1
|
Sarkar P, Lin CY, Buritica JR, Killiny N, Levy A. Crossing the Gateless Barriers: Factors Involved in the Movement of Circulative Bacteria Within Their Insect Vectors. PHYTOPATHOLOGY 2023; 113:1805-1816. [PMID: 37160668 DOI: 10.1094/phyto-07-22-0249-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant bacterial pathogens transmitted by hemipteran vectors pose a large threat to the agricultural industry worldwide. Although virus-vector relationships have been widely investigated, a significant gap exists in our understanding of the molecular interactions between circulative bacteria and their insect vectors, mainly leafhoppers and psyllids. In this review, we will describe how these bacterial pathogens adhere, invade, and proliferate inside their insect vectors. We will also highlight the different transmission routes and molecular factors of phloem-limited bacteria that maintain an effective relationship with the insect host. Understanding the pathogen-vector relationship at the molecular level will help in the management of vector-borne bacterial diseases.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Jacobo Robledo Buritica
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
2
|
Gerth M, Martinez-Montoya H, Ramirez P, Masson F, Griffin JS, Aramayo R, Siozios S, Lemaitre B, Mateos M, Hurst GDD. Rapid molecular evolution of Spiroplasma symbionts of Drosophila. Microb Genom 2021; 7:000503. [PMID: 33591248 PMCID: PMC8208695 DOI: 10.1099/mgen.0.000503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
Spiroplasma is a genus of Mollicutes whose members include plant pathogens, insect pathogens and endosymbionts of animals. Spiroplasma phenotypes have been repeatedly observed to be spontaneously lost in Drosophila cultures, and several studies have documented a high genomic turnover in Spiroplasma symbionts and plant pathogens. These observations suggest that Spiroplasma evolves quickly in comparison to other insect symbionts. Here, we systematically assess evolutionary rates and patterns of Spiroplasma poulsonii, a natural symbiont of Drosophila. We analysed genomic evolution of sHy within flies, and sMel within in vitro culture over several years. We observed that S. poulsonii substitution rates are among the highest reported for any bacteria, and around two orders of magnitude higher compared with other inherited arthropod endosymbionts. The absence of mismatch repair loci mutS and mutL is conserved across Spiroplasma, and likely contributes to elevated substitution rates. Further, the closely related strains sMel and sHy (>99.5 % sequence identity in shared loci) show extensive structural genomic differences, which potentially indicates a higher degree of host adaptation in sHy, a protective symbiont of Drosophila hydei. Finally, comparison across diverse Spiroplasma lineages confirms previous reports of dynamic evolution of toxins, and identifies loci similar to the male-killing toxin Spaid in several Spiroplasma lineages and other endosymbionts. Overall, our results highlight the peculiar nature of Spiroplasma genome evolution, which may explain unusual features of its evolutionary ecology.
Collapse
Affiliation(s)
- Michael Gerth
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Humberto Martinez-Montoya
- Laboratorio de Genética y Genómica Comparativa, Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Mexico
| | - Paulino Ramirez
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Florent Masson
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland
| | - Joanne S. Griffin
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland
| | - Mariana Mateos
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Harne S, Duret S, Pande V, Bapat M, Béven L, Gayathri P. MreB5 Is a Determinant of Rod-to-Helical Transition in the Cell-Wall-less Bacterium Spiroplasma. Curr Biol 2020; 30:4753-4762.e7. [PMID: 32976813 DOI: 10.1016/j.cub.2020.08.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
In most rod-shaped bacteria, the spatial coordination of cell wall synthesis machinery by MreBs is the main theme for shape determination and maintenance in cell-walled bacteria [1-9]. However, how rod or spiral shapes are achieved and maintained in cell-wall-less bacteria is currently unknown. Spiroplasma, a helical Mollicute that lacks cell wall synthesis genes, encodes five MreB paralogs and a unique cytoskeletal protein fibril [10, 11]. Here, we show that MreB5, one of the five MreB paralogs, contributes to cell elongation and is essential for the transition from rod-to-helical shape in Spiroplasma. Comparative genomic and proteomic characterization of a helical and motile wild-type Spiroplasma strain and a non-helical, non-motile natural variant helped delineate the specific roles of MreB5. Moreover, complementation of the non-helical strain with MreB5 restored its helical shape and motility by a kink-based mechanism described for Spiroplasma [12]. Earlier studies had proposed that length changes in fibril filaments are responsible for the change in handedness of the helical cell and kink propagation during motility [13]. Through structural and biochemical characterization, we identify that MreB5 exists as antiparallel double protofilaments that interact with fibril and the membrane, and thus potentially assists in kink propagation. In summary, our study provides direct experimental evidence for MreB in maintaining cell length, helical shape, and motility-revealing the role of MreB in sculpting the cell in the absence of a cell wall.
