1
|
Zheng Y, Li G, Luo Q, Sha H, Zhang H, Wang R, Kong W, Liao J, Zhao M. Research progress on the N protein of porcine reproductive and respiratory syndrome virus. Front Microbiol 2024; 15:1391697. [PMID: 38741730 PMCID: PMC11089252 DOI: 10.3389/fmicb.2024.1391697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV exhibits genetic diversity and complexity in terms of immune responses, posing challenges for eradication. The nucleocapsid (N) protein of PRRSV, an alkaline phosphoprotein, is important for various biological functions. This review summarizes the structural characteristics, genetic evolution, impact on PRRSV replication and virulence, interactions between viral and host proteins, modulation of host immunity, detection techniques targeting the N protein, and progress in vaccine development. The discussion provides a theoretical foundation for understanding the pathogenic mechanisms underlying PRRSV virulence, developing diagnostic techniques, and designing effective vaccines.
Collapse
Affiliation(s)
- Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Jiedan Liao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
2
|
Gong X, Ma T, Wang J, Cao X, Zhang Q, Wang Y, Song C, Lai M, Zhang C, Fang X, Chen X. Nucleocapsid protein residues 35, 36, and 113 are critical sites in up-regulating the Interleukin-8 production via C/EBPα pathway by highly pathogenic porcine reproductive and respiratory syndrome virus. Microb Pathog 2023; 184:106345. [PMID: 37714310 DOI: 10.1016/j.micpath.2023.106345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and pathogenic agent that causes considerable economic damage in the swine industry. It regulates the inflammatory response, triggers inflammation-induced tissue damage, suppresses the innate immune response, and leads to persistent infection. Interleukin-8 (IL-8), a pro-inflammatory chemokine, plays a crucial role in inflammatory response during numerous bacteria and virus infections. However, the underlying mechanisms of IL-8 regulation during PRRSV infection are not well understood. In this study, we demonstrate that PRRSV-infected PAMs and Marc-145 cells release higher levels of IL-8. We screened the nucleocapsid protein, non-structural protein (nsp) 9, and nsp11 of PRRSV to enhance IL-8 promoter activity via the C/EBPα pathway. Furthermore, we identified that the amino acids Q35A, S36A, R113A, and I115A of the nucleocapsid protein play a crucial role in the induction of IL-8. Through reverse genetics, we generated two mutant viruses (rQ35-2A and rR113A), which showed lower induction of IL-8 in PAMs during infection. This finding uncovers a previously unrecognized role of the PRRSV nucleocapsid protein in modulating IL-8 production and provides insight into an additional mechanism by which PRRSV modulates immune responses and inflammation.
Collapse
Affiliation(s)
- Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Tianyi Ma
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Jingjing Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Xinran Cao
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266000, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Min Lai
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China.
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, China.
| |
Collapse
|
3
|
Porcine Reproductive and Respiratory Syndrome Virus Modulates the Switch of Macrophage Polarization from M1 to M2 by Upregulating MoDC-Released sCD83. Viruses 2023; 15:v15030773. [PMID: 36992481 PMCID: PMC10054646 DOI: 10.3390/v15030773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), the most economically important infectious disease of pigs, elicits poor innate and adaptive immune responses. Soluble CD83 (sCD83), a secretion from various immune cell populations, especially MoDCs, is involved in negatively regulating the immune response. We speculate sCD83 may be a critical factor in the process of PRRSV-coordinated macrophage polarization. In this study, we found that PAMs co-cultured with PRRSV-infected MoDCs inhibited the M1 macrophage while enhancing the M2 macrophage. This was accompanied by a decrease in the pro-inflammatory cytokine TNF-α and iNOS and an increase in the anti-inflammatory cytokine IL-10 and Arg1. Meanwhile, sCD83 incubation causes the same specific effects lead to a switch in macrophage from M1 to M2. Neutralization of sCD83 removes the inhibitory effects of PRRSV on PAMs. Using reverse genetics, we generated recombinant PRRSVs with mutations in N protein, nsp1α, and nsp10 (knockout sCD83-concerned key amino acid site). Four mutant viruses lost the suppression of M1 macrophage markers, in contrast to the restriction of the upregulation of M2 macrophage markers. These findings suggest that PRRSV modulates the switch of macrophage polarization from M1 to M2 by upregulating the MoDC-induced secretion of CD83, providing new insights into the mechanism by which PRRSV regulates host immunity.
