1
|
Suprunenko YF, Gilligan CA. Where to refine spatial data to improve accuracy in crop disease modelling: an analytical approach with examples for cassava. ROYAL SOCIETY OPEN SCIENCE 2025; 12:250012. [PMID: 40370615 PMCID: PMC12074810 DOI: 10.1098/rsos.250012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025]
Abstract
Epidemiological modelling plays an important role in global food security by informing strategies for the control and management of invasion and spread of crop diseases. However, the underlying data on spatial locations of host crops that are susceptible to a pathogen are often incomplete and inaccurate, thus reducing the accuracy of model predictions. Obtaining and refining datasets that fully represent a host landscape across territories can be a major challenge when predicting disease outbreaks. Therefore, it would be an advantage to prioritize areas in which data refinement efforts should be directed to improve the accuracy of epidemic prediction. In this paper, we present an analytical method to identify areas where potential errors in mapped host data would have the largest impact on modelled pathogen invasion and short-term spread. The method is based on an analytical approximation for the rate at which susceptible host crops become infected at the start of an epidemic. We show how implementing spatial prioritization for data refinement in a cassava-growing region in sub-Saharan Africa could be an effective means for improving accuracy when modelling the dispersal and spread of the crop pathogen cassava brown streak virus.
Collapse
|
2
|
Yadav A, Yadav K. Portable solutions for plant pathogen diagnostics: development, usage, and future potential. Front Microbiol 2025; 16:1516723. [PMID: 39959158 PMCID: PMC11825793 DOI: 10.3389/fmicb.2025.1516723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
The increasing prevalence of plant pathogens presents a critical challenge to global food security and agricultural sustainability. While accurate, traditional diagnostic methods are often time-consuming, resource-intensive, and unsuitable for real-time field applications. The emergence of portable diagnostic tools represents a paradigm shift in plant disease management, offering rapid, on-site detection of pathogens with high accuracy and minimal technical expertise. This review explores portable diagnostic technologies' development, deployment, and future potential, including handheld analyzers, smartphone-integrated systems, microfluidics, and lab-on-a-chip platforms. We examine the core technologies underlying these devices, such as biosensors, nucleic acid amplification techniques, and immunoassays, highlighting their applicability to detect bacterial, viral, and fungal pathogens in diverse agricultural settings. Furthermore, the integration of these devices with digital technologies, including the Internet of Things (IoT), artificial intelligence (AI), and machine learning (ML), is transforming disease surveillance and management. While portable diagnostics have clear advantages in speed, cost-effectiveness, and user accessibility, challenges related to sensitivity, durability, and regulatory standards remain. Innovations in nanotechnology, multiplex detection platforms, and personalized agriculture promise to further enhance the efficacy of portable diagnostics. By providing a comprehensive overview of current technologies and exploring future directions, this review underscores the critical role of portable diagnostics in advancing precision agriculture and mitigating the impact of plant pathogens on global food production.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Banaskantha, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
3
|
Wosula EN, Shirima RR, Amour M, Woyengo VW, Otunga BM, Legg JP. Occurrence and Distribution of Major Cassava Pests and Diseases in Cultivated Cassava Varieties in Western Kenya. Viruses 2024; 16:1469. [PMID: 39339946 PMCID: PMC11437512 DOI: 10.3390/v16091469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Cassava is an important food crop in western Kenya, yet its production is challenged by pests and diseases that require routine monitoring to guide development and deployment of control strategies. Field surveys were conducted in 2022 and 2023 to determine the prevalence, incidence and severity of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), whitefly numbers and incidence of cassava green mite (CGM) in six counties of western Kenya. Details of the encountered cassava varieties were carefully recorded to determine the adoption of improved varieties. A total of 29 varieties were recorded, out of which 13 were improved, although the improved varieties were predominant in 60% of fields and the most widely grown variety was MM96/4271. The CMD incidence was higher in 2022 (26.4%) compared to 2023 (10.1%), although the proportion of CMD attributable to whitefly infection was greater (50.6%) in 2023 than in 2022 (18.0%). The CBSD incidence in 2022 was 6.4%, while in 2023 it was 4.1%. The CMD incidence was significantly lower (5.9%) for the improved varieties than it was for the local varieties (35.9%), although the CBSD incidence did not differ significantly between the improved (2.3%) and local varieties (9.7%). Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) were both detected. Most infections were single CBSV infections (82.9%), followed by single UCBSV (34.3%) and coinfection with both viruses (16.7%). Whiteflies were more abundant in 2023, in which 28% of the fields had super-abundant populations of >100/plant, compared to 5% in 2022. KASP SNP genotyping designated 92.8% of the specimens as SSA-ECA for 2022, while it was 94.4% for 2023. The cassava green mite incidence was 65.4% in 2022 compared to 79.9% in 2023. This study demonstrates that cassava viruses, whiteflies and cassava green mites continue to be important constraints to cassava production in western Kenya, although the widespread cultivation of improved varieties is reducing the impact of cassava viruses. The more widespread application of high-quality seed delivery mechanisms could further enhance the management of these pests/diseases, coupled with wider application of IPM measures for whiteflies and mites.
Collapse
Affiliation(s)
- Everlyne N Wosula
- International Institute of Tropical Agriculture (IITA-Tanzania), Dar es Salaam P.O. BOX 34441, Tanzania
| | - Rudolph R Shirima
- International Institute of Tropical Agriculture (IITA-Tanzania), Dar es Salaam P.O. BOX 34441, Tanzania
| | - Massoud Amour
- International Institute of Tropical Agriculture (IITA-Tanzania), Dar es Salaam P.O. BOX 34441, Tanzania
| | - Vincent W Woyengo
- Kenya Agricultural Livestock Research Organization (KALRO), Kakamega P.O. Box 57811, Kenya
| | - Bonface M Otunga
- Kenya Agricultural Livestock Research Organization (KALRO), Kakamega P.O. Box 57811, Kenya
| | - James P Legg
- International Institute of Tropical Agriculture (IITA-Tanzania), Dar es Salaam P.O. BOX 34441, Tanzania
| |
Collapse
|
4
|
Ferris AC, Stutt ROJH, Godding DS, Mohammed IU, Nkere CK, Eni AO, Pita JS, Gilligan CA. Computational models for improving surveillance for the early detection of direct introduction of cassava brown streak disease in Nigeria. PLoS One 2024; 19:e0304656. [PMID: 39167618 PMCID: PMC11338456 DOI: 10.1371/journal.pone.0304656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/15/2024] [Indexed: 08/23/2024] Open
Abstract
Cassava is a key source of calories for smallholder farmers in sub-Saharan Africa but its role as a food security crop is threatened by the cross-continental spread of cassava brown streak disease (CBSD) that causes high yield losses. In order to mitigate the impact of CBSD, it is important to minimise the delay in first detection of CBSD after introduction to a new country or state so that interventions can be deployed more effectively. Using a computational model that combines simulations of CBSD spread at both the landscape and field scales, we model the effectiveness of different country level survey strategies in Nigeria when CBSD is directly introduced. We find that the main limitation to the rapid CBSD detection in Nigeria, using the current survey strategy, is that an insufficient number of fields are surveyed in newly infected Nigerian states, not the total number of fields surveyed across the country, nor the limitation of only surveying fields near a road. We explored different strategies for geographically selecting fields to survey and found that early and consistent CBSD detection will involve confining candidate survey fields to states where CBSD has not yet been detected and where survey locations are allocated in proportion to the density of cassava crops, detects CBSD sooner, more consistently, and when the epidemic is smaller compared with distributing surveys uniformly across Nigeria.
Collapse
Affiliation(s)
- Alex C. Ferris
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | | | - David S. Godding
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ibrahim Umar Mohammed
- Crop Science, Kebbi State University of Science and Technology, Aliero, Nigeria
- Central and West African Virus Epidemiology, Pôle Scientifique et d’innovation de Bingerville, Université Félix Houphoüet-Boigny, Bingerville, Côte d’Ivoire
| | - Chukwuemeka K. Nkere
- Central and West African Virus Epidemiology, Pôle Scientifique et d’innovation de Bingerville, Université Félix Houphoüet-Boigny, Bingerville, Côte d’Ivoire
- Biotechnology Department, National Root Crops Research Institute, Umudike, Nigeria
| | - Angela O. Eni
- Central and West African Virus Epidemiology, Pôle Scientifique et d’innovation de Bingerville, Université Félix Houphoüet-Boigny, Bingerville, Côte d’Ivoire
| | - Justin S. Pita
- Central and West African Virus Epidemiology, Pôle Scientifique et d’innovation de Bingerville, Université Félix Houphoüet-Boigny, Bingerville, Côte d’Ivoire
| | | |
Collapse
|
5
|
Chikoti PC, Tembo M. Expansion and impact of cassava brown streak and cassava mosaic diseases in Africa: A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1076364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Africa produces over half of global cassava; however, the continent's average yield is below the potential yields achieved under experimental conditions. Many factors contributing to low yield include lack of quality varieties, poor soils, limited access to capital, competition for labor, as well as pests and diseases. Plant diseases are the major biotic constraints to cassava production and have caused considerable food insecurity in Africa. Although there has been some level of disease management which has contributed to the increase in cassava production, the two viral diseases: cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) still claim between 30–40% and upto 70%, respectively of Africa's cassava harvest. Given the importance of the two diseases in Africa, we review the expansion of CBSD and CMD; impacts of the two diseases on food security and how they can be managed. We provide insights in the spread of the two diseases, management efforts, and future directions.
Collapse
|
6
|
Ozimati AA, Esuma W, Manze F, Iragaba P, Kanaabi M, Ano CU, Egesi C, Kawuki RS. Utility of Ugandan genomic selection cassava breeding populations for prediction of cassava viral disease resistance and yield in West African clones. FRONTIERS IN PLANT SCIENCE 2022; 13:1018156. [PMID: 36507414 PMCID: PMC9728524 DOI: 10.3389/fpls.2022.1018156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a staple crop for ~800 million people in sub-Saharan Africa. Its production and productivity are being heavily affected by the two viral diseases: cassava brown streak disease (CBSD) and cassava mosaic disease (CMD), impacting greatly on edible root yield. CBSD is currently endemic to central, eastern and southern Africa, if not contained could spread to West Africa the largest cassava producer and consumer in the continent. Genomic selection (GS) has been implemented in Ugandan cassava breeding for accelerated development of virus resistant and high yielding clones. This study leveraged available GS training data in Uganda for pre-emptive CBSD breeding in W. Africa alongside CMD and fresh root yield (FRW). First, we tracked genetic gain through the current three cycles of GS in Uganda. The mean genomic estimated breeding values (GEBVs), indicated general progress from initial cycle zero (C0) to cycle one (C1) and cycle two (C2) for CBSD traits and yield except for CMD. Secondly, we used foliar data of both CBSD and CMD, as well as harvest root necrosis and yield data to perform cross-validation predictions. Cross-validation prediction accuracies of five GS models were tested for each of the three GS cycles and West African (WA) germplasm as a test set. In all cases, cross-validation prediction accuracies were low to moderate, ranging from -0.16 to 0.68 for CBSD traits, -0.27 to 0.57 for CMD and -0.22 to 0.41 for fresh root weight (FRW). Overall, the highest prediction accuracies were recorded in C0 for all traits tested across models and the best performing model in cross-validation was G-BLUP. Lastly, we tested the predictive ability of the Ugandan training sets to predict CBSD in W. African clones. In general, the Ugandan training sets had low prediction accuracies for all traits across models in West African germplasm, varying from -0.18 to 0.1. Based on the findings of this study, the cassava breeding program in Uganda has made progress through application of GS for most target traits, but the utility of the training population for pre-emptive breeding in WA is limiting. In this case, efforts should be devoted to sharing Ugandan germplasm that possess resistance with the W. African breeding programs for hybridization to fully enable deployment of genomic selection as a pre-emptive CBSD breeding strategy in W. Africa.