Collapse
Affiliation(s)
- Shrikant Harne
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sybille Duret
- INRAE, University of Bordeaux, UMR 1332 BFP, Villenave d'Ornon, Bordeaux, France
| | - Vani Pande
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Mrinmayee Bapat
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Laure Béven
- INRAE, University of Bordeaux, UMR 1332 BFP, Villenave d'Ornon, Bordeaux, France.
| | - Pananghat Gayathri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
4
|
Perilla-Henao LM, Casteel CL. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1163. [PMID: 27555855 PMCID: PMC4977473 DOI: 10.3389/fpls.2016.01163] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.'. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.
Collapse
Affiliation(s)
| | - Clare L. Casteel
- Department of Plant Pathology, University of California at Davis, Davis, CAUSA
| |
Collapse
|
5
|
Scientific Opinion on the pest categorisation of Spiroplasma citri. EFSA J 2014. [DOI: 10.2903/j.efsa.2015.3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
6
|
Duret S, Batailler B, Dubrana MP, Saillard C, Renaudin J, Béven L, Arricau-Bouvery N. Invasion of insect cells by Spiroplasma citri involves spiralin relocalization and lectin/glycoconjugate-type interactions. Cell Microbiol 2014; 16:1119-32. [PMID: 24438161 DOI: 10.1111/cmi.12265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
Spiroplamas are helical, cell wall-less bacteria belonging to the Class Mollicutes, a group of microorganisms phylogenetically related to low G+C, Gram-positive bacteria. Spiroplasma species are all found associated with arthropods and a few, including Spiroplasma citri are pathogenic to plant. Thus S. citri has the ability to colonize cells of two very distinct hosts, the plant and the insect vector. While spiroplasmal factors involved in transmission by the leafhopper Circulifer haematoceps have been identified, their specific contribution to invasion of insect cells is poorly understood. In this study we provide evidence that the lipoprotein spiralin plays a major role in the very early step of cell invasion. Confocal laser scanning immunomicroscopy revealed a relocalization of spiralin at the contact zone of adhering spiroplasmas. The implication of a role for spiralin in adhesion to insect cells was further supported by adhesion assays showing that a spiralin-less mutant was impaired in adhesion and that recombinant spiralin triggered adhesion of latex beads. We also showed that cytochalasin D induced changes in the surface-exposed glycoconjugates, as inferred from the lectin binding patterns, and specifically improved adhesion of S. citri wild-type but not of the spiralin-less mutant. These results indicate that cytochalasin D exposes insect cell receptors of spiralin that are masked in untreated cells. In addition, competitive adhesion assays with lectins strongly suggest spiralin to exhibit glycoconjugate binding properties similar to that of the Vicia villosa agglutinin (VVA) lectin.
Collapse
Affiliation(s)
- Sybille Duret
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Breton M, Tardy F, Dordet-Frisoni E, Sagne E, Mick V, Renaudin J, Sirand-Pugnet P, Citti C, Blanchard A. Distribution and diversity of mycoplasma plasmids: lessons from cryptic genetic elements. BMC Microbiol 2012; 12:257. [PMID: 23145790 PMCID: PMC3541243 DOI: 10.1186/1471-2180-12-257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/05/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The evolution of mycoplasmas from a common ancestor with Firmicutes has been characterized not only by genome down-sizing but also by horizontal gene transfer between mycoplasma species sharing a common host. The mechanisms of these gene transfers remain unclear because our knowledge of the mycoplasma mobile genetic elements is limited. In particular, only a few plasmids have been described within the Mycoplasma genus. RESULTS We have shown that several species of ruminant mycoplasmas carry plasmids that are members of a large family of elements and replicate via a rolling-circle mechanism. All plasmids were isolated from species that either belonged or were closely related to the Mycoplasma mycoides cluster; none was from the Mycoplasma bovis-Mycoplasma agalactiae group. Twenty one plasmids were completely sequenced, named and compared with each other and with the five mycoplasma plasmids previously reported. All plasmids share similar size and genetic organization, and present a mosaic structure. A peculiar case is that of the plasmid pMyBK1 from M. yeatsii; it is larger in size and is predicted to be mobilizable. Its origin of replication and replication protein were identified. In addition, pMyBK1 derivatives were shown to replicate in various species of the M. mycoides cluster, and therefore hold considerable promise for developing gene vectors. The phylogenetic analysis of these plasmids confirms the uniqueness of pMyBK1 and indicates that the other mycoplasma plasmids cluster together, apart from the related replicons found in phytoplasmas and in species of the clade Firmicutes. CONCLUSIONS Our results unraveled a totally new picture of mycoplasma plasmids. Although they probably play a limited role in the gene exchanges that participate in mycoplasma evolution, they are abundant in some species. Evidence for the occurrence of frequent genetic recombination strongly suggests they are transmitted between species sharing a common host or niche.