Collapse
|
4
|
A New Long Noncoding RNA, MAHAT, Inhibits Replication of Porcine Reproductive and Respiratory Syndrome Virus by Recruiting DDX6 To Bind to ZNF34 and Promote an Innate Immune Response. J Virol 2022; 96:e0115422. [PMID: 36073922 PMCID: PMC9517731 DOI: 10.1128/jvi.01154-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have increasingly been recognized as being integral to cellular processes, including the antiviral immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is costly to the global swine industry. To identify PRRSV-related lncRNAs, we performed RNA deep sequencing and compared the profiles of lncRNAs in PRRSV-infected and uninfected Marc-145 cells. We identified a novel lncRNA called MAHAT (maintaining cell morphology-associated and highly conserved antiviral transcript; LTCON_00080558) that inhibits PRRSV replication. MAHAT binds and negatively regulates ZNF34 expression by recruiting and binding DDX6, an RNA helicase forming a complex with ZNF34. Inhibition of ZNF34 expression results in increased type I interferon expression and decreased PRRSV replication. This finding reveals a novel mechanism by which PRRSV evades the host antiviral innate immune response by downregulating the MAHAT-DDX6-ZNF34 pathway. MAHAT could be a host factor target for antiviral therapies against PRRSV infection. IMPORTANCE Long noncoding RNAs (lncRNAs) play important roles in viral infection by regulating the transcription and expression of host genes, and interferon signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic losses in the swine industry worldwide, but the mechanisms of its pathogenesis and immunology are not fully understood. Here, a new lncRNA, designated MAHAT, was identified as a regulator of host innate immune responses. MAHAT negatively regulates the expression of its target gene, ZNF34, by recruiting and binding DDX6, an RNA helicase, forming a complex with ZNF34. Inhibition of ZNF34 expression increases type I interferon expression and decreases PRRSV replication. This finding suggests that MAHAT has potential as a new target for developing antiviral drugs against PRRSV infection.
Collapse
|
5
|
Deng H, Xin N, Zeng F, Wen F, Yi H, Ma C, Huang S, Zhang G, Chen Y. A novel amino acid site of N protein could affect the PRRSV-2 replication by regulating the viral RNA transcription. BMC Vet Res 2022; 18:171. [PMID: 35546407 PMCID: PMC9092334 DOI: 10.1186/s12917-022-03274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Finding the key amino acid sites that could affect viral biological properties or protein functions has always been a topic of substantial interest in virology. The nucleocapsid (N) protein is one of the principal proteins of the porcine reproductive and respiratory syndrome virus (PRRSV) and plays a vital role in the virus life cycle. The N protein has only 123 or 128 amino acids, some of key amino acid sites which could affect the protein functions or impair the viral biological characteristics have been identified. In this research, our objective was to find out whether there are other novel amino acid sites of the N protein can affect N protein functions or PRRSV-2 replication. Results In this study, we found mutated the serine78 and serine 99of the nucleocapsid (N) protein can reduce the N-induced expression of IL-10 mRNA; Then, by using reverse genetics system, we constructed and rescued the mutant viruses, namely, A78 and A99.The IFA result proved that the mutations did not affect the rescue of the PRRSV-2. However, the results of the multistep growth kinetics and qPCR assays indicated that, compared with the viral replication ability, the titres and gRNA levels of A78 were significantly decreased compared with the wild-type. Further study showed that a single amino acid change from serine to alanine at position 78 of the N protein could abrogates the level of viral genomic and subgenomic RNAs. It means the mutation could significant decrease the viral replication efficiency in vitro. Conclusions Our results suggest that the serine78 of N protein is a key site which could affect the N protein function and PRRSV replication ability. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03274-9.
Collapse
Affiliation(s)
- Hua Deng
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Ning Xin
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Fancong Zeng
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Feng Wen
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Heyou Yi
- MOA Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Chunquan Ma
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Guihong Zhang
- MOA Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Yao Chen
- School of Life Science and Engineering, Foshan University, Foshan, 528000, People's Republic of China.
| |
Collapse
|
6
|
Zhao P, Jing H, Dong W, Duan E, Ke W, Tao R, Li Y, Cao S, Wang H, Zhang Y, Sun Y, Wang J. TRIM26-mediated degradation of nucleocapsid protein limits porcine reproductive and respiratory syndrome virus-2 infection. Virus Res 2022; 311:198690. [PMID: 35077707 DOI: 10.1016/j.virusres.2022.198690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, has ranked among the most economically important veterinary infectious diseases globally. Recently, tripartite motif (TRIMs) family members have arisen as novel restriction factors in antiviral immunity. Noteworthy, TRIM26 was reported as a binding partner of IRF3, TBK1, TAB1, and NEMO, yet its role in virus infection remains controversial. Herein, we showed that TRIM26 bound N protein by the C-terminal PRY/SPRY domain. Moreover, ectopic expression of TRIM26 impaired PRRSV replication and induced degradation of N protein. The anti-PRRSV activity was independent of the nuclear localization signal (NLS). Instead, deletion of the RING domain, or the PRY/SPRY portion, abrogated the antiviral function. Finally, siRNA depletion of TRIM26 resulted in enhanced production of viral RNA and virus yield in porcine alveolar macrophages (PAMs) after PRRSV infection. Overexpression of an RNAi-resistant TRIM26 rescue-plasmid led to the acquisition of PRRSV restriction in TRIM26-knockdown cells. Together, these data add TRIM26 as a potential target for drug design against PRRSV.