Collapse
Affiliation(s)
- Alfred A. Ozimati
- National Crops Resources Research Institute, Kampala, Uganda
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute, Kampala, Uganda
| | - Francis Manze
- National Crops Resources Research Institute, Kampala, Uganda
| | - Paula Iragaba
- National Crops Resources Research Institute, Kampala, Uganda
| | - Michael Kanaabi
- National Crops Resources Research Institute, Kampala, Uganda
| | - Chukwuka Ugochukwu Ano
- Plant Breeding and Genetics Section, College of Agricultare and Life Sciences, Cornell University, Ithaca NY, United States
| | - Chiedozie Egesi
- Plant Breeding and Genetics Section, College of Agricultare and Life Sciences, Cornell University, Ithaca NY, United States
- National Root Crops Research Institute, Umudike, Nigeria
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | |
Collapse
|
7
|
Peng Y, Dallas MM, Ascencio-Ibáñez JT, Hoyer JS, Legg J, Hanley-Bowdoin L, Grieve B, Yin H. Early detection of plant virus infection using multispectral imaging and spatial-spectral machine learning. Sci Rep 2022; 12:3113. [PMID: 35210452 PMCID: PMC8873445 DOI: 10.1038/s41598-022-06372-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cassava brown streak disease (CBSD) is an emerging viral disease that can greatly reduce cassava productivity, while causing only mild aerial symptoms that develop late in infection. Early detection of CBSD enables better crop management and intervention. Current techniques require laboratory equipment and are labour intensive and often inaccurate. We have developed a handheld active multispectral imaging (A-MSI) device combined with machine learning for early detection of CBSD in real-time. The principal benefits of A-MSI over passive MSI and conventional camera systems are improved spectral signal-to-noise ratio and temporal repeatability. Information fusion techniques further combine spectral and spatial information to reliably identify features that distinguish healthy cassava from plants with CBSD as early as 28 days post inoculation on a susceptible and a tolerant cultivar. Application of the device has the potential to increase farmers' access to healthy planting materials and reduce losses due to CBSD in Africa. It can also be adapted for sensing other biotic and abiotic stresses in real-world situations where plants are exposed to multiple pest, pathogen and environmental stresses.
Collapse
Affiliation(s)
- Yao Peng
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
| | - Mary M Dallas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - José T Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - J Steen Hoyer
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - James Legg
- International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Bruce Grieve
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, UK
| | - Hujun Yin
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Valli AA, García López R, Ribaya M, Martínez FJ, Gómez DG, García B, Gonzalo I, Gonzalez de Prádena A, Pasin F, Montanuy I, Rodríguez-Gonzalo E, García JA. Maf/ham1-like pyrophosphatases of non-canonical nucleotides are host-specific partners of viral RNA-dependent RNA polymerases. PLoS Pathog 2022; 18:e1010332. [PMID: 35180277 PMCID: PMC8893687 DOI: 10.1371/journal.ppat.1010332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/03/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cassava brown streak disease (CBSD), dubbed the “Ebola of plants”, is a serious threat to food security in Africa caused by two viruses of the family Potyviridae: cassava brown streak virus (CBSV) and Ugandan (U)CBSV. Intriguingly, U/CBSV, along with another member of this family and one secoviridae, are the only known RNA viruses encoding a protein of the Maf/ham1-like family, a group of widespread pyrophosphatase of non-canonical nucleotides (ITPase) expressed by all living organisms. Despite the socio-economic impact of CDSD, the relevance and role of this atypical viral factor has not been yet established. Here, using an infectious cDNA clone and reverse genetics, we demonstrate that UCBSV requires the ITPase activity for infectivity in cassava, but not in the model plant Nicotiana benthamiana. HPLC-MS/MS experiments showed that, quite likely, this host-specific constraint is due to an unexpected high concentration of non-canonical nucleotides in cassava. Finally, protein analyses and experimental evolution of mutant viruses indicated that keeping a fraction of the yielded UCBSV ITPase covalently bound to the viral RNA-dependent RNA polymerase (RdRP) optimizes viral fitness, and this seems to be a feature shared by the other members of the Potyviridae family expressing Maf/ham1-like proteins. All in all, our work (i) reveals that the over-accumulation of non-canonical nucleotides in the host might have a key role in antiviral defense, and (ii) provides the first example of an RdRP-ITPase partnership, reinforcing the idea that RNA viruses are incredibly versatile at adaptation to different host setups. Cassava is one the most important staple food around the world in term of caloric intake. The cassava brown streak disease, caused by cassava brown streak virus (CBSV) and Ugandan (U)CBSV–Ipomovirus genus, Potyviridae family-, produces massive losses in cassava production. Curiously, these two viruses, unlike the vast majority of members of the family, encode a Maf1/ham1-like pyrophosphatase (HAM1) of non-canonical nucleotides with unknown relevance and function in viruses. This study aims to fill this gap in our knowledge by using reverse genetics, biochemistry, metabolomics and directed virus evolution. Hence, we found that HAM1 is required for UCBSV to infect cassava, where its pyrophosphatase activity resulted critical, but not to propagate in the model plant Nicotiana benthamiana. In addition, we demonstrated that HAM1 works in partnership with the viral RdRP during infection. Unexpected high levels of ITP/XTP non-canonical nucleotides found in cassava, and the known flexibility of RNA viruses to incorporate additional factors when required, supports the idea that the high concentration of ITP/XTP worked as a selection pressure to promote the acquisition of HAM1 into the virus in order to promote a successful infection.
Collapse
Affiliation(s)
- Adrian A. Valli
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- * E-mail:
| | | | - María Ribaya
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Diego García Gómez
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Salamanca, Salamanca, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Irene Gonzalo
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Inmaculada Montanuy
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | | | | |
Collapse
|
9
|
Kavil S, Otti G, Bouvaine S, Armitage A, Maruthi MN. PAL1 gene of the phenylpropanoid pathway increases resistance to the Cassava brown streak virus in cassava. Virol J 2021; 18:184. [PMID: 34503522 PMCID: PMC8428094 DOI: 10.1186/s12985-021-01649-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phenylalanine ammonia lyase genes play crucial role in plant response to biotic and abiotic stresses. In this study, we characterized the role of PAL genes in increasing resistance to the Cassava brown streak virus that causes the economically important cassava brown streak disease (CBSD) on cassava in Africa. METHODS The whole transcriptomes of eight cassava varieties differing in resistance to CBSD were obtained at 1, 5 and 8 weeks after CBSV infection. RESULTS Analysis of RNA-Seq data identified the overexpression of PAL1, PAL2, cinnamic acid and two chalcone synthase genes in CBSD-resistant cassava varieties, which was subsequently confirmed by RT-qPCR. The exogenous application of Acibenzolar-S-Methyl induced PAL1 gene expression to enhance resistance in the susceptible var. Kalawe. In contrast, the silencing of PAL1 by RNA interference led to increased susceptibility of the resistant var. Kaleso to CBSD. CONCLUSIONS PAL1 gene of the phenylpropanoid pathway has a major role in inducing resistance to CBSD in cassava plants and its early induction is key for CBSD resistance.
Collapse
Affiliation(s)
- Siji Kavil
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Medway campus, Chatham, Kent, ME4 4TB, UK
| | - Gerald Otti
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Medway campus, Chatham, Kent, ME4 4TB, UK.,Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Sophie Bouvaine
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Medway campus, Chatham, Kent, ME4 4TB, UK
| | - Andrew Armitage
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Medway campus, Chatham, Kent, ME4 4TB, UK
| | - Midatharahally N Maruthi
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Medway campus, Chatham, Kent, ME4 4TB, UK.
| |
Collapse
|
10
|
Kinship networks of seed exchange shape spatial patterns of plant virus diversity. Nat Commun 2021; 12:4505. [PMID: 34301941 PMCID: PMC8302746 DOI: 10.1038/s41467-021-24720-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
By structuring farmers’ informal networks of seed exchange, kinship systems play a key role in the dynamics of crop genetic diversity in smallholder farming systems. However, because many crop diseases are propagated through infected germplasm, local seed systems can also facilitate the dissemination of seedborne pathogens. Here, we investigate how the interplay of kinship systems and local networks of germplasm exchange influences the metapopulation dynamics of viruses responsible for the cassava mosaic disease (CMD), a major threat to food security in Africa. Combining anthropological, genetic and plant epidemiological data, we analyzed the genetic structure of local populations of the African cassava mosaic virus (ACMV), one of the main causal agents of CMD. Results reveal contrasted patterns of viral diversity in patrilineal and matrilineal communities, consistent with local modes of seed exchange. Our results demonstrate that plant virus ecosystems have also a cultural component and that social factors that shape regional seed exchange networks influence the genetic structure of plant virus populations. This study combines ethnobotanical and epidemiological data to understand how social networks of seed exchange influence the genetic structure of the African cassava mosaic virus in Gabon. Results reveal contrasted patterns of viral diversity in patrilineal and matrilineal communities, consistent with cultural differences in modes of seed exchange.
Collapse
|
11
|
Narayanan N, Beyene G, Chauhan RD, Grusak MA, Taylor NJ. Stacking disease resistance and mineral biofortification in cassava varieties to enhance yields and consumer health. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:844-854. [PMID: 33190345 PMCID: PMC8051606 DOI: 10.1111/pbi.13511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 05/20/2023]
Abstract
Delivering the benefits of agricultural biotechnology to smallholder farmers requires that resources be directed towards staple food crops. To achieve effect at scale, beneficial traits must be integrated into multiple, elite farmer-preferred varieties with relevance across geographical regions. The staple root crop cassava (Manihot esculenta) is consumed for dietary calories by more than 800 million people, but its tuberous roots provide insufficient iron and zinc to meet nutritional needs. In Africa, cassava yields are furthermore limited by the virus diseases, cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). In this study, we strove to develop cassava displaying high-level resistance to CBSD and CMD to attain food and economic security for cassava farmers, along with biofortified levels of iron and zinc to enhance consumer health. RNAi-mediated technology was used to achieve resistance to CBSD in two East African and one Nigerian farmer-preferred cultivars that harboured resistance to CMD. The Nigerian cvs. TMS 95/0505 and TMS 91/02324 were modified with T-DNA imparting resistance to CBSD, along with AtIRT1 (major iron transporter) and AtFER1 (ferritin) transgenes to achieve nutritionally significant levels of iron and zinc in cassava storage roots (145 and 40 µg/g dry weight, respectively). The inherent resistance to CMD was maintained in all four disease resistant and mineral enhanced cassava cultivars described here, demonstrating that this technique could be deployed across multiple farmer-preferred varieties to benefit the food and nutritional security of consumers in Africa.
Collapse
Affiliation(s)
| | - Getu Beyene
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Raj Deepika Chauhan
- Donald Danforth Plant Science CenterSt. LouisMOUSA
- Present address:
PairwiseDurhamNCUSA
| | | | | |
Collapse
|
12
|
Mbanjo EGN, Rabbi IY, Ferguson ME, Kayondo SI, Eng NH, Tripathi L, Kulakow P, Egesi C. Technological Innovations for Improving Cassava Production in Sub-Saharan Africa. Front Genet 2021; 11:623736. [PMID: 33552138 PMCID: PMC7859516 DOI: 10.3389/fgene.2020.623736] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
Cassava is crucial for food security of millions of people in sub-Saharan Africa. The crop has great potential to contribute to African development and is increasing its income-earning potential for small-scale farmers and related value chains on the continent. Therefore, it is critical to increase cassava production, as well as its quality attributes. Technological innovations offer great potential to drive this envisioned change. This paper highlights genomic tools and resources available in cassava. The paper also provides a glimpse of how these resources have been used to screen and understand the pattern of cassava genetic diversity on the continent. Here, we reviewed the approaches currently used for phenotyping cassava traits, highlighting the methodologies used to link genotypic and phenotypic information, dissect the genetics architecture of key cassava traits, and identify quantitative trait loci/markers significantly associated with those traits. Additionally, we examined how knowledge acquired is utilized to contribute to crop improvement. We explored major approaches applied in the field of molecular breeding for cassava, their promises, and limitations. We also examined the role of national agricultural research systems as key partners for sustainable cassava production.
