowall and in close proximity to existing GWMWs. Compared with hydraulically upgradient locations, the biowall was highly reducing, there were higher densities of bacteria/genes capable of reductive dechlorination, and TCE was being reductively transformed, but not completely, as cis-1,2-dichloroethene (cis-DCE) was detected within and hydraulically downgradient of the biowall. However, based on the high-resolution data, there were a number of important findings which were not discoverable using data from GWMWs alone. Data from the HRPPs indicate that the biowall was completely transforming TCE to ethene (C2H4) except within a high velocity interval, where the concentrations were reduced, but breakthrough of cis-DCE was apparent. Hydraulically upgradient of the biowall, concentrations of TCE increased with depth where a very low permeability zone exists that will likely remain as a long-term source. In addition, although low concentrations of cis-DCE were present downgradient of the biowall, surfacing into a downgradient stream was not detected. This study demonstrates the advantages of high-resolution passive sampling of aquifers to assess the performance of remediation techniques compared to traditional methods such as GWMWs.
Collapse
Affiliation(s)
| | | | | | - Graig Lavorgna
- Aptim Federal Services, LLC., Lawrenceville, NJ 08648, USA
| | - Paul Hedman
- Aptim Federal Services, LLC., Lawrenceville, NJ 08648, USA
| | - W Andrew Jackson
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Avenue, Lubbock, TX 79409, United States of America.
| |
Collapse
|
3
|
Biocatalytic Oxidations of Substrates through Soluble Methane Monooxygenase from Methylosinus sporium 5. Catalysts 2018. [DOI: 10.3390/catal8120582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methane, an important greenhouse gas, has a 20-fold higher heat capacity than carbon dioxide. Earlier, through advanced spectroscopy and structural studies, the mechanisms underlying the extremely stable C–H activation of soluble methane monooxygenase (sMMO) have been elucidated in Methylosinus trichosporium OB3b and Methylococcus capsulatus Bath. Here, sMMO components—including hydroxylase (MMOH), regulatory (MMOB), and reductase (MMOR)—were expressed and purified from a type II methanotroph, Methylosinus sporium strain 5 (M. sporium 5), to characterize its hydroxylation mechanism. Two molar equivalents of MMOB are necessary to achieve catalytic activities and oxidized a broad range of substrates including alkanes, alkenes, halogens, and aromatics. Optimal activities were observed at pH 7.5 for most substrates possibly because of the electron transfer environment in MMOR. Substitution of MMOB or MMOR from another type II methanotroph, Methylocystis species M, retained specific enzyme activities, demonstrating the successful cross-reactivity of M. sporium 5. These results will provide fundamental information for further enzymatic studies to elucidate sMMO mechanisms.
Collapse
|
4
|
Infection Function of Adhesin-Like Protein ALP609 from Spiroplasma melliferum CH-1. Curr Microbiol 2018; 75:701-708. [PMID: 29362879 DOI: 10.1007/s00284-018-1435-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Spiroplasma melliferum is the causative agent of spiroplasmosis in honeybees. During infection, adhesion of spiroplasmas to the host cells through adhesion factors is a crucial step. In this study, we identified an adhesin-like protein (ALP609) in S. melliferum CH-1 and investigated its role in the infection. To determine whether ALP609 is an adhesion factor, we performed indirect immunofluorescence microscopy to visualize its adhesion properties. Subsequently, an infection model of S. melliferum CH-1 was established using primary midgut cells of Apis mellifera to examine the adhesion and invasion of spiroplasma using anti-ALP609 antibodies inhibition assays and competition assays with recombinant ALP609 in vitro. We found that anti-ALP609 antibodies could inhibit the adhesion and invasion of spiroplasma to the midgut cells of A. mellifera and reduce midgut cell invasion on increased exposure to recombinant ALP609. To the best of our knowledge, this is the first report identifying adhesion-related factors in S. melliferum. Our results suggested that ALP609 is an adhesin-like protein critical for invasion of S. melliferum CH-1 into midgut cells of A. mellifera.