Collapse
Affiliation(s)
- Marc Breton
- University Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 Biologie du Fruit et Pathologie, 71, avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
| | - Florence Tardy
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony Garnier, F-69364, Lyon cedex 07, France
| | - Emilie Dordet-Frisoni
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
- Université de Toulouse, INP-ENVT, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
| | - Eveline Sagne
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
- Université de Toulouse, INP-ENVT, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
| | - Virginie Mick
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony Garnier, F-69364, Lyon cedex 07, France
| | - Joël Renaudin
- University Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 Biologie du Fruit et Pathologie, 71, avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
| | - Pascal Sirand-Pugnet
- University Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 Biologie du Fruit et Pathologie, 71, avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
| | - Christine Citti
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
- Université de Toulouse, INP-ENVT, UMR1225, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, F-31076, Toulouse Cedex 3, France
| | - Alain Blanchard
- University Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, 71 avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
- INRA, UMR 1332 Biologie du Fruit et Pathologie, 71, avenue Edouard Bourlaux, F-33140, Villenave d'Ornon, France
- Centre INRA de Bordeaux Aquitaine, UMR 1332 Biologie du Fruit et Pathologie, 71, avenue Edouard Bourlaux, BP81, F-33140, Villenave d'Ornon, France
| |
Collapse
|
8
|
The repetitive domain of ScARP3d triggers entry of Spiroplasma citri into cultured cells of the vector Circulifer haematoceps. PLoS One 2012; 7:e48606. [PMID: 23119070 PMCID: PMC3485318 DOI: 10.1371/journal.pone.0048606] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/27/2012] [Indexed: 11/19/2022] Open
Abstract
Spiroplasma citri is a plant pathogenic mollicute transmitted by the leafhopper vector Circulifer haematoceps. Successful transmission requires the spiroplasmas to cross the intestinal epithelium and salivary gland barriers through endocytosis mediated by receptor-ligand interactions. To characterize these interactions we studied the adhesion and invasion capabilities of a S. citri mutant using the Ciha-1 leafhopper cell line. S. citri GII3 wild-type contains 7 plasmids, 5 of which (pSci1 to 5) encode 8 related adhesins (ScARPs). As compared to the wild-type strain GII3, the S. citri mutant G/6 lacking pSci1 to 5 was affected in its ability to adhere and enter into the Ciha-1 cells. Proteolysis analyses, Triton X-114 partitioning and agglutination assays showed that the N-terminal part of ScARP3d, consisting of repeated sequences, was exposed to the spiroplasma surface whereas the C-terminal part was anchored into the membrane. Latex beads cytadherence assays showed the ScARP3d repeat domain (Rep3d) to be involved, and internalization of the Rep3d-coated beads to be actin-dependent. These data suggested that ScARP3d, via its Rep3d domain, was implicated in adhesion of S. citri GII3 to insect cells. Inhibition tests using anti-Rep3d antibodies and competitive assays with recombinant Rep3d both resulted in a decrease of insect cells invasion by the spiroplasmas. Unexpectedly, treatment of Ciha-1 cells with the actin polymerisation inhibitor cytochalasin D increased adhesion and consequently entry of S. citri GII3. For the ScARPs-less mutant G/6, only adhesion was enhanced though to a lesser extent following cytochalasin D treatment. All together these results strongly suggest a role of ScARPs, and particularly ScARP3d, in adhesion and invasion of the leafhopper cells by S. citri.
Collapse
|
9
|
Mutaqin K, Comer JL, Wayadande AC, Melcher U, Fletcher J. Selection and characterization ofSpiroplasma citrimutants by random transposome mutagenesis. Can J Microbiol 2011; 57:525-32. [DOI: 10.1139/w11-026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phytopathogenic spiroplasmas can multiply in vascular plants and insects. A deeper understanding of this dual-host life could be furthered through the identification by random mutagenesis of spiroplasma genes required. The ability of the EZ::TN™ <DHFR-1> Tnp transposome™ system to create random insertional mutations in the genome of Spiroplasma citri was evaluated. The efficiency of electroporation-mediated transformation of S. citri BR3-3X averaged 28.8 CFUs/ng transposome for 109spiroplasma cells. Many transformants appearing on the selection plates were growth impaired when transferred to broth. Altering broth composition in various ways did not improve their growth. However, placing colonies into a small broth volume resulted in robust growth and successful subsequent passages of a subset of transformants. PCR using primers for the dihydrofolate reductase gene confirmed the transposon’s presence in the genomes of selected transformants. Southern blot hybridization and nucleotide sequencing suggested that insertion was random within the chromosome and usually at single sites. The insertions were stable. Growth rates of all transformants were lower than that of the wild-type S. citri, but none lost the ability to adhere to a Circulifer tenellus (CT-1) cell line. The EZ::TN™ <DHFR-1> Tnp transposome™ system represents an additional tool for genetic manipulation of the fastidious spiroplasmas.