Collapse
Affiliation(s)
| | | | | | | | - Ng Hwa Eng
- CGIAR Excellence in Breeding Platform, El Batan, Mexico
| | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Peter Kulakow
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Chiedozie Egesi
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- National Root Crops Research Institute, Umudike, Nigeria
- Department of Global Development, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Wagaba H, Kuria P, Wangari P, Aleu J, Obiero H, Beyene G, Alicai T, Bua A, Esuma W, Nuwamanya E, Gichuki S, Miano D, Raymond P, Kiggundu A, Taylor N, Zawedde BM, Taracha C, MacKenzie DJ. Comparative compositional analysis of cassava brown streak disease resistant 4046 cassava and its non-transgenic parental cultivar. GM CROPS & FOOD 2021; 12:158-169. [PMID: 33147421 PMCID: PMC7657582 DOI: 10.1080/21645698.2020.1836924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Compositional analysis is an important component of an integrated comparative approach to assessing the food and feed safety of new crops developed using biotechnology. As part of the safety assessment of cassava brown streak disease resistant 4046 cassava, a comprehensive assessment of proximates, minerals, amino acids, fatty acids, vitamins, anti-nutrients, and secondary metabolites was performed on leaf and storage root samples of 4046 cassava and its non-transgenic parental control, TME 204, collected from confined field trials in Kenya and Uganda over two successive cropping cycles. Among the 100 compositional components that were assessed in samples of 4046 and control TME 204 cassava roots (47 components) and leaves (53 components), there were no nutritionally relevant differences noted. Although there were statistically significant differences between the transgenic and control samples for some parameters, in most cases the magnitudes of these differences were small (<20%), and in every case where comparative literature data were available, the mean values for 4046 and control cassava samples were within the range of normal variation reported for the compositional component in question. Overall, no consistent patterns emerged to suggest that biologically meaningful adverse changes in the composition or nutritive value of the leaves or storage roots occurred as an unintended or unexpected consequence of the genetic modification resulting in 4046 cassava. The data presented here provide convincing evidence of the safety of 4046 cassava with respect to its biochemical composition for food and feed, and it could be considered as safe as its non-transgenic control.
Collapse
Affiliation(s)
- H Wagaba
- National Crops Resources Research Institute , Kampala, Uganda
| | - P Kuria
- Kenya Agricultural and Livestock Research Organization , Nairobi, Kenya
| | - P Wangari
- Kenya Agricultural and Livestock Research Organization , Nairobi, Kenya
| | - J Aleu
- National Crops Resources Research Institute , Kampala, Uganda
| | - H Obiero
- Institute for International Crop Improvement , Kakamega, Kenya
| | - G Beyene
- Donald Danforth Plant Science Center , St. Louis, MO, USA
| | - T Alicai
- National Crops Resources Research Institute , Kampala, Uganda
| | - A Bua
- National Crops Resources Research Institute , Kampala, Uganda
| | - W Esuma
- National Crops Resources Research Institute , Kampala, Uganda
| | - E Nuwamanya
- National Crops Resources Research Institute , Kampala, Uganda
| | - S Gichuki
- Kenya Agricultural and Livestock Research Organization , Nairobi, Kenya
| | - D Miano
- Department of Plant Science and Crop Protection, University of Nairobi , Nairobi, Kenya
| | - P Raymond
- AG SCI Consulting, LLC ., Cottageville, SC, USA
| | - A Kiggundu
- Donald Danforth Plant Science Center , St. Louis, MO, USA
| | - N Taylor
- Donald Danforth Plant Science Center , St. Louis, MO, USA
| | - B M Zawedde
- National Crops Resources Research Institute , Kampala, Uganda
| | - C Taracha
- Kenya Agricultural and Livestock Research Organization , Nairobi, Kenya
| | - D J MacKenzie
- Donald Danforth Plant Science Center , St. Louis, MO, USA
| |
Collapse
|
14
|
Ano CU, Ochwo-Ssemakula M, Ibanda A, Ozimati A, Gibson P, Onyeka J, Njoku D, Egesi C, S. Kawuki R. Cassava Brown Streak Disease Response and Association With Agronomic Traits in Elite Nigerian Cassava Cultivars. FRONTIERS IN PLANT SCIENCE 2021; 12:720532. [PMID: 34880882 PMCID: PMC8646096 DOI: 10.3389/fpls.2021.720532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/18/2021] [Indexed: 05/04/2023]
Abstract
Cassava mosaic geminiviruses (CMGs) and cassava brown streak viruses (CBSVs) cause the highest yield losses in cassava production in Africa. In particular, cassava brown streak disease (CBSD) is and continues to be a significant constraint to optimal cassava production in Eastern and Southern Africa. While CBSD has not been reported in West Africa, its recent rapid spread and damage to cassava productivity in Eastern, and Southern Africa is alarming. The aim of this study was to evaluate Nigerian cassava genotypes in order to determine their responses to CBSD, in the event that it invades Nigeria, the world's largest cassava producer. The study gathered information on whether useful CBSD resistance alleles are present in the elite Nigerian cassava accessions. A total of 1,980 full-sib cassava seedlings from 106 families were assessed in the field at the seedling stage for a year. A subset of 569 clones were selected and assessed for another year at the clonal stage in Namulonge, central Uganda, a known hotspot for CBSD screening. Results indicated that foliar and root incidences and severities varied significantly (p ≤ 0.01, p ≤ 0.001) except for CBSD foliar incidence at 6 months (CBSD6i ). Highest and lowest plot-based heritability estimates for CBSD were registered for CBSD root severity (CBSD rs ) (0.71) and CBSD6i (0.5). Positive and highly significant correlations were noted between CBSD root incidence (CBSD ri ) and CBSD rs (r = 0.90***). Significant positive correlations were also noted between CBSD foliar severity at 3 months (CBSD3s ) and CBSD foliar incidence at 6 months (CBSD6i ) (r = 0.77***), CBSD3s and CBSD rs (r = 0.35***). Fresh root weight (Fresh RW ) negatively correlated with CBSD ri and CBSD rs , respectively (r = -0.21*** and r = -0.22***). Similarly, CBSD3s correlated negatively with cassava mosaic disease severity at 3 (CMD3s ) and 6 months (CMD6s ), respectively (r = -0.25*** and r = -0.21***). Fifteen clones were selected using a non-weighted summation selection index for further screening. In conclusion, results revealed that the elite Nigerian accessions exhibited significant susceptibility to CBSD within 2 years of evaluation period. It is expected that this information will aid future breeding decisions for the improvement of CBSD resistance among the Nigerian cassava varieties.
Collapse
Affiliation(s)
- Chukwuka Ugochukwu Ano
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- National Root Crops Research Institute, Umudike, Nigeria
| | | | - Angele Ibanda
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- National Crops Resources Research Institute, Kampala, Uganda
| | - Alfred Ozimati
- National Crops Resources Research Institute, Kampala, Uganda
| | - Paul Gibson
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- Makerere University Regional Center for Crop Improvement, Kampala, Uganda
| | - Joseph Onyeka
- National Root Crops Research Institute, Umudike, Nigeria
| | - Damian Njoku
- National Root Crops Research Institute, Umudike, Nigeria
| | - Chiedozie Egesi
- National Root Crops Research Institute, Umudike, Nigeria
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- Cornell University Root Crops Research Institute, Ithaca, NY, United States
| | - Robert S. Kawuki
- National Crops Resources Research Institute, Kampala, Uganda
- *Correspondence: Robert S. Kawuki,
| |
Collapse
|
15
|
Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases. Sci Rep 2020; 10:22049. [PMID: 33328547 PMCID: PMC7744558 DOI: 10.1038/s41598-020-79149-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/26/2020] [Indexed: 11/18/2022] Open
Abstract
Projected climate changes are thought to promote emerging infectious diseases, though to date, evidence linking climate changes and such diseases in plants has not been available. Cassava is perhaps the most important crop in Africa for smallholder farmers. Since the late 1990’s there have been reports from East and Central Africa of pandemics of begomoviruses in cassava linked to high abundances of whitefly species within the Bemisia tabaci complex. We used CLIMEX, a process-oriented climatic niche model, to explore if this pandemic was linked to recent historical climatic changes. The climatic niche model was corroborated with independent observed field abundance of B. tabaci in Uganda over a 13-year time-series, and with the probability of occurrence of B. tabaci over 2 years across the African study area. Throughout a 39-year climate time-series spanning the period during which the pandemics emerged, the modelled climatic conditions for B. tabaci improved significantly in the areas where the pandemics had been reported and were constant or decreased elsewhere. This is the first reported case where observed historical climate changes have been attributed to the increase in abundance of an insect pest, contributing to a crop disease pandemic.
Collapse
|
16
|
Screening for Resistance in Farmer-Preferred Cassava Cultivars from Ghana to a Mixed Infection of CBSV and UCBSV. PLANTS 2020; 9:plants9081026. [PMID: 32823622 PMCID: PMC7465500 DOI: 10.3390/plants9081026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022]
Abstract
Cassava brown streak disease (CBSD) caused by the Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) is a threat to cassava production in Africa. The potential spread of CBSD into West Africa is a cause for concern, therefore screening for resistance in farmer-preferred genotypes is crucial for effective control and management. We multiplied a selection of eleven cassava cultivars grown by farmers in Ghana to test their response to a mixed infection of CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) isolates using a stringent top-cleft graft inoculation method. Virus titers were quantified in the inoculated scions and cuttings propagated from the inoculated scions to assess virus accumulation and recovery. All cultivars were susceptible to the mixed infection although their response and symptom development varied. In the propagated infected scions, CBSV accumulated at higher titers in leaves of eight of the eleven cultivars. Visual scoring of storage roots from six-month-old virus-inoculated plants revealed the absence of CBSD-associated necrosis symptoms and detectable titers of CBSVs in the cultivar, IFAD. Although all eleven cultivars supported the replication of CBSV and UCBSV in their leaves, the absence of virus replication and CBSD-associated symptoms in the roots of some cultivars could be used as criteria to rapidly advance durable CBSD tolerance using breeding and genetic engineering approaches.
Collapse
|
17
|
Genetic analysis and QTL mapping for multiple biotic stress resistance in cassava. PLoS One 2020; 15:e0236674. [PMID: 32756600 PMCID: PMC7406056 DOI: 10.1371/journal.pone.0236674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/09/2020] [Indexed: 11/19/2022] Open
Abstract
In Sub-Saharan Africa cassava (Manihot esculenta Crantz) is one of the most important food crops where more than 40% of the population relies on it as their staple carbohydrate source. Biotic constraints such as viral diseases, mainly Cassava Mosaic Disease (CMD) and Cassava Brown Streak Disease (CBSD), and arthropod pests, particularly Cassava Green Mite (CGM), are major constraints to the realization of cassava’s full production potential in Africa. To address these problems, we aimed to map the quantitative trait loci (QTL) associated with resistance to CBSD foliar and root necrosis symptoms, foliar CMD and CGM symptoms in a full-sib mapping population derived from the genotypes AR40-6 and Albert. A high-density linkage map was constructed with 2,125 SNP markers using a genotyping-by-sequencing approach. For phenotyping, clonal evaluation trials were conducted with 120 F1 individuals for two consecutive field seasons using an alpha-lattice design at Chambezi and Naliendele, Tanzania. Previously identified QTL for resistance to CBSD foliar symptoms were corroborated, and a new putative QTL for CBSD root necrosis identified (qCBSDRNc14AR) from AR40-6. Two QTL were identified within the region of the previously recognized CMD2 locus from this population in which both parents are thought to possess the CMD2 locus. Interestingly, a minor but consistent QTL, qCGM18AR, for CGM resistance at 3 months after planting stage was also detected and co-localized with a previously identified SSR marker, NS346, linked with CGM resistance. Markers underlying these QTL may be used to increase efficiencies in cassava breeding programs.