Collapse
Affiliation(s)
- Pandeng Zhao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Huiyuan Jing
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| | - Wang Dong
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Erzhen Duan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sufang Cao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Haihua Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yanting Sun
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Jinhe Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| |
Collapse
|
7
|
Hernández J, Li Y, Mateu E. Swine Dendritic Cell Response to Porcine Reproductive and Respiratory Syndrome Virus: An Update. Front Immunol 2021; 12:712109. [PMID: 34394113 PMCID: PMC8355811 DOI: 10.3389/fimmu.2021.712109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells, unique to initiate and coordinate the adaptive immune response. In pigs, conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs) have been described in blood and tissues. Different pathogens, such as viruses, could infect these cells, and in some cases, compromise their response. The understanding of the interaction between DCs and viruses is critical to comprehend viral immunopathological responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important respiratory pathogen in the global pig population. Different reports support the notion that PRRSV modulates pig immune response in addition to their genetic and antigenic variability. The interaction of PRRSV with DCs is a mostly unexplored area with conflicting results and lots of uncertainties. Among the scarce certainties, cDCs and pDCs are refractory to PRRSV infection in contrast to moDCs. Additionally, response of DCs to PRRSV can be different depending on the type of DCs and maybe is related to the virulence of the viral isolate. The precise impact of this virus-DC interaction upon the development of the specific immune response is not fully elucidated. The present review briefly summarizes and discusses the previous studies on the interaction of in vitro derived bone marrow (bm)- and moDCs, and in vivo isolated cDCs, pDCs, and moDCs with PRRSV1 and 2.
Collapse
Affiliation(s)
- Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
Porcine Reproductive and Respiratory Syndrome Virus Reverse Genetics and the Major Applications. Viruses 2020; 12:v12111245. [PMID: 33142752 PMCID: PMC7692847 DOI: 10.3390/v12111245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-stranded RNA virus that is known to infect only pigs. The virus emerged in the late 1980s and became endemic in most swine producing countries, causing substantial economic losses to the swine industry. The first reverse genetics system for PRRSV was reported in 1998. Since then, several infectious cDNA clones for PRRSV have been constructed. The availability of these infectious cDNA clones has facilitated the genetic modifications of the viral genome at precise locations. Common approaches to manipulate the viral genome include site-directed mutagenesis, deletion of viral genes or gene fragments, insertion of foreign genes, and swapping genes between PRRSV strains or between PRRSV and other members of the Arteriviridae family. In this review, we describe the approaches to construct an infectious cDNA for PRRSV and the ten major applications of these infectious clones to study virus biology and virus–host interaction, and to design a new generation of vaccines with improved levels of safety and efficacy.
Collapse
|
9
|
Song Z, Bai J, Liu X, Nauwynck H, Wu J, Liu X, Jiang P. S100A9 regulates porcine reproductive and respiratory syndrome virus replication by interacting with the viral nucleocapsid protein. Vet Microbiol 2019; 239:108498. [PMID: 31767072 PMCID: PMC7125916 DOI: 10.1016/j.vetmic.2019.108498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses to the pig industry worldwide over the last 30 years, yet the associated viral-host interactions remain poorly understood. S100A9 is a damage-associated molecular pattern of the S100 protein family. Here, we found that PRRSV infection stimulated S100A9 expression in porcine alveolar macrophages (PAMs) and Marc-145 cells. S100A9 inhibited PRRSV replication via cellular Ca2+ dependent manner. The viral nucleocapsid (N) protein co-localized with S100A9 in the cytoplasm, and directly interacted at amino acid 78 of S100A9 and amino acids 36-37 of N protein. Moreover, we also found that the mutant S100A9 (E78Q) protein exhibited decreased antiviral activity against PRRSV compared with the parent S100A9. Recombinant PRRSV rBB (36/37) with two mutations in amino acid 36-37 in the N protein exhibited greater replication than the parent PRRSV BB0907 in S100A9-overexpressed PAM and Marc-145 cells. Thus, S100A9 may restrict PRRSV proliferation by interacting with the viral N protein.