Collapse
Affiliation(s)
- Kikin Mutaqin
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jana L. Comer
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Astri C. Wayadande
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ulrich Melcher
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jacqueline Fletcher
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
10
|
Involvement of a minimal actin-binding region of Spiroplasma citri phosphoglycerate kinase in spiroplasma transmission by its leafhopper vector. PLoS One 2011; 6:e17357. [PMID: 21364953 PMCID: PMC3043095 DOI: 10.1371/journal.pone.0017357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/28/2011] [Indexed: 12/02/2022] Open
Abstract
Background Spiroplasma citri is a wall-less bacterium that colonizes phloem vessels of a large number of host plants. Leafhopper vectors transmit S. citri in a propagative and circulative manner, involving colonization and multiplication of bacteria in various insect organs. Previously we reported that phosphoglycerate kinase (PGK), the well-known glycolytic enzyme, bound to leafhopper actin and was unexpectedly implicated in the internalization process of S. citri into Circulifer haematoceps cells. Methodology/Principal Findings In an attempt to identify the actin-interacting regions of PGK, several overlapping PGK truncations were generated. Binding assays, using the truncations as probes on insect protein blots, revealed that the actin-binding region of PGK was located on the truncated peptide designated PGK-FL5 containing amino acids 49–154. To investigate the role of PGK-FL5-actin interaction, competitive spiroplasma attachment and internalization assays, in which His6-tagged PGK-FL5 was added to Ciha-1 cells prior to infection with S. citri, were performed. No effect on the efficiency of attachment of S. citri to leafhopper cells was observed while internalization was drastically reduced. The in vivo effect of PGK-FL5 was confirmed by competitive experimental transmission assays as injection of PGK-FL5 into S. citri infected leafhoppers significantly affected spiroplasmal transmission. Conclusion These results suggest that S. citri transmission by its insect vector is correlated to PGK ability to bind actin.
Collapse
|
11
|
Breton M, Duret S, Béven L, Dubrana MP, Renaudin J. I-SceI-mediated plasmid deletion and intra-molecular recombination in Spiroplasma citri. J Microbiol Methods 2010; 84:216-22. [PMID: 21129414 DOI: 10.1016/j.mimet.2010.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 12/27/2022]
Abstract
S. citri wild-type strain GII3 carries six plasmids (pSci1 to -6) that are thought to encode determinants involved in the transmission of the spiroplasma by its leafhopper vector. In this study we report the use of meganuclease I-SceI for plasmid deletion in S. citri. Plasmids pSci1NT-I and pSci6PT-I, pSci1 and pSci6 derivatives that contain the tetM selection marker and a unique I-SceI recognition site were first introduced into S. citri strains 44 (having no plasmid) and GII3 (carrying pSci1-6), respectively. Due to incompatibility of homologous replication regions, propagation of the S. citri GII3 transformant in selective medium resulted in the replacement of the natural pSci6 by pSci6PT-I. The spiroplasmal transformants were further transformed by an oriC plasmid carrying the I-SceI gene under the control of the spiralin gene promoter. In the S. citri 44 transformant, expression of I-SceI resulted in rapid loss of pSciNT-I showing that expression of I-SceI can be used as a counter-selection tool in spiroplasmas. In the case of the S. citri GII3 transformant carrying pSci6PT-I, expression of I-SceI resulted in the deletion of plasmid fragments comprising the I-SceI site and the tetM marker. Delineating the I-SceI generated deletions proved they had occurred though recombination between homologous sequences. To our knowledge this is the first report of I-SceI mediated intra-molecular recombination in mollicutes.