Collapse
|
18
|
Ferris AC, Stutt ROJH, Godding D, Gilligan CA. Computational models to improve surveillance for cassava brown streak disease and minimize yield loss. PLoS Comput Biol 2020; 16:e1007823. [PMID: 32614829 PMCID: PMC7331984 DOI: 10.1371/journal.pcbi.1007823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/24/2020] [Indexed: 11/19/2022] Open
Abstract
Cassava brown streak disease (CBSD) is a rapidly spreading viral disease that affects a major food security crop in sub-Saharan Africa. Currently, there are several proposed management interventions to minimize loss in infected fields. Field-scale data comparing the effectiveness of these interventions individually and in combination are limited and expensive to collect. Using a stochastic epidemiological model for the spread and management of CBSD in individual fields, we simulate the effectiveness of a range of management interventions. Specifically we compare the removal of diseased plants by roguing, preferential selection of planting material, deployment of virus-free ‘clean seed’ and pesticide on crop yield and disease status of individual fields with varying levels of whitefly density crops under low and high disease pressure. We examine management interventions for sustainable production of planting material in clean seed systems and how to improve survey protocols to identify the presence of CBSD in a field or quantify the within-field prevalence of CBSD. We also propose guidelines for practical, actionable recommendations for the deployment of management strategies in regions of sub-Saharan Africa under different disease and whitefly pressure. Cassava is the second largest source of calories in sub-Saharan Africa and is particularly important for the poorest farmers in the region. Cassava brown streak disease is a viral disease that causes cassava tubers to rot, rendering the roots inedible. Recently, the disease has begun to spread towards major cassava growing regions in West Africa from East Africa, where it continues to cause significant yield losses. Improved approaches for disease control are needed to enable small-holder farmers to prepare for and minimize the impact of the disease when their fields become infected. Using a combination of computational methods and mathematical models enables us to screen a much larger range of potential treatments for their likely effectiveness in managing disease and reducing crop loss than would be possible in conventional field trials, which are expensive and logistically difficult to conduct. Our results indicate that regularly planting part of the field with virus-free cassava greatly improves the yield. Removing visibly infected plants and replanting using visibly uninfected plants also improves yield, even when some of these plants may be infected but not yet showing symptoms. We also show how the survey protocol can be optimized to improve estimates of disease severity leading to more effective tailored advice to farmers in regions with different disease pressures.
Collapse
Affiliation(s)
- Alex C. Ferris
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| | | | - David Godding
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Farming Data, Cambridge, United Kingdom
| | | |
Collapse
|
19
|
Abstract
Manihot esculenta Crantz (cassava) is a food crop originating from South America grown primarily for its starchy storage roots. Today, cassava is grown in the tropics of South America, Africa, and Asia with an estimated 800 million people relying on it as a staple source of calories. In parts of sub-Saharan Africa, cassava is particularly crucial for food security. Cassava root starch also has use in the pharmaceutical, textile, paper, and biofuel industries. Cassava has seen strong demand since 2000 and production has increased consistently year-over-year, but potential yields are hampered by susceptibility to biotic and abiotic stresses. In particular, bacterial and viral diseases can cause severe yield losses. Of note are cassava bacterial blight (CBB), cassava mosaic disease (CMD), and cassava brown streak disease (CBSD), all of which can cause catastrophic losses for growers. In this article, we provide an overview of the major microbial diseases of cassava, discuss current and potential future efforts to engineer new sources of resistance, and conclude with a discussion of the regulatory hurdles that face biotechnology.
Collapse
Affiliation(s)
- Z J Daniel Lin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Rebecca Bart
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| |
Collapse
|
20
|
Ally HM, Hamss HE, Simiand C, Maruthi MN, Colvin J, Omongo CA, Delatte H. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades? Sci Rep 2019; 9:14796. [PMID: 31615997 PMCID: PMC6794263 DOI: 10.1038/s41598-019-50259-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/19/2019] [Indexed: 12/04/2022] Open
Abstract
High populations of African cassava whitefly (Bemisia tabaci) have been associated with epidemics of two viral diseases in Eastern Africa. We investigated population dynamics and genetic patterns by comparing whiteflies collected on cassava in 1997, during the first whitefly upsurges in Uganda, with collections made in 2017 from the same locations. Nuclear markers and mtCOI barcoding sequences were used on 662 samples. The composition of the SSA1 population changed significantly over the 20-year period with the SSA1-SG2 percentage increasing from 0.9 to 48.6%. SSA1-SG1 and SSA1-SG2 clearly interbreed, confirming that they are a single biological species called SSA1. The whitefly species composition changed: in 1997, SSA1, SSA2 and B. afer were present; in 2017, no SSA2 was found. These data and those of other publications do not support the 'invader' hypothesis. Our evidence shows that no new species or new population were found in 20 years, instead, the distribution of already present genetic clusters composing SSA1 species have changed over time and that this may be in response to several factors including the introduction of new cassava varieties or climate changes. The practical implications are that cassava genotypes possessing both whitefly and disease resistances are needed urgently.
Collapse
Affiliation(s)
- Hadija M Ally
- Université de La Réunion, 97715, 15 Avenue René Cassin, Sainte-Clotilde, La Reunion, France
- CIRAD, UMR PVBMT, 7 Chemin de l'Irat, Ligne Paradis, 97410, Saint Pierre, La Reunion, France
- Tanzania Agricultural Research Institute-Ukiriguru, P.O. Box, 1433, Mwanza, Tanzania
| | - Hajar El Hamss
- Natural Resources Institute (NRI), University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Christophe Simiand
- CIRAD, UMR PVBMT, 7 Chemin de l'Irat, Ligne Paradis, 97410, Saint Pierre, La Reunion, France
| | - M N Maruthi
- Natural Resources Institute (NRI), University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - John Colvin
- Natural Resources Institute (NRI), University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Christopher A Omongo
- Root Crops Programme, National Crops Resource Research Institute (RCP-NaCRRI), P.O. Box, 7084, Kampala, Uganda
| | - Helene Delatte
- CIRAD, UMR PVBMT, 7 Chemin de l'Irat, Ligne Paradis, 97410, Saint Pierre, La Reunion, France.
| |
Collapse
|
21
|
Bastet A, Zafirov D, Giovinazzo N, Guyon‐Debast A, Nogué F, Robaglia C, Gallois J. Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1736-1750. [PMID: 30784179 PMCID: PMC6686125 DOI: 10.1111/pbi.13096] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 05/08/2023]
Abstract
In many crop species, natural variation in eIF4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF4E alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF4E virus-resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (ClYVV). Results show that most mutations were sufficient to prevent ClYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss-of-function eIFiso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR-nCas9-cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single-point mutation through C-to-G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome-editing technologies offers a feasible solution for engineering transgene-free genetic resistance in plants, even across species barriers.
Collapse
Affiliation(s)
- Anna Bastet
- GAFLINRAMontfavetFrance
- Laboratoire de Génétique et Biophysique des PlantesCEACNRSBIAMAix Marseille UniversityMarseilleFrance
| | - Delyan Zafirov
- GAFLINRAMontfavetFrance
- Laboratoire de Génétique et Biophysique des PlantesCEACNRSBIAMAix Marseille UniversityMarseilleFrance
| | | | - Anouchka Guyon‐Debast
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Fabien Nogué
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des PlantesCEACNRSBIAMAix Marseille UniversityMarseilleFrance
| | | |
Collapse
|
22
|
Pixley KV, Falck-Zepeda JB, Giller KE, Glenna LL, Gould F, Mallory-Smith CA, Stelly DM, Stewart CN. Genome Editing, Gene Drives, and Synthetic Biology: Will They Contribute to Disease-Resistant Crops, and Who Will Benefit? ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:165-188. [PMID: 31150590 DOI: 10.1146/annurev-phyto-080417-045954] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetically engineered crops have been grown for more than 20 years, resulting in widespread albeit variable benefits for farmers and consumers. We review current, likely, and potential genetic engineering (GE) applications for the development of disease-resistant crop cultivars. Gene editing, gene drives, and synthetic biology offer novel opportunities to control viral, bacterial, and fungal pathogens, parasitic weeds, and insect vectors of plant pathogens. We conclude that there will be no shortage of GE applications totackle disease resistance and other farmer and consumer priorities for agricultural crops. Beyond reviewing scientific prospects for genetically engineered crops, we address the social institutional forces that are commonly overlooked by biological scientists. Intellectual property regimes, technology regulatory frameworks, the balance of funding between public- and private-sector research, and advocacy by concerned civil society groups interact to define who uses which GE technologies, on which crops, and for the benefit of whom. Ensuring equitable access to the benefits of genetically engineered crops requires affirmative policies, targeted investments, and excellent science.
Collapse
Affiliation(s)
- Kevin V Pixley
- International Maize and Wheat Improvement Center (CIMMYT), 56237 Texcoco, Mexico;
| | - Jose B Falck-Zepeda
- International Food Policy Research Institute (IFPRI), Washington, DC 20005-3915, USA
| | - Ken E Giller
- Plant Production Systems Group, Wageningen University & Research (WUR), 6700 AK Wageningen, The Netherlands
| | - Leland L Glenna
- Department of Agricultural Economics, Sociology, and Education, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Fred Gould
- Genetic Engineering and Society Center and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Carol A Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | - C Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
23
|
Utilization of infectious clones to visualize Cassava brown streak virus replication in planta and gain insights into symptom development. Virus Genes 2019; 55:825-833. [PMID: 31388891 PMCID: PMC6831539 DOI: 10.1007/s11262-019-01697-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
Cassava brown streak disease (CBSD) is a leading cause of cassava yield losses across eastern and central Africa and is having a severe impact on food security across the region. Despite its importance, relatively little is known about the mechanisms behind CBSD viral infections. We have recently reported the construction of Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) infectious clones (IC), which can be used to gain insights into the functions of viral proteins and sequences associated with symptom development. In this study, we perform the first reporter gene tagging of a CBSV IC, with the insertion of green fluorescent protein (GFP) sequence at two different genome positions. Nicotiana benthamiana infections with the CBSV_GFP ICs revealed active CBSV replication in inoculated leaves at 2-5 days post inoculation (dpi) and systemic leaves at 10-14 dpi. We also constructed the chimera CBSV_UCP IC, consisting of the CBSV genome with a UCBSV coat protein (CP) sequence replacement. N. benthamiana infections with CBSV_UCP revealed that the CBSV CP may be associated with high levels of viral accumulation and necrosis development during early infection. These initial manipulations pave the way for U/CBSV ICs to be used to understand U/CBSV biology that will inform vital CBSD control strategies.
Collapse
|
24
|
Yu XY, Yao Y, Hong YH, Hou PY, Li CX, Xia ZQ, Geng MT, Chen YH. Differential expression of the Hsf family in cassava under biotic and abiotic stresses. Genome 2019; 62:563-569. [PMID: 31158327 DOI: 10.1139/gen-2018-0163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heat shock transcription factors (Hsfs) are important regulators of biotic and abiotic stress responses in plants. Currently, the Hsf gene family is not well understood in cassava, an important tropical crop. In the present study, 32 MeHsf genes were identified from the cassava genome database, which were divided into three types based on functional domain and motif distribution analyses. Analysis of the differential expression of the genes belonging to the Hsf family in cassava was carried out based on published cassava transcriptome data from tissues/organs (leaf blade, leaf midvein, lateral buds, organized embryogenic structures, friable embryogenic callus, fibrous roots, storage roots, stem, petiole, shoot apical meristem, and root apical meristem) under abiotic stress (cold, drought) or biotic stress (mealybugs. cassava brown streak disease, cassava bacterial blight). The results show the expression diversity of cassava Hsfs genes in various tissues/organs. The transcript levels of MeHsfB3a, MeHsfA6a, MeHsfA2a, and MeHsfA9b were upregulated by abiotic and biotic stresses, such as cold, drought, cassava bacterial blight, cassava brown streak disease, and mealybugs, indicating their potential roles in mediating the response of cassava plants to environment stresses. Further interaction network and co-expression analyses suggests that Hsf genes may interact with Hsp70 family members to resist environmental stresses in cassava. These results provide valuable information for future studies of the functional characterization of the MeHsf gene family.