Collapse
Affiliation(s)
- Zhongbao Song
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewei Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Jiaqiang Wu
- Institute of Animal Husbandry and Veterinary Medicine, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Xing Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
10
|
Nuclear localization signal in TRIM22 is essential for inhibition of type 2 porcine reproductive and respiratory syndrome virus replication in MARC-145 cells. Virus Genes 2019; 55:660-672. [PMID: 31375995 PMCID: PMC7089487 DOI: 10.1007/s11262-019-01691-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes one of the most economically important swine diseases worldwide. Tripartite motif-containing 22 (TRIM22), a TRIM family protein, has been identified as a crucial restriction factor that inhibits a group of human viruses. Currently, the role of cellular TRIM22 in PRRSV infection remains unclear. In the present study, we analyzed the effect of TRIM22 on PRRSV replication in vitro and explored the underlying mechanism. Ectopic expression of TRIM22 impaired the viral replication, while TRIM22-RNAi favored the replication of PRRSV in MARC-145 cells. Additionally, we observed that TRIM22 deletion SPRY domain or Nuclear localization signal (NLS) losses the ability to inhibit PRRSV replication. Finally, Co-IP analysis identified that TRIM22 interacts with PRRSV nucleocapsid (N) protein through the SPRY domain, while the NLS2 motif of N protein is involved in interaction with TRIM22. Although the concentration of PRRSV N protein was not altered in the presence of TRIM22, the abundance of N proteins from simian hemorrhagic fever virus (SHFV), equine arteritis virus (EAV), and murine lactate dehydrogenase-elevating virus (LDV) diminished considerably with increasing TRIM22 expression. Together, our findings uncover a previously unrecognized role for TRIM22 and extend the antiviral effects of TRIM22 to arteriviruses.
Collapse
|
11
|
ZAP, a CCCH-Type Zinc Finger Protein, Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication and Interacts with Viral Nsp9. J Virol 2019; 93:JVI.00001-19. [PMID: 30867303 DOI: 10.1128/jvi.00001-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/04/2019] [Indexed: 01/27/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens affecting many swine-producing regions. Current vaccination strategies and antiviral drugs provide only limited protection. PRRSV infection can cleave mitochondrial antiviral signaling protein (MAVS) and inhibit the induction of type I interferon. The antiviral effector molecules that are involved in host protective responses to PRRSV infection are not fully understood. Here, by using transcriptome sequencing, we found that a zinc finger antiviral protein, ZAP, is upregulated in MAVS-transfected Marc-145 cells and that ZAP suppresses PRRSV infection at the early stage of replication. We also found that the viral protein Nsp9, an RNA-dependent RNA polymerase (RdRp), interacts with ZAP. The interacting locations were mapped to the zinc finger domain of ZAP and N-terminal amino acids 150 to 160 of Nsp9. These findings suggest that ZAP is an effective antiviral factor for suppressing PRRSV infection, and they shed light on virus-host interaction.IMPORTANCE PRRSV continues to adversely impact the global swine industry. It is important to understand the various antiviral factors against PRRSV infection. Here, a zinc finger protein, termed ZAP, was screened from MAVS-induced antiviral genes by transcriptome sequencing, and it was found to remarkably suppress PRRSV replication and interact with PRRSV Nsp9. The zinc finger domain of ZAP and amino acids 150 to 160 of Nsp9 are responsible for the interaction. These findings expand the antiviral spectrum of ZAP and provide a better understanding of ZAP antiviral mechanisms, as well as virus-host interactions.
Collapse
|
12
|
Serine 105 and 120 are important phosphorylation sites for porcine reproductive and respiratory syndrome virus N protein function. Vet Microbiol 2018; 219:128-135. [PMID: 29778185 PMCID: PMC7117435 DOI: 10.1016/j.vetmic.2018.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023]
Abstract
We identified one novel phophorylation site of the PRRSV N protein. We firstly found that the mutated the residue 105 and 120 could down-regulate the N-induced IL-10. We firstly found that mutating the residue 105 could impair the virus growth ability.
The nucleocapsid (N) protein is the most abundant protein of porcine reproductive and respiratory syndrome virus (PRRSV). It has been shown to be multiphosphorylated. However, the phosphorylation sites are still unknown. In this study, we used liquid chromatography tandem mass spectrometry (LC–MS/MS) to analyze the phosphorylation sites of N protein expressed in Sf9 cells. The results showed that N protein contains two phosphorylation sites. Since N protein can regulate IL-10, which may facilitate PRRSV replication, we constructed four plasmids (pCA-XH-GD, pCA-A105, pCA-A120 and pCA-A105-120) and transfected them into Pig alveolar macrophages (PAMs,3D4/2). The qPCR results showed that mutations at residues 105 and 120 were associated with down-regulation of the IL-10 mRNA level, potentially decreasing the viral growth ability. Then, we mutated the phosphorylation sites (S105A and S120A) and rescued three mutated viruses, namely, A105, A120 and A105-120. Compared with wild-type virus titers, the titers of the mutated viruses at 48 hpi were significantly decreased. The Nsp(non-structural protein) 9 qPCR results were consistent with the multistep growth kinetics results. The infected PAMs (primary PAMs) results were similar with Marc-145.The findings indicated that the mutations impaired the viral replication ability. The confocal microscopy results suggested that mutations to residues 105 and 120 did not affect N protein distribution. Whether the mutations affected other functions of N protein and what the underlying mechanisms are need further investigation. In conclusion, our results show that residues 105 and 120 are phosphorylation sites and are important for N protein function and for viral replication ability.