Collapse
Affiliation(s)
- Marc Breton
- INRA, Génomique Diversité et Pouvoir Pathogéne, Villenave d'Ornon, France
| | | | | | | | | |
Collapse
|
12
|
Carle P, Saillard C, Carrère N, Carrère S, Duret S, Eveillard S, Gaurivaud P, Gourgues G, Gouzy J, Salar P, Verdin E, Breton M, Blanchard A, Laigret F, Bové JM, Renaudin J, Foissac X. Partial chromosome sequence of Spiroplasma citri reveals extensive viral invasion and important gene decay. Appl Environ Microbiol 2010; 76:3420-6. [PMID: 20363791 PMCID: PMC2876439 DOI: 10.1128/aem.02954-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 03/25/2010] [Indexed: 11/20/2022] Open
Abstract
The assembly of 20,000 sequencing reads obtained from shotgun and chromosome-specific libraries of the Spiroplasma citri genome yielded 77 chromosomal contigs totaling 1,674 kbp (92%) of the 1,820-kbp chromosome. The largest chromosomal contigs were positioned on the physical and genetic maps constructed from pulsed-field gel electrophoresis and Southern blot hybridizations. Thirty-eight contigs were annotated, resulting in 1,908 predicted coding sequences (CDS) representing an overall coding density of only 74%. Cellular processes, cell metabolism, and structural-element CDS account for 29% of the coding capacity, CDS of external origin such as viruses and mobile elements account for 24% of the coding capacity, and CDS of unknown function account for 47% of the coding capacity. Among these, 21% of the CDS group into 63 paralog families. The organization of these paralogs into conserved blocks suggests that they represent potential mobile units. Phage-related sequences were particularly abundant and include plectrovirus SpV1 and SVGII3 and lambda-like SpV2 sequences. Sixty-nine copies of transposases belonging to four insertion sequence (IS) families (IS30, IS481, IS3, and ISNCY) were detected. Similarity analyses showed that 21% of chromosomal CDS were truncated compared to their bacterial orthologs. Transmembrane domains, including signal peptides, were predicted for 599 CDS, of which 58 were putative lipoproteins. S. citri has a Sec-dependent protein export pathway. Eighty-four CDS were assigned to transport, such as phosphoenolpyruvate phosphotransferase systems (PTS), the ATP binding cassette (ABC), and other transporters. Besides glycolytic and ATP synthesis pathways, it is noteworthy that S. citri possesses a nearly complete pathway for the biosynthesis of a terpenoid.
Collapse
Affiliation(s)
- Patricia Carle
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Colette Saillard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Nathalie Carrère
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sébastien Carrère
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sybille Duret
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Sandrine Eveillard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Patrice Gaurivaud
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Géraldine Gourgues
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Jérome Gouzy
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Pascal Salar
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Eric Verdin
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Marc Breton
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Alain Blanchard
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Frédéric Laigret
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Joseph-Marie Bové
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Joel Renaudin
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| | - Xavier Foissac
- INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France, Université Victor Segalen Bordeaux 2, UMR1090, F-33883 Villenave d'Ornon, France, INRA, CNRS, Laboratoire Interactions Plantes Micro-Organismes UMR441/2594, F-31320 Castanet Tolosan, France, INRA, UR419 Espèces Fruitières, 71 Avenue Edouard Bourlaux, BP81, F-33883 Villenave d'Ornon Cedex, France
| |
Collapse
|
13
|
Sequences essential for transmission of Spiroplasma citri by its leafhopper vector, Circulifer haematoceps, revealed by plasmid curing and replacement based on incompatibility. Appl Environ Microbiol 2010; 76:3198-205. [PMID: 20305023 DOI: 10.1128/aem.00181-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spiroplasma citri GII3 contains highly related low-copy-number plasmids pSci1 to -6. Despite the strong similarities between their replication regions, these plasmids coexist in the spiroplasma cells, indicating that they are mutually compatible. The pSci1 to -6 plasmids encode the membrane proteins known as S. citri adhesion-related proteins (ScARPs) (pSci1 to -5) and the hydrophilic protein P32 (pSci6), which had been tentatively associated with insect transmission, as they were not detected in non-insect-transmissible strains. With the aim of further investigating the role of plasmid-encoded determinants in insect transmission, we have constructed S. citri mutant strains that differ in their plasmid contents by developing a plasmid curing/replacement strategy based on the incompatibility of plasmids having identical replication regions. Experimental transmission of these S. citri plasmid mutants through injection into the leafhopper vector Circulifer haematoceps revealed that pSci6, more precisely, the pSci6_06 coding sequence, encoding a protein of unknown function, was essential for transmission. In contrast, ScARPs and P32 were dispensable for both acquisition and transmission of the spiroplasmas by the leafhopper vector, even though S. citri mutants lacking pSci1 to -5 (encoding ScARPs) were acquired and transmitted at lower efficiencies than the wild-type strain GII3.
Collapse
|
14
|
Entry of Spiroplasma citri into Circulifer haematoceps cells involves interaction between spiroplasma phosphoglycerate kinase and leafhopper actin. Appl Environ Microbiol 2010; 76:1879-86. [PMID: 20118377 DOI: 10.1128/aem.02384-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of the phytopathogenic mollicutes, spiroplasmas, and phytoplasmas by their insect vectors mainly depends on their ability to pass through gut cells, to multiply in various tissues, and to traverse the salivary gland cells. The passage of these different barriers suggests molecular interactions between the plant mollicute and the insect vector that regulate transmission. In the present study, we focused on the interaction between Spiroplasma citri and its leafhopper vector, Circulifer haematoceps. An in vitro protein overlay assay identified five significant binding activities between S. citri proteins and insect host proteins from salivary glands. One insect protein involved in one binding activity was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as actin. Confocal microscopy observations of infected salivary glands revealed that spiroplasmas colocated with the host actin filaments. An S. citri actin-binding protein of 44 kDa was isolated by affinity chromatography and identified by LC-MS/MS as phosphoglycerate kinase (PGK). To investigate the role of the PGK-actin interaction, we performed competitive binding and internalization assays on leafhopper cultured cell lines (Ciha-1) in which His(6)-tagged PGK from S. citri or purified PGK from Saccharomyces cerevisiae was added prior to the addition of S. citri inoculum. The results suggested that exogenous PGK has no effect on spiroplasmal attachment to leafhopper cell surfaces but inhibits S. citri internalization, demonstrating that the process leading to internalization of S. citri in eukaryotic cells requires the presence of PGK. PGK, regardless of origin, reduced the entry of spiroplasmas into Ciha-1 cells in a dose-dependent manner.