Collapse
Affiliation(s)
- Xin-Yi Yu
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yuan Yao
- b Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yu-Hui Hong
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Peng-Yu Hou
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Chun-Xia Li
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhi-Qiang Xia
- b Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Meng-Ting Geng
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yin-Hua Chen
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
25
|
Scussel S, Candresse T, Marais A, Claverie S, Hoareau M, Azali HA, Verdin E, Tepfer M, Filloux D, Fernandez E, Roumagnac P, Robène I, Lefeuvre P, Jourda C, Roux-Cuvelier M, Lett JM. High-throughput sequencing of complete genomes of ipomoviruses associated with an epidemic of cassava brown streak disease in the Comoros Archipelago. Arch Virol 2019; 164:2193-2196. [PMID: 31123961 DOI: 10.1007/s00705-019-04228-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
Abstract
Using high-throughput sequencing of small interfering RNAs (siRNAs), virion-associated nucleic acid (VANA), and double stranded RNAs (dsRNAs), we have determined the complete genome sequences of Comorian isolates of two ipomoviruses, cassava brown streak virus (CBSV) and a divergent isolate of Ugandan cassava brown streak virus (UCBSV-KM) representing a new strain of this virus. While the large ORF of CBSV shares the highest nucleotide sequence identity (95.9%) with a Tanzanian isolate of CBSV, the large UCBSV-KM ORF shares the highest nucleotide sequence identity (77.5%) with a Malawian isolate of UCBSV. This low value is near the species demarcation threshold for the family Potyviridae (<76%). Phylogenetic analysis confirms that UCBSV-KM represents a new lineage that is genetically distinct from the currently described UCBSV strains.
Collapse
Affiliation(s)
- Sarah Scussel
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, 97410, Saint-Pierre, Ile de La Réunion, France
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Armelle Marais
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Sohini Claverie
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, 97410, Saint-Pierre, Ile de La Réunion, France
- Université de La Réunion, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, 97410, Saint-Pierre, Ile de La Réunion, France
| | - Murielle Hoareau
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, 97410, Saint-Pierre, Ile de La Réunion, France
| | | | - Eric Verdin
- INRA, UR407 Unité de Pathologie Végétale, CS 60094, 84140, Montfavet, France
| | - Mark Tepfer
- INRA, UR407 Unité de Pathologie Végétale, CS 60094, 84140, Montfavet, France
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, 78026, Versailles, France
| | - Denis Filloux
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398, Montpellier Cedex-5, France
| | - Emmanuel Fernandez
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398, Montpellier Cedex-5, France
| | - Philippe Roumagnac
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398, Montpellier Cedex-5, France
| | - Isabelle Robène
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, 97410, Saint-Pierre, Ile de La Réunion, France
| | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, 97410, Saint-Pierre, Ile de La Réunion, France
| | - Cyril Jourda
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, 97410, Saint-Pierre, Ile de La Réunion, France
| | - Michel Roux-Cuvelier
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, 97410, Saint-Pierre, Ile de La Réunion, France
| | - Jean-Michel Lett
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 Chemin de l'IRAT, 97410, Saint-Pierre, Ile de La Réunion, France.
| |
Collapse
|
26
|
Sheat S, Fuerholzner B, Stein B, Winter S. Resistance Against Cassava Brown Streak Viruses From Africa in Cassava Germplasm From South America. FRONTIERS IN PLANT SCIENCE 2019; 10:567. [PMID: 31134114 PMCID: PMC6523400 DOI: 10.3389/fpls.2019.00567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/15/2019] [Indexed: 05/13/2023]
Abstract
Cassava brown streak disease (CBSD) is a severe virus disease of cassava and prevalent in the eastern regions of Africa. The disease is characterized by distinct vein chlorosis and streak symptoms on leaves and stems and necrosis of storage roots. This necrosis can encompass large areas of the root, rendering it inedible so that the entire cassava harvest can be lost. African cassava varieties are susceptible to either of the two viruses causing the disease, cassava brown streak virus (CBSV) and Uganda cassava brown streak virus, and while there are less sensitive varieties, all cassava eventually succumb to the disease. The lack of CBSD resistance in African cassava varieties prompted this search for new sources of virus resistance in the diversity of South American cassava germplasm held in the collection at International Center for Tropical Agriculture, Columbia. Our search for CBSD resistance in South American cassava germplasm accessions revealed that most of the 238 South American cassava lines infected with CBSV established systemic virus infections with moderate to severe disease symptoms on leaves and stems. Fifteen cassava accessions did not become virus infected, remained free of symptoms, and CBSV was undetected by qRT-PCR. When tuberous roots of those lines were examined, necrotic tissue was found in eight lines and CBSV was detected. The remaining seven cassava accessions remained clear of symptoms on all tissues and organs and were virus free. A broad spectrum of virus resistance also including other virus isolates was confirmed for the breeding lines DSC167 and DSC118. While detailed infection experiments with other cassava lines selected for resistance are still ongoing, this indicates that the resistance identified may also hold against a broader diversity of CBSVs. Taken together, we present the results of a comprehensive study on CBSV resistance and susceptibility in cassava germplasm accessions from South America. The virus resistance in cassava germplasm identified provides compelling evidence for the invaluable contribution of germplasm collections to supply the genetic resources for the improvement of our crops.
Collapse
Affiliation(s)
| | | | | | - Stephan Winter
- Plant Virus Department, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
27
|
Duff-Farrier CRA, Mbanzibwa DR, Nanyiti S, Bunawan H, Pablo-Rodriguez JL, Tomlinson KR, James AM, Alicai T, Seal SE, Bailey AM, Foster GD. Strategies for the Construction of Cassava Brown Streak Disease Viral Infectious Clones. Mol Biotechnol 2019; 61:93-101. [PMID: 30484144 PMCID: PMC6513833 DOI: 10.1007/s12033-018-0139-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cassava brown streak disease (CBSD) has major impacts on yield and quality of the tuberous roots of cassava in Eastern and Central Arica. At least two Potyviridae species cause the disease: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Cloned viral genome sequences known as infectious clones (ICs) have been important in the study of other viruses, both as a means of standardising infectious material and characterising viral gene function. IC construction is often technically challenging for Potyviridae due to sequence instability in E. coli. Here, we evaluate three methods for the construction of infectious clones for CBSD. Whilst a simple IC for in vitro transcription was made for UCBSV isolate 'Kikombe', such an approach failed to deliver full-length clones for CBSV isolates 'Nampula' or 'Tanza', necessitating more complex approaches for their construction. The ICs successfully generated symptomatic infection in the model host N. benthamiana and in the natural host cassava. This shows that whilst generating ICs for CBSV is still a technical challenge, a structured approach, evaluating both in vitro and in planta transcription systems should successfully deliver ICs, allowing further study into the symptomology and virulence factors in this important disease complex.
Collapse
Affiliation(s)
- C R A Duff-Farrier
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - D R Mbanzibwa
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
- Mikocheni Agricultural Research Institute (MARI), P.O. Box 6226, Dar es Salaam, Tanzania
| | - S Nanyiti
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - H Bunawan
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia
| | - J L Pablo-Rodriguez
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
- Department of Genetical Engineering, Centre for Research and Advanced Studies (CINVESTAV), Campus Irapuato, Km 9.6 libramiento Norte, Carretera Irapuato-León, Irapuato, 36824, Guanajuato, Mexico
| | - K R Tomlinson
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - A M James
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - T Alicai
- National Crops Resources Research Institute (NaCRRI), P.O. Box 7084, Kampala, Uganda
| | - S E Seal
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Chatham, Kent, ME4 4TB, UK
| | - A M Bailey
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - G D Foster
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK.
| |
Collapse
|
28
|
Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington JC, Staskawicz BJ, Bart RS. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:421-434. [PMID: 30019807 PMCID: PMC6335076 DOI: 10.1111/pbi.12987] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/27/2018] [Indexed: 05/02/2023]
Abstract
Cassava brown streak disease (CBSD) is a major constraint on cassava yields in East and Central Africa and threatens production in West Africa. CBSD is caused by two species of positive-sense RNA viruses belonging to the family Potyviridae, genus Ipomovirus: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Diseases caused by the family Potyviridae require the interaction of viral genome-linked protein (VPg) and host eukaryotic translation initiation factor 4E (eIF4E) isoforms. Cassava encodes five eIF4E proteins: eIF4E, eIF(iso)4E-1, eIF(iso)4E-2, novel cap-binding protein-1 (nCBP-1), and nCBP-2. Protein-protein interaction experiments consistently found that VPg proteins associate with cassava nCBPs. CRISPR/Cas9-mediated genome editing was employed to generate ncbp-1, ncbp-2, and ncbp-1/ncbp-2 mutants in cassava cultivar 60444. Challenge with CBSV showed that ncbp-1/ncbp-2 mutants displayed delayed and attenuated CBSD aerial symptoms, as well as reduced severity and incidence of storage root necrosis. Suppressed disease symptoms were correlated with reduced virus titre in storage roots relative to wild-type controls. Our results demonstrate the ability to modify multiple genes simultaneously in cassava to achieve tolerance to CBSD. Future studies will investigate the contribution of remaining eIF4E isoforms on CBSD and translate this knowledge into an optimized strategy for protecting cassava from disease.
Collapse
Affiliation(s)
- Michael A. Gomez
- Department of Plant and Microbial Biology and Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | | | | | | | - Luke Hayden
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | - Getu Beyene
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Brian J. Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | | |
Collapse
|
29
|
Ozimati A, Kawuki R, Esuma W, Kayondo IS, Wolfe M, Lozano R, Rabbi I, Kulakow P, Jannink JL. Training Population Optimization for Prediction of Cassava Brown Streak Disease Resistance in West African Clones. G3 (BETHESDA, MD.) 2018; 8:3903-3913. [PMID: 30373913 PMCID: PMC6288821 DOI: 10.1534/g3.118.200710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
Abstract
Cassava production in the central, southern and eastern parts of Africa is under threat by cassava brown streak virus (CBSV). Yield losses of up to 100% occur in cases of severe infections of edible roots. Easy illegal movement of planting materials across African countries, and long-range movement of the virus vector (Bemisia tabaci) may facilitate spread of CBSV to West Africa. Thus, effort to pre-emptively breed for CBSD resistance in W. Africa is critical. Genomic selection (GS) has become the main approach for cassava breeding, as costs of genotyping per sample have declined. Using phenotypic and genotypic data (genotyping-by-sequencing), followed by imputation to whole genome sequence (WGS) for 922 clones from National Crops Resources Research Institute, Namulonge, Uganda as a training population (TP), we predicted CBSD symptoms for 35 genotyped W. African clones, evaluated in Uganda. The highest prediction accuracy (r = 0.44) was observed for cassava brown streak disease severity scored at three months (CBSD3s) in the W. African clones using WGS-imputed markers. Optimized TPs gave higher prediction accuracies for CBSD3s and CBSD6s than random TPs of the same size. Inclusion of CBSD QTL chromosome markers as kernels, increased prediction accuracies for CBSD3s and CBSD6s. Similarly, WGS imputation of markers increased prediction accuracies for CBSD3s and for cassava brown streak disease root severity (CBSDRs), but not for CBSD6s. Based on these results we recommend TP optimization, inclusion of CBSD QTL markers in genomic prediction models, and the use of high-density (WGS-imputed) markers for CBSD predictions across population.