Collapse
|
13
|
Wang C, Zeng N, Liu S, Miao Q, Zhou L, Ge X, Han J, Guo X, Yang H. Interaction of porcine reproductive and respiratory syndrome virus proteins with SUMO-conjugating enzyme reveals the SUMOylation of nucleocapsid protein. PLoS One 2017; 12:e0189191. [PMID: 29236778 PMCID: PMC5728522 DOI: 10.1371/journal.pone.0189191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Abstract
SUMOylation is a reversible post-translational modification that regulates the function of target protein. In this study, we first predicted by software that the multiple proteins of porcine reproductive and respiratory syndrome virus (PRRSV) could be sumoylated. Next, we confirmed that Nsp1β, Nsp4, Nsp9, Nsp10 and nucleocapsid (N) protein of PRRSV could interact with the sole SUMO E2 conjugating enzyme Ubc9, and Ubc9 could be co-localized with Nsp1β, Nsp4, Nsp9 and Nsp10 in the cytoplasm, while with N protein in both the cytoplasm and nucleus. Finally, we demonstrated that N protein could be sumoylated by either SUMO1 or SUMO2/3. In addition, the overexpression of Ubc9 could inhibit viral genomic replication at early period of PRRSV infection and the knockdown of Ubc9 by siRNA could promote the virus replication. These findings reveal the SUMOylation property of PRRSV N protein and the involvement of Ubc9 in PRRSV replication through interaction with multiple proteins of PRRSV. To our knowledge, this is the first study indicating the interplay between SUMO modification system and PRRSV.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Nanfang Zeng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Siyu Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Qi Miao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail: (XG); (HY)
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People’s Republic of China
- * E-mail: (XG); (HY)
| |
Collapse
|
14
|
Chen Y, Wang Y, Zeng K, Lei YF, Chen XH, Ying SC, Lv XB, Wang Z, Gao R. Knockdown expression of IL-10Rα gene inhibits PRRSV replication and elevates immune responses in PBMCs of Tibetan pig in vitro. Vet Res Commun 2017; 42:11-18. [DOI: 10.1007/s11259-017-9703-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
|
15
|
Chen X, Zhang Q, Bai J, Zhao Y, Wang X, Wang H, Jiang P. The Nucleocapsid Protein and Nonstructural Protein 10 of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Enhance CD83 Production via NF-κB and Sp1 Signaling Pathways. J Virol 2017; 91:e00986-17. [PMID: 28659471 PMCID: PMC5571251 DOI: 10.1128/jvi.00986-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 12/31/2022] Open
Abstract
Porcine reproductive and respiratory syndrome, caused by porcine reproductive and respiratory syndrome virus (PRRSV), is a panzootic disease that is one of the most economically costly diseases to the swine industry. A key aspect of PRRSV virulence is that the virus suppresses the innate immune response and induces persistent infection, although the underlying mechanisms are not well understood. The dendritic cell (DC) marker CD83 belongs to the immunoglobulin superfamily and is associated with DC activation and immunosuppression of T cell proliferation when expressed as soluble CD83 (sCD83). In this study, we show that PRRSV infection strongly stimulates CD83 expression in porcine monocyte-derived DCs (MoDCs) and that the nucleocapsid (N) protein and nonstructural protein 10 (nsp10) of PRRSV enhance CD83 promoter activity via the NF-κB and Sp1 signaling pathways. R43A and K44A amino acid substitution mutants of the N protein suppress the N protein-mediated increase of CD83 promoter activity. Similarly, P192-5A and G214-3A mutants of nsp10 (with 5 and 3 alanine substitutions beginning at residues P192 and G214, respectively) abolish the nsp10-mediated induction of the CD83 promoter. Using reverse genetics, four mutant viruses (rR43A, rK44A, rP192-5A, and rG214-3A) and four revertants [rR43A(R), rK44A(R), rP192-5A(R), and rG214-3A(R)] were generated. Decreased induction of CD83 in MoDCs was observed after infection by mutants rR43A, rK44A, rP192-5A, and rG214-3A, in contrast to the results obtained using rR43A(R), rK44A(R), rP192-5A(R), and rG214-3A(R). These findings suggest that PRRSV N and nsp10 play important roles in modulating CD83 signaling and shed light on the mechanism by which PRRSV modulates host immunity.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically costly pathogens affecting the swine industry. It is unclear how PRRSV inhibits the host's immune response and induces persistent infection. The dendritic cell (DC) marker CD83 belongs to the immunoglobulin superfamily and has previously been associated with DC activation and immunosuppression of T cell proliferation and differentiation when expressed as soluble CD83 (sCD83). In this study, we found that PRRSV infection induces sCD83 expression in porcine MoDCs via the NF-κB and Sp1 signaling pathways. The viral nucleocapsid protein, nonstructural protein 1 (nsp1), and nsp10 were shown to enhance CD83 promoter activity. Amino acids R43 and K44 of the N protein, as well as residues 192 to 196 (P192-5) and 214 to 216 (G214-3) of nsp10, play important roles in CD83 promoter activation. These findings provide new insights into the molecular mechanism of immune suppression by PRRSV.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiaoya Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongxiang Zhao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haiyan Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
16
|
The integrity of PRRSV nucleocapsid protein is necessary for up-regulation of optimal interleukin-10 through NF-κB and p38 MAPK pathways in porcine alveolar macrophages. Microb Pathog 2017; 109:319-324. [PMID: 28457899 DOI: 10.1016/j.micpath.2017.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), a highly contagious disease, has been constantly causing huge economic losses all over the world. PRRS virus (PRRSV) infection results in immunosuppression and IL-10 up-regulation. The relationship between them is still in dispute. Previous studies demonstrated the protein of PRRSV nucleocapsid (N) protein is able to up-regulate IL-10, yet the underlying molecular mechanisms remain unknown. In this study, the expression kinetics of IL-10 up-regulation induced by PRRSV N protein were analyzed in immortalized porcine alveolar macrophages (PAMs). N protein induced IL-10 expression in a time- and dose-dependent manner. Inhibition experiments of signaling pathways suggested NF-κB and p38 MAPK pathways are both involved in N protein-induced IL-10 up-regulation. Besides, the integrity of N protein is essential for significant IL-10 up-regulation. This research is beneficial for further understanding of the interplay between PRRSV and host immune system.