Collapse
|
5
|
Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl Biochem Biotechnol 2013; 171:1487-99. [PMID: 23963715 DOI: 10.1007/s12010-013-0410-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
Using a methanotrophic consortium (that includes Methylosinus sporium NCIMB 11126, Methylosinus trichosporium OB3b, and Methylococcus capsulatus Bath) isolated from a landfill site, the potential for partial oxidation of methane into methanol through selective inhibition of methanol dehydrogenase (MDH) over soluble methane monooxygenase (sMMO) with some selected MDH inhibitors at varied concentration range, was evaluated in batch serum bottle and bioreactor experiments. Our result suggests that MDH activity could effectively be inhibited either at 40 mM of phosphate, 100 mM of NaCl, 40 mM of NH4Cl or 50 μM of EDTA with conversion ratios (moles of CH3OH produced per mole CH4 consumed) of 58, 80, 80, and 43 %, respectively. The difference between extent of inhibition in MDH activity and sMMO activity was significantly correlated (n = 6, p < 0.05) with resultant methane to methanol conversion ratio. In bioreactor study with 100 mM of NaCl, a maximum specific methanol production rate of 9 μmol/mg h was detected. A further insight with qPCR analysis of MDH and sMMO coding genes revealed that the gene copy number continued to increase along with biomass during reactor operation irrespective of presence or absence of inhibitor, and differential inhibition among two enzymes was rather the key for methanol production.
Collapse
|
6
|
Deng Y, Cui X, Lüke C, Dumont MG. Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:566-574. [PMID: 23864571 DOI: 10.1111/1758-2229.12046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 06/02/2023]
Abstract
The Zoige Plateau is characterized by its high altitude, low latitude and low annual mean temperature of approximately 1°C and is a major source of atmospheric methane in the Qinghai-Tibetan Plateau. Methanotrophs play an important role in the global cycling of CH4, but the diversity, identity and activity of methanotrophs in this region are poorly characterized. Soils were collected from hummocks and hollows in the Riganqiao peatland and the methanotroph community was analysed by qPCR and sequencing methane monooxygenase (pmoA and mmoX) genes. The pmoA genes ranged between 10(7) and 10(8) copies g(-1) fresh soil, with a somewhat greater abundance in hummocks than hollows. The pmoA genes were analysed by amplicon pyrosequencing and the mmoX genes by cloning and sequencing. Methylocystis species were found to be the most abundant methanotrophs, but numerous clades were present including three novel pmoA and three novel mmoX clusters. There were differences between the methanotroph communities in the hummocks and hollows, with the most significant being an increased abundance of uncultivated type Ib methanotrophs in the hollows. The results indicate that aerobic methanotrophs are abundant in Riganqiao peatland and include previously undetected clades in this geographically isolated and distinctive environment.
Collapse
Affiliation(s)
- Yongcui Deng
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | | | | | | |
Collapse
|
7
|
Suzuki T, Nakamura T, Fuse H. Isolation of two novel marine ethylene-assimilating bacteria, Haliea species ETY-M and ETY-NAG, containing particulate methane monooxygenase-like genes. Microbes Environ 2012; 27:54-60. [PMID: 22307463 PMCID: PMC4036023 DOI: 10.1264/jsme2.me11256] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two novel ethylene-assimilating bacteria, strains ETY-M and ETY-NAG, were isolated from seawater around Japan. The characteristics of both strains were investigated, and phylogenetic analyses of their 16S rRNA gene sequences showed that they belonged to the genus Haliea. In C1-4 gaseous hydrocarbons, both strains grew only on ethylene, but degraded ethane, propylene, and propane in addition to ethylene. Methane, n-butane, and i-butane were not utilized or degraded by either strain. Soluble methane monooxygenase-type genes, which are ubiquitous in alkene-assimilating bacteria for initial oxidation of alkenes, were not detected in these strains, although genes similar to particulate methane monooxygenases (pMMO)/ammonia monooxygenases (AMO) were observed. The phylogenetic tree of the deduced amino acid sequences formed a new clade near the monooxygenases of ethane-assimilating bacteria similar to other clades of pMMOs in type I, type II, and Verrucomicrobia methanotrophs and AMOs in alpha and beta proteobacteria.