Collapse
Affiliation(s)
- Alfred Ozimati
- National Crops Resources Research Institute (NaCRRI), P.O. Box, 7084 Kampala, Uganda
- School of Integrative Plant Science, Plant breeding and Genetics Section, Cornell University, Ithaca, New York
| | - Robert Kawuki
- National Crops Resources Research Institute (NaCRRI), P.O. Box, 7084 Kampala, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute (NaCRRI), P.O. Box, 7084 Kampala, Uganda
| | - Ismail Siraj Kayondo
- National Crops Resources Research Institute (NaCRRI), P.O. Box, 7084 Kampala, Uganda
| | - Marnin Wolfe
- School of Integrative Plant Science, Plant breeding and Genetics Section, Cornell University, Ithaca, New York
| | - Roberto Lozano
- School of Integrative Plant Science, Plant breeding and Genetics Section, Cornell University, Ithaca, New York
| | - Ismail Rabbi
- International Institute for Tropical Agriculture (IITA), Ibadan, Oyo, Nigeria
| | - Peter Kulakow
- International Institute for Tropical Agriculture (IITA), Ibadan, Oyo, Nigeria
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Plant breeding and Genetics Section, Cornell University, Ithaca, New York
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R.W. Holley Center for Agriculture and Health, Ithaca 14853, NY
| |
Collapse
|
30
|
Wosula EN, Chen W, Fei Z, Legg JP. Unravelling the Genetic Diversity among Cassava Bemisia tabaci Whiteflies Using NextRAD Sequencing. Genome Biol Evol 2018; 9:2958-2973. [PMID: 29096025 PMCID: PMC5714214 DOI: 10.1093/gbe/evx219] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/27/2022] Open
Abstract
Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa.
Collapse
Affiliation(s)
- Everlyne N Wosula
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Wenbo Chen
- Boyce Thompson Institute, Ithaca, New York
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York.,USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York
| | - James P Legg
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| |
Collapse
|
31
|
Delaquis E, Andersen KF, Minato N, Cu TTL, Karssenberg ME, Sok S, Wyckhuys KAG, Newby JC, Burra DD, Srean P, Phirun I, Le ND, Pham NT, Garrett KA, Almekinders CJM, Struik PC, de Haan S. Raising the Stakes: Cassava Seed Networks at Multiple Scales in Cambodia and Vietnam. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00073] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Macfadyen S, Paull C, Boykin L, De Barro P, Maruthi M, Otim M, Kalyebi A, Vassão D, Sseruwagi P, Tay W, Delatte H, Seguni Z, Colvin J, Omongo C. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: a review of the factors determining abundance. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:565-582. [PMID: 29433589 PMCID: PMC7672366 DOI: 10.1017/s0007485318000032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes widespread damage to cassava, a staple food crop for millions of households in East Africa. Species in the complex cause direct feeding damage to cassava and are the vectors of multiple plant viruses. Whilst significant work has gone into developing virus-resistant cassava cultivars, there has been little research effort aimed at understanding the ecology of these insect vectors. Here we assess critically the knowledge base relating to factors that may lead to high population densities of sub-Saharan African (SSA) B. tabaci species in cassava production landscapes of East Africa. We focus first on empirical studies that have examined biotic or abiotic factors that may lead to high populations. We then identify knowledge gaps that need to be filled to deliver sustainable management solutions. We found that whilst many hypotheses have been put forward to explain the increases in abundance witnessed since the early 1990s, there are little published data and these tend to have been collected in a piecemeal manner. The most critical knowledge gaps identified were: (i) understanding how cassava cultivars and alternative host plants impact population dynamics and natural enemies; (ii) the impact of natural enemies in terms of reducing the frequency of outbreaks and (iii) the use and management of insecticides to delay the development of resistance. In addition, there are several fundamental methodologies that need to be developed and deployed in East Africa to address some of the more challenging knowledge gaps.
Collapse
Affiliation(s)
- S. Macfadyen
- CSIRO, Clunies Ross St. Acton, ACT, 2601, Australia
- Author for correspondence Phone: +61 (02) 62464432 Fax: +61 (02) 62464094
| | - C. Paull
- CSIRO, Boggo Rd. Dutton Park, QLD, 4001, Australia
| | - L.M. Boykin
- University of Western Australia, School of Molecular Sciences, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - P. De Barro
- CSIRO, Boggo Rd. Dutton Park, QLD, 4001, Australia
| | - M.N. Maruthi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - M. Otim
- National Crops Resources Research Institute, Kampala, Uganda
| | - A. Kalyebi
- National Crops Resources Research Institute, Kampala, Uganda
- Mikocheni Agricultural Research Institute, P.O. Box 6226 Dar es Salaam, Tanzania
| | - D.G. Vassão
- Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8 D-07745 Jena, Germany
| | - P. Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226 Dar es Salaam, Tanzania
| | - W.T. Tay
- CSIRO, Boggo Rd. Dutton Park, QLD, 4001, Australia
| | - H. Delatte
- CIRAD, UMR PVBMT, Saint Pierre, La Réunion 97410-F, France
| | - Z. Seguni
- Mikocheni Agricultural Research Institute, P.O. Box 6226 Dar es Salaam, Tanzania
| | - J. Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - C.A. Omongo
- National Crops Resources Research Institute, Kampala, Uganda
| |
Collapse
|
33
|
Jacobson AL, Duffy S, Sseruwagi P. Whitefly-transmitted viruses threatening cassava production in Africa. Curr Opin Virol 2018; 33:167-176. [PMID: 30243102 DOI: 10.1016/j.coviro.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Emerging plant viruses are one of the greatest problems facing crop production worldwide, and have severe consequences in the developing world where subsistence farming is a major source of food production, and knowledge and resources for management are limited. In Africa, evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs) (Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in severe pandemics that continue to spread and threaten cassava production. Identification of genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont profiles that influence vector phenotypes suggest that complex local and regional vector-virus-plant-environment interactions may be driving the evolution and epidemiology of these viruses.
Collapse
Affiliation(s)
- Alana Lynn Jacobson
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| |
Collapse
|
34
|
Munganyinka E, Margaria P, Sheat S, Ateka EM, Tairo F, Ndunguru J, Winter S. Localization of cassava brown streak virus in Nicotiana rustica and cassava Manihot esculenta (Crantz) using RNAscope® in situ hybridization. Virol J 2018; 15:128. [PMID: 30107851 PMCID: PMC6092782 DOI: 10.1186/s12985-018-1038-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/02/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cassava brown streak disease (CBSD) has a viral aetiology and is caused by viruses belonging to the genus Ipomovirus (family Potyviridae), Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Molecular and serological methods are available for detection, discrimination and quantification of cassava brown streak viruses (CBSVs) in infected plants. However, precise determination of the viral RNA localization in infected host tissues is still not possible pending appropriate methods. RESULTS We have developed an in situ hybridization (ISH) assay based on RNAscope® technology that allows the sensitive detection and localization of CBSV RNA in plant tissues. The method was initially developed in the experimental host Nicotiana rustica and was then further adapted to cassava. Highly sensitive and specific detection of CBSV RNA was achieved without background and hybridization signals in sections prepared from non-infected tissues. The tissue tropism of CBSV RNAs appeared different between N. rustica and cassava. CONCLUSIONS This study provides a robust method for CBSV detection in the experimental host and in cassava. The protocol will be used to study CBSV tropism in various cassava genotypes, as well as CBSVs/cassava interactions in single and mixed infections.
Collapse
Affiliation(s)
- Esperance Munganyinka
- Rwanda Agriculture Board, P.O. Box 5016, Kigali, Rwanda
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Paolo Margaria
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Samar Sheat
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Elijah M. Ateka
- Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Plant Virus Department, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
35
|
Chauhan RD, Beyene G, Taylor NJ. Multiple morphogenic culture systems cause loss of resistance to cassava mosaic disease. BMC PLANT BIOLOGY 2018; 18:132. [PMID: 29940871 PMCID: PMC6020238 DOI: 10.1186/s12870-018-1354-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/17/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Morphogenic culture systems are central to crop improvement programs that utilize transgenic and genome editing technologies. We previously reported that CMD2-type cassava (Manihot esculenta) cultivars lose resistance to cassava mosaic disease (CMD) when passed through somatic embryogenesis. As a result, these plants cannot be developed as products for deployment where CMD is endemic such as sub-Saharan Africa or the Indian sub-continent. RESULT In order to increase understanding of this phenomenon, 21 African cassava cultivars were screened for resistance to CMD after regeneration through somatic embryogenesis. Fifteen cultivars were shown to retain resistance to CMD through somatic embryogenesis, confirming that the existing transformation and gene editing systems can be employed in these genetic backgrounds without compromising resistance to geminivirus infection. CMD2-type cultivars were also subjected to plant regeneration via caulogenesis and meristem tip culture, resulting in 25-36% and 5-10% of regenerated plant lines losing resistance to CMD respectively. CONCLUSIONS This study provides clear evidence that multiple morphogenic systems can result in loss of resistance to CMD, and that somatic embryogenesis per se is not the underlying cause of this phenomenon. The information described here is critical for interpreting genomic, transcriptomic and epigenomic datasets aimed at understanding CMD resistance mechanisms in cassava.
Collapse
Affiliation(s)
| | - Getu Beyene
- Donald Danforth Plant Science Center, St. Louis, MO USA
| | | |
Collapse
|
36
|
Shan H, Pasin F, Tzanetakis IE, Simón‐Mateo C, García JA, Rodamilans B. Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host. MOLECULAR PLANT PATHOLOGY 2018; 19:1504-1510. [PMID: 29115017 PMCID: PMC6638051 DOI: 10.1111/mpp.12640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/25/2017] [Accepted: 11/03/2017] [Indexed: 05/08/2023]
Abstract
The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids.
Collapse
Affiliation(s)
- Hongying Shan
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de Madrid, Darwin 3Madrid 28049Spain
| | - Fabio Pasin
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de Madrid, Darwin 3Madrid 28049Spain
- Present address:
Agricultural Biotechnology Research CenterAcademia Sinica11529 TaipeiTaiwan
| | - Ioannis E. Tzanetakis
- Department of Plant Pathology, Division of AgricultureUniversity of Arkansas SystemFayettevilleAR 72701USA
| | - Carmen Simón‐Mateo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de Madrid, Darwin 3Madrid 28049Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de Madrid, Darwin 3Madrid 28049Spain
| | - Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de Madrid, Darwin 3Madrid 28049Spain
| |
Collapse
|
37
|
Tomlinson KR, Bailey AM, Alicai T, Seal S, Foster GD. Cassava brown streak disease: historical timeline, current knowledge and future prospects. MOLECULAR PLANT PATHOLOGY 2018; 19:1282-1294. [PMID: 28887856 PMCID: PMC5947582 DOI: 10.1111/mpp.12613] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 05/09/2023]
Abstract
Cassava is the second most important staple food crop in terms of per capita calories consumed in Africa and holds potential for climate change adaptation. Unfortunately, productivity in East and Central Africa is severely constrained by two viral diseases: cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). CBSD was first reported in 1936 from northeast Tanzania. For approximately 70 years, CBSD was restricted to coastal East Africa and so had a relatively low impact on food security compared with CMD. However, at the turn of the 21st century, CBSD re-emerged further inland, in areas around Lake Victoria, and it has since spread through many East and Central African countries, causing high yield losses and jeopardizing the food security of subsistence farmers. This recent re-emergence has attracted intense scientific interest, with studies shedding light on CBSD viral epidemiology, sequence diversity, host interactions and potential sources of resistance within the cassava genome. This review reflects on 80 years of CBSD research history (1936-2016) with a timeline of key events. We provide insights into current CBSD knowledge, management efforts and future prospects for improved understanding needed to underpin effective control and mitigation of impacts on food security.