Collapse
|
17
|
Liu X, Hu B, Wang F, Song Y, Fan Z, Wei H, Qiu R, Xu W. Molecular cloning of the rabbit interleukin 6 promoter: Functional characterization of rabbit hemorrhagic disease virus response elements in RK-13 cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:280-288. [PMID: 27492646 DOI: 10.1016/j.dci.2016.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Infection with rabbit hemorrhagic disease virus (RHDV) can cause acute liver failure (ALF), leading to severe mortality in rabbits. Inflammatory response, especially the expression of inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6, may play major roles in mediating and amplifying the ALF. Among these cytokines, IL-6 is a multifunctional cytokine with a central role in various physiological inflammatory and immunological processes. In this study, we found that RHDV infection significantly upregulated IL-6 gene expression in vivo. Next, the rabbit IL-6 promoter was cloned and analyzed. Transfection of full-length RHDV cDNA in RK-13 cells upregulated the activity of the IL-6 promoter. A series of 5' deletion constructs demonstrated that AP-1 (activator protein 1), NF-IL6 (nuclear factor interleukin-6), and NF-κB (nuclear factor kappa B) elements were critical for RHDV-induced IL-6 transcription. Besides, the CREB (cAMP-response element binding protein) element may also play an accessory effect on RHDV-induced IL-6 transcription. Collectively, the results elucidate the mechanism of IL-6 induction, and enrich the RHDV pathogenesis in rabbit.
Collapse
Affiliation(s)
- Xing Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China.
| | - Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Rulong Qiu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Weizhong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| |
Collapse
|
18
|
Rappe JCF, García-Nicolás O, Flückiger F, Thür B, Hofmann MA, Summerfield A, Ruggli N. Heterogeneous antigenic properties of the porcine reproductive and respiratory syndrome virus nucleocapsid. Vet Res 2016; 47:117. [PMID: 27871316 PMCID: PMC5118883 DOI: 10.1186/s13567-016-0399-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus responsible for a widespread contagious disease of domestic pigs with high economic impact. Switzerland is one of the rare PRRSV-free countries in Europe, although sporadic outbreaks have occurred in the past. The PRRSV isolate IVI-1173 from the short outbreak in Switzerland in 2012 was entirely sequenced, and a functional full-length cDNA clone was constructed. Genetic and antigenic characterization of IVI-1173 revealed the importance of amino acid 90 of the nucleocapsid protein N as part of a conformational epitope. IVI-1173 was not detected by SDOW17, a monoclonal antibody against N widely used to detect PRRSV-infected cells. Substitution of alanine at position 90 of N [N(A90)] with a threonine [N(T90)] restored reactivity of vIVI1173-N(T90) to SDOW17 completely. The relevance of this amino acid for the conformational SDOW17 epitope of PRRSV N was further confirmed by the opposite substitution in a functional cDNA clone of the genotype 2 isolate RVB-581. Finally, N proteins from ten genotype 1 strains differing from threonine at position 90 were analysed for reactivity with SDOW17. N(A90) totally disrupted or severely affected the epitope in 7 out of 8 strains tested. Based on these findings, 225 genotype 1 strains were screened for the prevalence of N(A90). N(A90) is rare in classical subtype 1 and in subtype 3 strains, but is frequent in Russian subtype 1 (70%) and in subtype 2 (45%) isolates. In conclusion, this study highlights the variable antigenic properties of N among genotype 1 PRRSV strains.