Collapse
|
15
|
Duret S, Batailler B, Danet JL, Béven L, Renaudin J, Arricau-Bouvery N. Infection of the Circulifer haematoceps cell line Ciha-1 by Spiroplasma citri: the non-insect-transmissible strain 44 is impaired in invasion. MICROBIOLOGY-SGM 2009; 156:1097-1107. [PMID: 20019079 DOI: 10.1099/mic.0.035063-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Successful transmission of Spiroplasma citri by its leafhopper vector requires a specific interaction between the spiroplasma surface and the insect cells. With the aim of studying these interactions at the cellular and molecular levels, a cell line, named Ciha-1, was established using embryonic tissues from the eggs of the S. citri natural vector Circulifer haematoceps. This is the first report, to our knowledge, of a cell line for this leafhopper species and of its successful infection by the insect-transmissible strain S. citri GII3. Adherence of the spiroplasmas to the cultured Ciha-1 cells was studied by c.f.u. counts and by electron microscopy. Entry of the spiroplasmas into the insect cells was analysed quantitatively by gentamicin protection assays and qualitatively by double immunofluorescence microscopy. Spiroplasmas were detected within the cell cytoplasm as early as 1 h after inoculation and survived at least 2 days inside the cells. Comparing the insect-transmissible GII3 and non-insect-transmissible 44 strains revealed that adherence to and entry into Ciha-1 cells of S. citri 44 were significantly less efficient than those of S. citri GII3.
Collapse
Affiliation(s)
- Sybille Duret
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Brigitte Batailler
- Plateau Technique Imagerie/Cytologie, INRA, Centre de Bordeaux-Aquitaine, F-33883 Villenave d'Ornon, France.,Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Jean-Luc Danet
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Laure Béven
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Joël Renaudin
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Nathalie Arricau-Bouvery
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, Centre de Bordeaux-Aquitaine, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| |
Collapse
|
16
|
Ishii Y, Oshima K, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Namba S. Process of reductive evolution during 10 years in plasmids of a non-insect-transmissible phytoplasma. Gene 2009; 446:51-7. [PMID: 19631261 DOI: 10.1016/j.gene.2009.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/01/2009] [Accepted: 07/14/2009] [Indexed: 11/18/2022]
Abstract
A non-insect-transmissible phytoplasma strain (OY-NIM) was obtained from insect-transmissible strain OY-M by plant grafting using no insect vectors. In this study, we analyzed for the gene structure of plasmids during its maintenance in plant tissue culture for 10 years. OY-M strain has one plasmid encoding orf3 gene which is thought to be involved in insect transmissibility. The gradual loss of OY-NIM plasmid sequence was observed in subsequent steps: first, the promoter region of orf3 was lost, followed by the loss of then a large region including orf3, and finally the entire plasmid was disappeared. In contrast, no mutation was found in a pseudogene on OY-NIM chromosome in the same period, indicating that OY-NIM plasmid evolved more rapidly than the chromosome-encoded gene tested. Results revealed an actual evolutionary process of OY plasmid, and provide a model for the stepwise process in reductive evolution of plasmids by environmental adaptation. Furthermore, this study indicates the great plasticity of plasmids throughout the evolution of phytoplasma.
Collapse
Affiliation(s)
- Yoshiko Ishii
- Department of Agricultural and Environmental Biology, The University of Tokyo, Yayoi, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ishii Y, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Oshima K, Namba S. In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region. Microbiology (Reading) 2009; 155:2058-2067. [DOI: 10.1099/mic.0.027409-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
‘Candidatus Phytoplasma asteris’, onion yellows strain (OY), a mildly pathogenic line (OY-M), is a phytopathogenic bacterium transmitted by Macrosteles striifrons leafhoppers. OY-M contains two types of plasmids (EcOYM and pOYM), each of which possesses a gene encoding the putative transmembrane protein, ORF3. A non-insect-transmissible line of this phytoplasma (OY-NIM) has the corresponding plasmids (EcOYNIM and pOYNIM), but pOYNIM lacks orf3. Here we show that in OY-M, orf3 is transcribed from two putative promoters and that on EcOYNIM, one of the promoter sequences is mutated and the other deleted. We also show by immunohistochemical analysis that ORF3 is not expressed in OY-NIM-infected plants. Moreover, ORF3 protein seems to be preferentially expressed in OY-M-infected insects rather than in plants. We speculate that ORF3 may play a role in the interactions of OY with its insect host.