Collapse
Affiliation(s)
| | - Andy M. Bailey
- School of Biological SciencesUniversity of BristolBristolBS8 1TQUK
| | - Titus Alicai
- National Crops Resources Research InstituteKampala 7084Uganda
| | - Sue Seal
- Natural Resources InstituteUniversity of GreenwichChatham MaritimeKent ME4 4TBUK
| | - Gary D. Foster
- School of Biological SciencesUniversity of BristolBristolBS8 1TQUK
| |
Collapse
|
38
|
Medina CA, Reyes PA, Trujillo CA, Gonzalez JL, Bejarano DA, Montenegro NA, Jacobs JM, Joe A, Restrepo S, Alfano JR, Bernal A. The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. MOLECULAR PLANT PATHOLOGY 2018; 19:593-606. [PMID: 28218447 PMCID: PMC6638086 DOI: 10.1111/mpp.12545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 05/29/2023]
Abstract
Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - Paola Andrea Reyes
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - Cesar Augusto Trujillo
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - Juan Luis Gonzalez
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - David Alejandro Bejarano
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - Nathaly Andrea Montenegro
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - Jonathan M. Jacobs
- Institut de Recherche pour le De´veloppement (IRD), CiradUniversite´ Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394MontpellierFrance
| | - Anna Joe
- Center for Plant Science InnovationUniversity of NebraskaLincolnNE68588‐0660USA
- Department of Plant PathologyUniversity of NebraskaLincolnNE68588‐0722USA
- Present address:
Department of Plant Pathology and the Genome CenterUniversity of California, Davis, CA 95616, USA, and Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Silvia Restrepo
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
| | - James R. Alfano
- Center for Plant Science InnovationUniversity of NebraskaLincolnNE68588‐0660USA
- Department of Plant PathologyUniversity of NebraskaLincolnNE68588‐0722USA
| | - Adriana Bernal
- Universidad de los Andes, Laboratorio de Micología y Fitopatología de la Universidad de los Andes111711 BogotáColombia
- Present address:
Novozymes, Inc., DavisCA95618USA
| |
Collapse
|
39
|
Kayondo SI, Pino Del Carpio D, Lozano R, Ozimati A, Wolfe M, Baguma Y, Gracen V, Offei S, Ferguson M, Kawuki R, Jannink JL. Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta. Sci Rep 2018; 8:1549. [PMID: 29367617 PMCID: PMC5784162 DOI: 10.1038/s41598-018-19696-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/08/2018] [Indexed: 12/04/2022] Open
Abstract
Cassava (Manihot esculenta Crantz) is an important security crop that faces severe yield loses due to cassava brown streak disease (CBSD). Motivated by the slow progress of conventional breeding, genetic improvement of cassava is undergoing rapid change due to the implementation of quantitative trait loci mapping, Genome-wide association mapping (GWAS), and genomic selection (GS). In this study, two breeding panels were genotyped for SNP markers using genotyping by sequencing and phenotyped for foliar and CBSD root symptoms at five locations in Uganda. Our GWAS study found two regions associated to CBSD, one on chromosome 4 which co-localizes with a Manihot glaziovii introgression segment and one on chromosome 11, which contains a cluster of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. We evaluated the potential of GS to improve CBSD resistance by assessing the accuracy of seven prediction models. Predictive accuracy values varied between CBSD foliar severity traits at 3 months after planting (MAP) (0.27-0.32), 6 MAP (0.40-0.42) and root severity (0.31-0.42). For all traits, Random Forest and reproducing kernel Hilbert spaces regression showed the highest predictive accuracies. Our results provide an insight into the genetics of CBSD resistance to guide CBSD marker-assisted breeding and highlight the potential of GS to improve cassava breeding.
Collapse
Affiliation(s)
- Siraj Ismail Kayondo
- National Crop Resources Research Institute, NaCRRI, P.O. Box, 7084, Kampala, Uganda.
- West Africa Center for Crop Improvement, , (WACCI), University of Ghana, Accra, Ghana.
| | - Dunia Pino Del Carpio
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York, USA
| | - Roberto Lozano
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York, USA
| | - Alfred Ozimati
- National Crop Resources Research Institute, NaCRRI, P.O. Box, 7084, Kampala, Uganda
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York, USA
| | - Marnin Wolfe
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York, USA
| | - Yona Baguma
- National Crop Resources Research Institute, NaCRRI, P.O. Box, 7084, Kampala, Uganda
| | - Vernon Gracen
- West Africa Center for Crop Improvement, , (WACCI), University of Ghana, Accra, Ghana
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York, USA
| | - Samuel Offei
- West Africa Center for Crop Improvement, , (WACCI), University of Ghana, Accra, Ghana
| | - Morag Ferguson
- International Institute for Tropical Agriculture (IITA), Nairobi, Kenya
| | - Robert Kawuki
- National Crop Resources Research Institute, NaCRRI, P.O. Box, 7084, Kampala, Uganda
| | - Jean-Luc Jannink
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York, USA
- US Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, New York, USA
| |
Collapse
|
40
|
McQuaid CF, Gilligan CA, van den Bosch F. Considering behaviour to ensure the success of a disease control strategy. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170721. [PMID: 29308222 PMCID: PMC5749990 DOI: 10.1098/rsos.170721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
The success or failure of a disease control strategy can be significantly affected by the behaviour of individual agents involved, influencing the effectiveness of disease control, its cost and sustainability. This behaviour has rarely been considered in agricultural systems, where there is significant opportunity for impact. Efforts to increase the adoption of control while decreasing oscillations in adoption and yield, particularly through the administration of subsidies, could increase the effectiveness of interventions. We study individual behaviour for the deployment of clean seed systems to control cassava brown streak disease in East Africa, noting that high disease pressure is important to stimulate grower demand of the control strategy. We show that it is not necessary to invest heavily in formal promotional or educational campaigns, as word-of-mouth is often sufficient to endorse the system. At the same time, for improved planting material to have an impact on increasing yields, it needs to be of a sufficient standard to restrict epidemic spread significantly. Finally, even a simple subsidy of clean planting material may be effective in disease control, as well as reducing oscillations in adoption, as long as it reaches a range of different users every season.
Collapse
Affiliation(s)
| | | | - Frank van den Bosch
- Computational and Systems Biology, Rothamsted Research, West Common, Harpenden AL5 2JQ, UK
| |
Collapse
|
41
|
Pasin F, Bedoya LC, Bernabé-Orts JM, Gallo A, Simón-Mateo C, Orzaez D, García JA. Multiple T-DNA Delivery to Plants Using Novel Mini Binary Vectors with Compatible Replication Origins. ACS Synth Biol 2017; 6:1962-1968. [PMID: 28657330 DOI: 10.1021/acssynbio.6b00354] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improved plants are necessary to meet human needs. Agrobacterium-mediated transformation is the most common method used to rewire plant capabilities. For plant gene delivery, DNA constructs are assembled into binary T-DNA vectors that rely on broad host range origins for bacterial replication. Here we present pLX vectors, a set of mini binary T-DNA plasmids suitable for Type IIS restriction endonuclease- and overlap-based assembly methods. pLX vectors include replicons from compatible broad host range plasmids. Simultaneous usage of pBBR1- and RK2-based pLX vectors in a two-plasmid/one-Agrobacterium strain strategy allowed multigene delivery to plants. Adoption of pLX vectors will facilitate routine plant transformations and targeted mutagenesis, as well as complex part and circuit characterization.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Leonor C. Bedoya
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Joan Miquel Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Araíz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | | |
Collapse
|
42
|
Masumba EA, Kapinga F, Mkamilo G, Salum K, Kulembeka H, Rounsley S, Bredeson JV, Lyons JB, Rokhsar DS, Kanju E, Katari MS, Myburg AA, van der Merwe NA, Ferguson ME. QTL associated with resistance to cassava brown streak and cassava mosaic diseases in a bi-parental cross of two Tanzanian farmer varieties, Namikonga and Albert. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2069-2090. [PMID: 28707249 PMCID: PMC5606945 DOI: 10.1007/s00122-017-2943-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/25/2017] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE QTL consistent across seasons were detected for resistance to cassava brown streak disease induced root necrosis and foliar symptoms. The CMD2 locus was detected in an East African landrace, and comprised two QTL. Cassava production in Africa is compromised by cassava brown streak disease (CBSD) and cassava mosaic disease (CMD). To reduce costs and increase the precision of resistance breeding, a QTL study was conducted to identify molecular markers linked to resistance against these diseases. A bi-parental F1 mapping population was developed from a cross between the Tanzanian farmer varieties, Namikonga and Albert. A one-step genetic linkage map comprising 943 SNP markers and 18 linkage groups spanning 1776.2 cM was generated. Phenotypic data from 240 F1 progeny were obtained from two disease hotspots in Tanzania, over two successive seasons, 2013 and 2014. Two consistent QTLs linked to resistance to CBSD-induced root necrosis were identified in Namikonga on chromosomes II (qCBSDRNFc2Nm) and XI (qCBSDRNc11Nm) and a putative QTL on chromosome XVIII (qCBSDRNc18Nm). qCBSDRNFc2Nm was identified at Naliendele in both seasons. The same QTL was also associated with CBSD foliar resistance. qCBSDRNc11Nm was identified at Chambezi in both seasons, and was characterized by three peaks, spanning a distance of 253 kb. Twenty-seven genes were identified within this region including two LRR proteins and a signal recognition particle. In addition, two highly significant CMD resistance QTL (qCMDc12.1A and qCMDc12.2A) were detected in Albert, on chromosome 12. Both qCMDc12.1A and qCMDc12.2A lay within the range of markers reported earlier, defining the CMD2 locus. This is the first time that two loci have been identified within the CMD2 QTL, and in germplasm of apparent East African origin. Additional QTLs with minor effects on CBSD and CMD resistance were also identified.
Collapse
Affiliation(s)
- E A Masumba
- Sugarcane Research Institute, P. O. Box 30031, Kibaha, Tanzania
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- IITA, P.O. Box 30709-00100, Nairobi, Kenya
| | - F Kapinga
- Naliendele Agricultural Research Institute, P. O. Box 509, Mtwara, Tanzania
| | - G Mkamilo
- Naliendele Agricultural Research Institute, P. O. Box 509, Mtwara, Tanzania
| | - K Salum
- Ukiriguru Agricultural Research Institute, P. O. Box 1433, Mwanza, Tanzania
| | - H Kulembeka
- Ukiriguru Agricultural Research Institute, P. O. Box 1433, Mwanza, Tanzania
| | | | - J V Bredeson
- Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | - J B Lyons
- Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | - D S Rokhsar
- Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | - E Kanju
- International Institute of Tropical Agriculture (IITA), P.O. Box 2066, Dar es Salaam, Tanzania
| | | | - A A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - N A van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | | |
Collapse
|
43
|
Shi S, Zhang X, Mandel MA, Zhang P, Zhang Y, Ferguson M, Amuge T, Rounsley S, Liu Z, Xiong Z. Variations of five eIF4E genes across cassava accessions exhibiting tolerant and susceptible responses to cassava brown streak disease. PLoS One 2017; 12:e0181998. [PMID: 28771520 PMCID: PMC5542559 DOI: 10.1371/journal.pone.0181998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022] Open
Abstract
Cassava (Manihot esculenta) is an important tropical subsistence crop that is severely affected by cassava brown streak disease (CBSD) in East Africa. The disease is caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Both have a (+)-sense single-stranded RNA genome with a 5' covalently-linked viral protein, which functionally resembles the cap structure of mRNA, binds to eukaryotic translation initiation factor 4E (eIF4E) or its analogues, and then enable the translation of viral genomic RNA in host cells. To characterize cassava eIF4Es and their potential role in CBSD tolerance and susceptibility, we cloned five eIF4E transcripts from cassava (accession TMS60444). Sequence analysis indicated that the cassava eIF4E family of proteins consisted of one eIF4E, two eIF(iso)4E, and two divergent copies of novel cap-binding proteins (nCBPs). Our data demonstrated experimentally the coding of these five genes as annotated in the published cassava genome and provided additional evidence for refined annotations. Illumina resequencing data of the five eIF4E genes were analyzed from 14 cassava lines tolerant or susceptible to CBSD. Abundant single nucleotide polymorphisms (SNP) and biallelic variations were observed in the eIF4E genes; however, most of the SNPs were located in the introns and non-coding regions of the exons. Association studies of non-synonymous SNPs revealed no significant association between any SNP of the five eIF4E genes and the tolerance or susceptibility to CBSD. However, two SNPs in two genes were weakly associated with the CBSD responses but had no direct causal-effect relationship. SNPs in an intergenic region upstream of eIF4E_me showed a surprising strong association with CBSD responses. Digital expression profile analysis showed differential expression of different eIF4E genes but no significant difference in gene expression was found between susceptible and tolerant cassava accessions despite the association of the intergenic SNPs with CBSD responses.