Collapse
Affiliation(s)
- Toshihiro Suzuki
- Graduate School of Regional Environment Systems, Shibaura Institute of Technology, Saitama, Japan
| | | | | |
Collapse
|
8
|
Crombie A, Murrell JC. Development of a System for Genetic Manipulation of the Facultative Methanotroph Methylocella silvestris BL2. Methods Enzymol 2011; 495:119-33. [DOI: 10.1016/b978-0-12-386905-0.00008-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Scanlan J, Dumont MG, Murrell JC. Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. FEMS Microbiol Lett 2009; 301:181-7. [PMID: 19878324 DOI: 10.1111/j.1574-6968.2009.01816.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Methanotrophs oxidize methane to methanol using the enzyme methane monooxygenase. Methylosinus trichosporium OB3b has two such enzymes: a membrane-bound particulate methane monooxygenase (pMMO) and a soluble, cytoplasmic methane monooxygenase (sMMO). In methanotrophs possessing both enzymes, the expression of the genes encoding sMMO and pMMO is regulated by copper ions, with sMMO expressed solely when copper is limiting. Virtually nothing is known about the specific machinery involved in the copper-regulated transcription of mmo genes except the identification of two proteins necessary for the expression: a sigma(54)-dependent transcriptional activator, MmoR, and a putative GroEL-like chaperone, MmoG. Genes encoding mmoR and mmoG are located immediately upstream of those encoding sMMO in the genome of M. trichosporium OB3b. Here, we use a green fluorescent protein promoter probe vector to show that nearly the complete intergenic DNA sequence between mmoG and mmoX is absolutely required for transcriptional activation. Furthermore, we used gel-shift assays to demonstrate that both MmoR and MmoG were required for protein binding to this region of DNA.
Collapse
Affiliation(s)
- Julie Scanlan
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
10
|
Trotsenko YA, Medvedkova KA, Khmelenina VN, Eshinimayev BT. Thermophilic and thermotolerant aerobic methanotrophs. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709040018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Ali H, Murrell JC. Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Microbiology (Reading) 2009; 155:761-771. [DOI: 10.1099/mic.0.021816-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of integrative and versatile broad-host-range promoter-probe vectors carrying reporter genes encoding green fluorescent protein (GFP), catechol 2,3-dioxygenase (XylE) or β-galactosidase (LacZ) were constructed for use in methanotrophs. These vectors facilitated the measurement of in vivo promoter activity in methanotrophs under defined growth conditions. They were tested by constructing transcriptional fusions between the soluble methane monooxygenase (sMMO) σ
54 promoter or particulate methane monooxygenase (pMMO) σ
70 promoter from Methylococcus capsulatus and the reporter genes. Reporter gene activity was measured under high- and low-copper growth conditions and the data obtained closely reflected transcriptional regulation of the sMMO or pMMO operon, thus demonstrating the suitability of these vectors for assessing promoter activity in methanotrophs. When β-galactosidase expression was coupled with the fluorogenic substrate 4-methylumbelliferyl β-d-glucuronide it yielded a sensitive and powerful screening system for detecting cells expressing this reporter gene. These data were substantiated with independent experiments using RT-PCR and RNA dot-blot analysis.
Collapse
Affiliation(s)
- Hanif Ali
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - J. Colin Murrell
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
12
|
Trotsenko YA, Murrell JC. Metabolic aspects of aerobic obligate methanotrophy. ADVANCES IN APPLIED MICROBIOLOGY 2008; 63:183-229. [PMID: 18395128 DOI: 10.1016/s0065-2164(07)00005-6] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuri A Trotsenko
- G.K.Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow 142290, Russia
| | | |
Collapse
|
13
|
Kurth EG, Doughty DM, Bottomley PJ, Arp DJ, Sayavedra-Soto LA. Involvement of BmoR and BmoG in n-alkane metabolism in ‘Pseudomonas butanovora’. Microbiology (Reading) 2008; 154:139-147. [DOI: 10.1099/mic.0.2007/012724-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elizabeth G. Kurth
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| | - David M. Doughty
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Peter J. Bottomley
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Daniel J. Arp
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Luis A. Sayavedra-Soto
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
14
|
Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 2007; 74:1305-15. [PMID: 18165358 DOI: 10.1128/aem.02233-07] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|