Collapse
Affiliation(s)
- Julie C F Rappe
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | - Barbara Thür
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Office for Consumer Protection, Canton Aargau, Obere Vorstadt 14, 5000, Aarau, Switzerland
| | - Martin A Hofmann
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Artur Summerfield
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.
| |
Collapse
|
19
|
Ding B, Qin Y, Chen M. Nucleocapsid proteins: roles beyond viral RNA packaging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:213-26. [PMID: 26749541 PMCID: PMC7169677 DOI: 10.1002/wrna.1326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Viral nucleocapsid proteins (NCs) enwrap the RNA genomes of viruses to form NC–RNA complexes, which act as a template and are essential for viral replication and transcription. Beyond packaging viral RNA, NCs also play important roles in virus replication, transcription, assembly, and budding by interacting with viral and host cellular proteins. Additionally, NCs can inhibit interferon signaling response and function in cell stress response, such as inducing apoptosis. Finally, NCs can be the target of vaccines, benefiting from their conserved gene sequences. Here, we summarize important findings regarding the additional functions of NCs as much more than structural RNA‐binding proteins, with specific emphasis on (1) their association with the viral life cycle, (2) their association with host cells, and (3) as ideal candidates for vaccine development. WIREs RNA 2016, 7:213–226. doi: 10.1002/wrna.1326 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications Translation > Translation Regulation
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yali Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
20
|
Transdermal delivery of plasmid encoding truncated nucleocapsid protein enhanced PRRSV-specific immune responses. Vaccine 2015; 34:609-615. [PMID: 26724543 DOI: 10.1016/j.vaccine.2015.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome virus (PRRSV) induces several immunomodulatory mechanisms that resulted in delayed and ineffective anti-viral immune responses. Recently, it has been shown that intradermal immunization of plasmid encoding truncated nucleocapsid protein (pORF7t) could reduce PRRSV-induced immunomodulatory activities and enhances anti-PRRSV immunity in vaccinated pigs. However, intradermal immunization may not be practical for farm setting. Currently, there are several transdermal delivery systems available in the market, although they were not originally designed for plasmid delivery. OBJECTIVES To investigate the potential use of a transdermal delivery system for delivering of pORF7t and its immunological outcomes. METHOD The immunomodulatory effects induced by transdermal delivery of pORF7t were compared with intradermal immunization in an experimental pig model. In addition, immunomodulatory effects of the DNA vaccine were determined in the fattening pigs kept in a PRRSV-positive farm environment, and in the experimental pigs receiving heterologous prime-boost, pORF7t-modified live vaccine (MLV) immunization. RESULT The patterns of PRRSV-specific cellular responses induced by transdermal and intradermal immunizations of pORF7t were similar. Interestingly, the pigs transdermally immunized with pORF7t exhibited higher number of PRRSV-specific CD8(+)IFN-γ(+) cells. Pigs immunized with pORF7t and kept at PRRSV-positive environment exhibited enhanced PRRSV-specific IFN-γ(+) production, reduced numbers of regulatory T lymphocytes (Tregs) and lower lung scores at the end of the finishing period. In the heterologous prime-boost experiment, priming with pORF7t prior to MLV vaccination resulted in significantly higher numbers of CD3(+)IFN-γ(+) subpopulations, lower numbers of PRRSV-specific CD3(+)IL-10(+) cells and Tregs, and rapid antibody responses in immunized pigs. CONCLUSION Transdermal immunization with pORF7t reduced PRRRSV-induced immunomodulatory effects and enhanced long-term PRRSV-specific cellular responses in vaccinated pigs. Furthermore, heterologous DNA-MLV prime-boost immunization significantly improved the quality of PRRSV-specific cellular and humoral immunity. The information could benefit the future development of PRRSV management and control strategies.
Collapse
|
21
|
Fan B, Liu X, Bai J, Li Y, Zhang Q, Jiang P. The 15N and 46R Residues of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Enhance Regulatory T Lymphocytes Proliferation. PLoS One 2015; 10:e0138772. [PMID: 26397116 PMCID: PMC4580451 DOI: 10.1371/journal.pone.0138772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/09/2015] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) negatively modulates host immune responses, resulting in persistent infection and immunosuppression. PRRSV infection increases the number of PRRSV-specific regulatory T lymphocytes (Tregs) in infected pigs. However, the target antigens for Tregs proliferation in PRRSV infection have not been fully understood. In this study, we demonstrated that the highly pathogenic PRRSV (HP-PRRSV) induced more CD4+CD25+Foxp3+ Tregs than classical PRRSV (C-PRRSV) strain. Of the recombinant GP5, M and N proteins of HP-PRRSV expressed in baculovirus expression systems, only N protein induced Tregs proliferation. The Tregs assays showed that three amino-acid regions, 15–21, 42–48 and 88–94, in N protein played an important role in induction of Tregs proliferation with synthetic peptides covering the whole length of N protein. By using reverse genetic methods, it was firstly found that the 15N and 46R residues in PRRSV N protein were critical for induction of Tregs proliferation. The phenotype of induced Tregs closely resembled that of transforming-growth-factor-β-secreting T helper 3 Tregs in swine. These data should be useful for understanding the mechanism of immunity to PRRSV and development of infection control strategies in the future.