Collapse
Affiliation(s)
- Shanshan Shi
- Institute of Tropical biology and biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Xiuchun Zhang
- Institute of Tropical biology and biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - M. Alejandra Mandel
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuliang Zhang
- Institute of Tropical biology and biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Morag Ferguson
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Teddy Amuge
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Steve Rounsley
- Genus plc, DeForest, Wisconsin, United States of America
| | - Zhixin Liu
- Institute of Tropical biology and biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- * E-mail: (ZX); (ZL)
| | - Zhongguo Xiong
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (ZX); (ZL)
| |
Collapse
|
44
|
McCallum EJ, Anjanappa RB, Gruissem W. Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). CURRENT OPINION IN PLANT BIOLOGY 2017; 38:50-58. [PMID: 28477536 DOI: 10.1016/j.pbi.2017.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Cassava is an important staple food crop for millions of people in tropical regions across Africa, South America and Asia. Viral, bacterial and fungal diseases impact cassava yield in all three regions. The viruses causing cassava mosaic disease and cassava brown streak disease have been particularly devastating to cassava production in Africa. Improved farming practices and disease monitoring can reduce the impact of cassava diseases in the field. The availability of disease resistant cassava varieties developed through breeding or genetic engineering is key to tackling disease incidence and severity.
Collapse
Affiliation(s)
- Emily J McCallum
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Ravi B Anjanappa
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland.
| |
Collapse
|
45
|
Shirima RR, Maeda DG, Kanju E, Ceasar G, Tibazarwa FI, Legg JP. Absolute quantification of cassava brown streak virus mRNA by real-time qPCR. J Virol Methods 2017; 245:5-13. [PMID: 28315718 PMCID: PMC5429390 DOI: 10.1016/j.jviromet.2017.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 11/18/2022]
Abstract
Cassava brown streak disease (CBSD) is the most important virus disease of cassava and a major food security threat in Africa. Yearly economic losses of up to $100 million USD have been attributed to CBSD. The lack of information on plant-virus interactions has restricted progress in breeding for CBSD resistance. Virus quantification is becoming a major tool for the quick and reliable assessment of plant host resistance. Therefore, a protocol for specific absolute quantification of Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) was developed. CBSV and UCBSV coat protein (CP) specific standard templates: CBSV (pFer2, 826bp) and UCBSV (pUF1-R1-1, 732) respectively were generated and maintained in a TA cloning vector. These were used to construct standard curves using a TaqMan qPCR assay. Standard curves with acceptable amplification efficiencies (90-105%) and coefficients of determination (R2) greater than 0.99 were obtained. Infected cassava plants were sampled from a screenhouse and the field and used to validate this assay. Results obtained by testing several screenhouse and field samples revealed consistent absolute quantification assays for different CBSV and UCBSV isolates. This study presents the first protocol for absolute quantification of CBSVs and is expected to accelerate screening for CBSD resistance and hence breeding for CBSD resistance. The use of the method presented here should improve the clarity of virus quantification data as the results obtained are not influenced by varietal, host, seasonal or environmental conditions. Screening efficiency will also be greatly improved as there is no need for the use of reference genes consequently allowing for a larger number of samples to be analyzed. This will increase experimental precision in a timely and cost effective manner.
Collapse
Affiliation(s)
- Rudolph R Shirima
- International Institute of Tropical Agriculture, P. O. Box 34441, Dar es Salaam, Tanzania; University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania.
| | - Daniel G Maeda
- University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania
| | - Edward Kanju
- International Institute of Tropical Agriculture, P. O. Box 34441, Dar es Salaam, Tanzania
| | - Gloria Ceasar
- International Institute of Tropical Agriculture, P. O. Box 34441, Dar es Salaam, Tanzania
| | - Flora I Tibazarwa
- Tanzania Commission for Science and Technology, P.O. Box 4302, Dar es Salaam, Tanzania
| | - James P Legg
- International Institute of Tropical Agriculture, P. O. Box 34441, Dar es Salaam, Tanzania
| |
Collapse
|
46
|
McQuaid CF, van den Bosch F, Szyniszewska A, Alicai T, Pariyo A, Chikoti PC, Gilligan CA. Spatial dynamics and control of a crop pathogen with mixed-mode transmission. PLoS Comput Biol 2017; 13:e1005654. [PMID: 28746374 PMCID: PMC5528833 DOI: 10.1371/journal.pcbi.1005654] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/22/2017] [Indexed: 11/23/2022] Open
Abstract
Trade or sharing that moves infectious planting material between farms can, for vertically-transmitted plant diseases, act as a significant force for dispersal of pathogens, particularly where the extent of material movement may be greater than that of infected vectors or inoculum. The network over which trade occurs will then effect dispersal, and is important to consider when attempting to control the disease. We consider the difference that planting material exchange can make to successful control of cassava brown streak disease, an important viral disease affecting one of Africa's staple crops. We use a mathematical model of smallholders' fields to determine the effect of informal trade on both the spread of the pathogen and its control using clean-seed systems, determining aspects that could limit the damage caused by the disease. In particular, we identify the potentially detrimental effects of markets, and the benefits of a community-based approach to disease control.
Collapse
Affiliation(s)
| | - Frank van den Bosch
- Computational and Systems Biology, Rothamsted Research, West Common, Harpenden, United Kingdom
| | - Anna Szyniszewska
- Computational and Systems Biology, Rothamsted Research, West Common, Harpenden, United Kingdom
| | - Titus Alicai
- Root Crops Research Programme, National Crops Resources Research Institute, Namulonge, Kampala, Uganda
| | - Anthony Pariyo
- Root Crops Research Programme, National Crops Resources Research Institute, Namulonge, Kampala, Uganda
| | - Patrick Chiza Chikoti
- Zambia Agriculture Research Institute, Plant Protection and Quarantine Division, Mt. Makulu Research Station, Chilanga, Zambia
| | | |
Collapse
|
47
|
Mbewe W, Tairo F, Sseruwagi P, Ndunguru J, Duffy S, Mukasa S, Benesi I, Sheat S, Koerbler M, Winter S. Variability in P1 gene redefines phylogenetic relationships among cassava brown streak viruses. Virol J 2017; 14:118. [PMID: 28637472 PMCID: PMC5480109 DOI: 10.1186/s12985-017-0790-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cassava brown streak disease is emerging as the most important viral disease of cassava in Africa, and is consequently a threat to food security. Two distinct species of the genus Ipomovirus (family Potyviridae) cause the disease: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). To understand the evolutionary relationships among the viruses, 64 nucleotide sequences from the variable P1 gene from major cassava producing areas of east and central-southern Africa were determined. METHODS We sequenced an amplicon of the P1 region of 31 isolates from Malawi and Tanzania. In addition to these, 33 previously reported sequences of virus isolates from Uganda, Kenya, Tanzania, Malawi and Mozambique were added to the analysis. RESULTS Phylogenetic analyses revealed three major P1 clades of Cassava brown streak viruses (CBSVs): in addition to a clade of most CBSV and a clade containing all UCBSV, a novel, intermediate clade of CBSV isolates which has been tentatively called CBSV-Tanzania (CBSV-TZ). Virus isolates of the distinctive CBSV-TZ had nucleotide identities as low as 63.2 and 63.7% with other members of CBSV and UCBSV respectively. CONCLUSIONS Grouping of P1 gene sequences indicated for distinct sub-populations of CBSV, but not UCBSV. Representatives of all three clades were found in both Tanzania and Malawi.
Collapse
Affiliation(s)
- Willard Mbewe
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901 USA
- School of Agriculture and Environmental Science, Department of Agricultural Production, Makerere University, P. O. Box, 7062 Kampala, Uganda
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, PO Tanzania
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, PO Tanzania
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, P. O. Box 6226, Dar es Salaam, PO Tanzania
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901 USA
| | - Ssetumba Mukasa
- School of Agriculture and Environmental Science, Department of Agricultural Production, Makerere University, P. O. Box, 7062 Kampala, Uganda
| | - Ibrahim Benesi
- Chitedze Agricultural Research Station, P. O. Box, 153 Lilongwe, Malawi
| | - Samar Sheat
- Leibniz Institute - DSMZ Plant Virus Department, Braunschweig, Germany
| | - Marianne Koerbler
- Leibniz Institute - DSMZ Plant Virus Department, Braunschweig, Germany
| | - Stephan Winter
- Leibniz Institute - DSMZ Plant Virus Department, Braunschweig, Germany
| |
Collapse
|
48
|
Bart RS, Taylor NJ. New opportunities and challenges to engineer disease resistance in cassava, a staple food of African small-holder farmers. PLoS Pathog 2017; 13:e1006287. [PMID: 28493983 PMCID: PMC5426740 DOI: 10.1371/journal.ppat.1006287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Rebecca S. Bart
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Nigel J. Taylor
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| |
Collapse
|
49
|
Fondong VN. The Search for Resistance to Cassava Mosaic Geminiviruses: How Much We Have Accomplished, and What Lies Ahead. FRONTIERS IN PLANT SCIENCE 2017; 8:408. [PMID: 28392798 PMCID: PMC5365051 DOI: 10.3389/fpls.2017.00408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/09/2017] [Indexed: 05/23/2023]
Abstract
The cassava mosaic disease (CMD), which occurs in all cassava growing regions of Africa and the Indian subcontinent, is caused by cassava mosaic geminiviruses (CMGs). CMGs are considered to be the most damaging vector-borne plant pathogens. So far, the most successful approach used to control these viruses has been the transfer of a polygenic recessive resistance locus, designated CMD1, from wild cassava to cassava cultivars. Further progress in harnessing natural resistance to contain CMGs has come from the discovery of the dominant monogenic resistance locus, CMD2, in some West African cassava cultivars. CMD2 has been combined with CMD1 through genetic crosses. Because of the limitations of the cassava breeding approach, especially with regard to time required to produce a variety and the loss of preferred agronomic attributes, efforts have been directed toward the deployment of genetic engineering approaches. Most of these approaches have been centered on RNA silencing strategies, developed mainly in the model plant Nicotiana benthamiana. Early RNA silencing platforms assessed for CMG resistance have been use of viral genes for co-suppression, antisense suppression or for hairpin RNAs-mediated gene silencing. Here, progress and challenges in the deployment of these approaches in the control of CMGs are discussed. Novel functional genomics approaches with potential to overcome some of the drawbacks of the current strategies are also discussed.
Collapse
Affiliation(s)
- Vincent N. Fondong
- Department of Biological Sciences, Delaware State UniversityDover, DE, USA
| |
Collapse
|
50
|
Wilson MC, Mutka AM, Hummel AW, Berry J, Chauhan RD, Vijayaraghavan A, Taylor NJ, Voytas DF, Chitwood DH, Bart RS. Gene expression atlas for the food security crop cassava. THE NEW PHYTOLOGIST 2017; 213:1632-1641. [PMID: 28116755 PMCID: PMC5516207 DOI: 10.1111/nph.14443] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/18/2016] [Indexed: 05/17/2023]
Abstract
Cassava (Manihot esculenta) feeds c. 800 million people world-wide. Although this crop displays high productivity under drought and poor soil conditions, it is susceptible to disease, postharvest deterioration and the roots contain low nutritional content. Here, we provide molecular identities for 11 cassava tissue/organ types through RNA-sequencing and develop an open access, web-based interface for further interrogation of the data. Through this dataset, we consider the physiology of cassava. Specifically, we focus on identification of the transcriptional signatures that define the massive, underground storage roots used as a food source and the favored target tissue for transgene integration and genome editing, friable embryogenic callus (FEC). Further, we identify promoters able to drive strong expression in multiple tissue/organs. The information gained from this study is of value for both conventional and biotechnological improvement programs.
Collapse
Affiliation(s)
- Mark C. Wilson
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Andrew M. Mutka
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Aaron W. Hummel
- Department of Genetics, Cell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Jeffrey Berry
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | | | | | - Nigel J. Taylor
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology & Development and Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Daniel H. Chitwood
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| | - Rebecca S. Bart
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
| |
Collapse
|