Collapse
Affiliation(s)
- Yoshiko Ishii
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeyuki Kakizawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayaka Hoshi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kagiwada
- Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2 Kajinocho, Koganei, Tokyo 184-8584, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenro Oshima
- Laboratory of Clinical Plant Science, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Clinical Plant Science, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
18
|
Breton M, Duret S, Arricau-Bouvery N, Béven L, Renaudin J. Characterizing the replication and stability regions of Spiroplasma citri plasmids identifies a novel replication protein and expands the genetic toolbox for plant-pathogenic spiroplasmas. MICROBIOLOGY-SGM 2008; 154:3232-3244. [PMID: 18832328 DOI: 10.1099/mic.0.2008/019562-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spiroplasma citri strain GII3 contains seven plasmids, pSciA and pSci1-6, that share extensive regions of sequence homology and display a mosaic gene organization. Plasmid pSci2 comprises 12 coding sequences (CDS), three of which encode polypeptides homologous to proteins Soj/ParA, involved in chromosome partitioning, and TrsE and Mob/TraG, implicated in the type IV secretion pathway. One CDS encodes the adhesin-like protein ScARP3d whereas the other eight encode polypeptides with no homology to known proteins. The pSci2 CDS pE and soj have counterparts in all seven plasmids. Through successive deletions, various pSci2 derivatives were constructed and assessed for their ability to replicate by transformation of S. citri 44, a strain which has no plasmid. The smallest functional replicon was found to contain a single CDS (pE) and its flanking intergenic regions. Shuttle (S. citri/Escherichia coli) plasmids, in which CDS pE was disrupted, failed to replicate in S. citri, suggesting that PE is the replication protein of the S. citri plasmids. Successive propagations of pSci2-derived transformed spiroplasmas, in the absence of selection pressure, revealed that only pSci2 derivatives having an intact soj gene were stably maintained, indicating that the soj-encoded polypeptide is most likely involved in plasmid partitioning. Upon transformation, pSci2 derivatives, including shuttle (S. citri/E. coli) plasmids, were shown to replicate in all S. citri strains tested regardless of whether the strain possesses endogenous plasmids, such as strain GII3, or not, such as strain R8A2. In addition, the pSci replicons were introduced efficiently into the plant-pathogenic spiroplasmas Spiroplasma kunkelii and Spiroplasma phoeniceum, the transformation of which had never, to our knowledge, been described before. These studies show that, besides their implications for the biology of S. citri, the pSci plasmids hold considerable promise as vectors of general use for genetic studies of plant-pathogenic spiroplasmas. As an example, a HA-tagged S. citri protein was expressed in S. kunkelii. Detection of pE-hybridizing sequences in various group I spiroplasma species indicated that pE replicating plasmids were not restricted to the three plant-pathogenic spiroplasmas.
Collapse
Affiliation(s)
- Marc Breton
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Sybille Duret
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Nathalie Arricau-Bouvery
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Laure Béven
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Joël Renaudin
- Université de Bordeaux 2, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France.,INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| |
Collapse
|
19
|
Hogenhout SA, Loria R. Virulence mechanisms of Gram-positive plant pathogenic bacteria. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:449-456. [PMID: 18639483 DOI: 10.1016/j.pbi.2008.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 05/07/2008] [Accepted: 05/27/2008] [Indexed: 05/26/2023]
Abstract
Actinobacteria and Firmicutes comprise a group of highly divergent prokaryotes known as Gram-positive bacteria, which are ancestral to Gram-negative bacteria. Comparative genomics is revealing that, though plant virulence genes are frequently located on plasmids or in laterally acquired gene clusters, they are rarely shared with Gram-negative bacterial plant pathogens and among Gram-positive genera. Gram-positive bacterial pathogens utilize a variety of virulence strategies to invade their plant hosts, including the production of phytotoxins to allow intracellular and intercellular replication, production of cytokinins to generate gall tissues for invasion, secretion of proteins to induce cankers and the utilization and manipulation of sap-feeding insects for introduction into the phloem sieve cells. Functional analysis of novel virulence genes utilized by Actinobacteria and Firmicutes is revealing how these ancient prokaryotes manipulate plant, and sometimes insect, metabolic processes for their own benefit.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich NR4 7UH, United Kingdom.