Collapse
Affiliation(s)
- Baochao Fan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiaoya Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| |
Collapse
|
22
|
Suradhat S, Wongyanin P, Kesdangsakonwut S, Teankum K, Lumyai M, Triyarach S, Thanawongnuwech R. A novel DNA vaccine for reduction of PRRSV-induced negative immunomodulatory effects: A proof of concept. Vaccine 2015; 33:3997-4003. [PMID: 26079617 DOI: 10.1016/j.vaccine.2015.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/22/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Viral-induced interleukin (IL)-10 and regulatory T lymphocytes (Tregs) are believed to play a major role in shaping the immunological and clinical outcomes following Porcine Reproductive and Respiratory Syndrome virus (PRRSV) infection. Recently, it has been shown that PRRSV nucleocapsid (N) protein can induce IL-10 production which is essential for induction of PRRSV-specific Tregs. We hypothesized that immunity to N protein should reduce PRRSV-induced negative immunomodulatory effects which will be essential for establishing proper anti-PRRSV immunity in infected pigs. OBJECTIVES To investigate the immunomodulatory effects of DNA vaccine encoding a linearized, truncated form of PRRSV-N protein (pORF7t) which was designed to preferentially induce cell-mediated immunity against PRRSV N protein. METHOD Immunomodulatory effects of the novel DNA vaccine were investigated in an experimental vaccinated-challenged model. In addition, long-term immunomodulatory effects of the DNA vaccine were investigated in vaccinated pigs kept at the PRRSV-positive environment until the end of the fattening period. Pigs were vaccinated either prior to or following natural PRRSV infection. RESULT The results indicated that pORF7t could modulate the anti-PRRSV immune responses and promote the control of viral replication in the vaccinated-challenged pigs. Immunized pigs exhibited increased numbers of PRRSV-specific activated CD4(+)CD25(+) lymphocytes, reduced numbers of PRRSV-specific Tregs, and rapid viral clearance following infection. In a long-term study, regardless of the time of vaccination, DNA vaccine could modulate the host immune responses, resulted in enhanced PRRSV-specific IFN-γ producing cells, and reduced numbers of PRRSV-specific Tregs, without evidence of enhanced antibody responses. No vaccine adverse reaction was observed throughout the study. CONCLUSION This study revealed the novel concept that PRRSV-specific immunity can be modulated by induction of cell-mediated immunity against the nucleocapsid protein. This concept could potentially benefit the development of PRRSV management and control strategies.
Collapse
Affiliation(s)
- Sanipa Suradhat
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Pathumwan, Bangkok 10330, Thailand.
| | - Piya Wongyanin
- Inter-department of Medical Microbiology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Sawang Kesdangsakonwut
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Komkrich Teankum
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Mongkol Lumyai
- Thai-Denmark Swine Breeder Public Company Limited, Bang-na, Bangkok 10260, Thailand
| | - Sittikorn Triyarach
- Thai-Denmark Swine Breeder Public Company Limited, Bang-na, Bangkok 10260, Thailand
| | - Roongroje Thanawongnuwech
- Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Effect of amino acids residues 323-433 and 628-747 in Nsp2 of representative porcine reproductive and respiratory syndrome virus strains on inflammatory response in vitro. Virus Res 2015; 208:13-21. [PMID: 26043979 DOI: 10.1016/j.virusres.2015.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/22/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that is responsible for large economic losses in the swine industry worldwide. In PRRSV strains, many genetic variations occur in the central hypervariable region (HV2) of the Nsp2 gene, which encodes non-structural protein 2. For example, PRRSV strains VR2332, Em2007, MN184C, and TJM-F92 contained variations in the Nsp2 sequences and exhibited differing levels of virulence in adult pigs. However, the role of HV2 with respect to PRRSV immunity is unclear. In this study, four recombinant PRRSV strains (rBB/+30aa, rBB/Δ68aa, rBB/Δ111aa, and rBB/Δ120aa) were rescued using a highly pathogenic type 2 PRRSV cDNA clone (pBB). All rescued strains displayed similar growth characteristics to the parental rBB virus in pulmonary alveolar macrophages (PAMs). Expression levels of inflammatory cytokines IL-β, IL-6, and TNF-α were significantly lower, at the mRNA and protein level, for groups infected with rBB/Δ111aa and rBB/Δ120aa than those in the rBB group. Levels of these inflammatory cytokines in the rBB/+30aa and rBB/Δ68aa groups were not significantly different with those in the rBB group. Phosphorylation levels of IκB were decreased to a greater extent in the rBB/Δ111aa and rBB/Δ120aa groups compared with those in the rBB/+30aa, rBB/Δ68aa, and rBB groups. Our results indicate that amino acids 323-433 and 628-747 of Nsp2 failed to exert significant effects on PRRSV replication in PAMs, but modulated the expression of inflammatory cytokines in vitro.
Collapse
|