| | | |
Collapse
|
20
|
Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S. Phytoplasmas: bacteria that manipulate plants and insects. MOLECULAR PLANT PATHOLOGY 2008; 9:403-23. [PMID: 18705857 PMCID: PMC6640453 DOI: 10.1111/j.1364-3703.2008.00472.x] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
TAXONOMY Superkingdom Prokaryota; Kingdom Monera; Domain Bacteria; Phylum Firmicutes (low-G+C, Gram-positive eubacteria); Class Mollicutes; Candidatus (Ca.) genus Phytoplasma. HOST RANGE Ca. Phytoplasma comprises approximately 30 distinct clades based on 16S rRNA gene sequence analyses of approximately 200 phytoplasmas. Phytoplasmas are mostly dependent on insect transmission for their spread and survival. The phytoplasma life cycle involves replication in insects and plants. They infect the insect but are phloem-limited in plants. Members of Ca. Phytoplasma asteris (16SrI group phytoplasmas) are found in 80 monocot and dicot plant species in most parts of the world. Experimentally, they can be transmitted by approximately 30, frequently polyphagous insect species, to 200 diverse plant species. DISEASE SYMPTOMS In plants, phytoplasmas induce symptoms that suggest interference with plant development. Typical symptoms include: witches' broom (clustering of branches) of developing tissues; phyllody (retrograde metamorphosis of the floral organs to the condition of leaves); virescence (green coloration of non-green flower parts); bolting (growth of elongated stalks); formation of bunchy fibrous secondary roots; reddening of leaves and stems; generalized yellowing, decline and stunting of plants; and phloem necrosis. Phytoplasmas can be pathogenic to some insect hosts, but generally do not negatively affect the fitness of their major insect vector(s). In fact, phytoplasmas can increase fecundity and survival of insect vectors, and may influence flight behaviour and plant host preference of their insect hosts. DISEASE CONTROL The most common practices are the spraying of various insecticides to control insect vectors, and removal of symptomatic plants. Phytoplasma-resistant cultivars are not available for the vast majority of affected crops.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, The John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk NR4 7UH, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Saillard C, Carle P, Duret-Nurbel S, Henri R, Killiny N, Carrère S, Gouzy J, Bové JM, Renaudin J, Foissac X. The abundant extrachromosomal DNA content of the Spiroplasma citri GII3-3X genome. BMC Genomics 2008; 9:195. [PMID: 18442384 PMCID: PMC2386487 DOI: 10.1186/1471-2164-9-195] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/28/2008] [Indexed: 11/24/2022] Open
Abstract
Background Spiroplama citri, the causal agent of citrus stubborn disease, is a bacterium of the class Mollicutes and is transmitted by phloem-feeding leafhopper vectors. In order to characterize candidate genes potentially involved in spiroplasma transmission and pathogenicity, the genome of S. citri strain GII3-3X is currently being deciphered. Results Assembling 20,000 sequencing reads generated seven circular contigs, none of which fit the 1.8 Mb chromosome map or carried chromosomal markers. These contigs correspond to seven plasmids: pSci1 to pSci6, with sizes ranging from 12.9 to 35.3 kbp and pSciA of 7.8 kbp. Plasmids pSci were detected as multiple copies in strain GII3-3X. Plasmid copy numbers of pSci1-6, as deduced from sequencing coverage, were estimated at 10 to 14 copies per spiroplasma cell, representing 1.6 Mb of extrachromosomal DNA. Genes encoding proteins of the TrsE-TraE, Mob, TraD-TraG, and Soj-ParA protein families were predicted in most of the pSci sequences, in addition to members of 14 protein families of unknown function. Plasmid pSci6 encodes protein P32, a marker of insect transmissibility. Plasmids pSci1-5 code for eight different S. citri adhesion-related proteins (ScARPs) that are homologous to the previously described protein P89 and the S. kunkelii SkARP1. Conserved signal peptides and C-terminal transmembrane alpha helices were predicted in all ScARPs. The predicted surface-exposed N-terminal region possesses the following elements: (i) 6 to 8 repeats of 39 to 42 amino acids each (sarpin repeats), (ii) a central conserved region of 330 amino acids followed by (iii) a more variable domain of about 110 amino acids. The C-terminus, predicted to be cytoplasmic, consists of a 27 amino acid stretch enriched in arginine and lysine (KR) and an optional 23 amino acid stretch enriched in lysine, aspartate and glutamate (KDE). Plasmids pSci mainly present a linear increase of cumulative GC skew except in regions presenting conserved hairpin structures. Conclusion The genome of S. citri GII3-3X is characterized by abundant extrachromosomal elements. The pSci plasmids could not only be vertically inherited but also horizontally transmitted, as they encode proteins usually involved in DNA element partitioning and cell to cell DNA transfer. Because plasmids pSci1-5 encode surface proteins of the ScARP family and pSci6 was recently shown to confer insect transmissibility, diversity and abundance of S. citri plasmids may essentially aid the rapid adaptation of S. citri to more efficient transmission by different insect vectors and to various plant hosts.
Collapse
Affiliation(s)
- Colette Saillard
- Université Victor Ségalen Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, BP 81, F-33883 Villenave d'Ornon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|