1
|
Kong W, Tao Y, Fan Q, Xie L, Chen C, Du K, Wei W. Changes and Treatment Prognosis of Aqueous Humor Cytokine Concentrations of Patients with Acquired Immune Deficiency Syndrome Complicated by Cytomegalovirus Retinitis. J Ocul Pharmacol Ther 2022; 38:695-702. [PMID: 36378859 DOI: 10.1089/jop.2022.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose: The purposes of this study were to investigate cytokine changes in the aqueous humor after treatment of acquired immune deficiency syndrome (AIDS) complicated with cytomegalovirus retinitis (CMVR) and to determine whether these changes are useful prognostic indicators. Methods: This study included 12 patients (15 eyes) undergoing treatment for AIDS and CMVR. The patients received intravitreal injections and systemic intravenous treatment with ganciclovir and foscarnet sodium. The aqueous humor of each eye was sampled before treatment and before the third and fifth injections. The samples were tested to determine the concentrations of each of 27 cytokines using the Luminex 200™ liquid phase chip. Results: The concentrations of cytokines interleukin (IL)-1rα (P = 0.002), IL-1b (P = 0.001), IL-8 (P = 0.001), basic fibroblast growth factor (bFGF) (P < 0.001), interferon γ-induced protein 10 (IP-10) (P = 0.001), and tumor necrosis factor (TNF)-α (P = 0.004) in the aqueous humor before the third and fifth injections were significantly lower after than before treatment. The reductions in TNF-α (P = 0.028) and IL-1b (P = 0.028) concentrations after treatment were statistically significant compared with the postoperative visual acuity improvement (≥3 lines and <3 lines). The difference in TNF-α (P = 0.018) level before and after treatment (the difference between before treatment and before the fifth intravitreal injection) was also statistically significant compared with the number of injections (≥6 times and <6 times). Conclusion: The cytokines IL-1rα, IL-1b, IL-8, bFGF, IP-10, and TNF-α may offer new avenues for evaluation of therapeutic effect, and TNF-α and IL-1b may be important cytokines for prognostic evaluation (based on visual acuity and the number of injections) in patients suffering from AIDS and CMVR. Clinical Trial Registration: Number: ChiCTR2200056955.
Collapse
Affiliation(s)
- Wenjun Kong
- Department of Opthalmology, Beijing You'an Hosptial, Capital Medical University, Beijing, China
| | - Yong Tao
- Department of Opthalmology, Beijing Chaoyang Hosptial, Capital Medical University, Beijing, China
| | - Qian Fan
- Department of Opthalmology, Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Lianyong Xie
- Department of Opthalmology, Beijing You'an Hosptial, Capital Medical University, Beijing, China
| | - Chao Chen
- Department of Opthalmology, Beijing You'an Hosptial, Capital Medical University, Beijing, China
| | - Kuifang Du
- Department of Opthalmology, Beijing You'an Hosptial, Capital Medical University, Beijing, China
| | - Wenbin Wei
- Department of Opthalmology, Beijing Tongren Hosptial, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Daei Sorkhabi A, Sarkesh A, Saeedi H, Marofi F, Ghaebi M, Silvestris N, Baradaran B, Brunetti O. The Basis and Advances in Clinical Application of Cytomegalovirus-Specific Cytotoxic T Cell Immunotherapy for Glioblastoma Multiforme. Front Oncol 2022; 12:818447. [PMID: 35515137 PMCID: PMC9062077 DOI: 10.3389/fonc.2022.818447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
A high percentage of malignant gliomas are infected by human cytomegalovirus (HCMV), and the endogenous expression of HCMV genes and their products are found in these tumors. HCMV antigen expression and its implications in gliomagenesis have emerged as a promising target for adoptive cellular immunotherapy (ACT) strategies in glioblastoma multiforme (GB) patients. Since antigen-specific T cells in the tumor microenvironments lack efficient anti-tumor immune response due to the immunosuppressive nature of glioblastoma, CMV-specific ACT relies on in vitro expansion of CMV-specific CD8+ T cells employing immunodominant HCMV antigens. Given the fact that several hurdles remain to be conquered, recent clinical trials have outlined the feasibility of CMV-specific ACT prior to tumor recurrence with minimal adverse effects and a substantial improvement in median overall survival and progression-free survival. This review discusses the role of HCMV in gliomagenesis, disease prognosis, and recent breakthroughs in harnessing HCMV-induced immunogenicity in the GB tumor microenvironment to develop effective CMV-specific ACT.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| |
Collapse
|
3
|
Lau B, Kerr K, Gu Q, Nightingale K, Antrobus R, Suárez NM, Stanton RJ, Wang ECY, Weekes MP, Davison AJ. Human Cytomegalovirus Long Non-coding RNA1.2 Suppresses Extracellular Release of the Pro-inflammatory Cytokine IL-6 by Blocking NF-κB Activation. Front Cell Infect Microbiol 2020; 10:361. [PMID: 32793512 PMCID: PMC7387431 DOI: 10.3389/fcimb.2020.00361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts of >200 nucleotides that are not translated into functional proteins. Cellular lncRNAs have been shown to act as regulators by interacting with target nucleic acids or proteins and modulating their activities. We investigated the role of RNA1.2, which is one of four major lncRNAs expressed by human cytomegalovirus (HCMV), by comparing the properties of parental virus in vitro with those of deletion mutants lacking either most of the RNA1.2 gene or only the TATA element of the promoter. In comparison with parental virus, these mutants exhibited no growth defects and minimal differences in viral gene expression in human fibroblasts. In contrast, 76 cellular genes were consistently up- or down-regulated by the mutants at both the RNA and protein levels at 72 h after infection. Differential expression of the gene most highly upregulated by the mutants (Tumor protein p63-regulated gene 1-like protein; TPRG1L) was confirmed at both levels by RT-PCR and immunoblotting. Consistent with the known ability of TPRG1L to upregulate IL-6 expression via NF-κB stimulation, RNA1.2 mutant-infected fibroblasts were observed to upregulate IL-6 in addition to TPRG1L. Comparable surface expression of TNF receptors and responsiveness to TNF-α in cells infected by the parental and mutant viruses indicated that activation of signaling by TNF-α is not involved in upregulation of IL-6 by the mutants. In contrast, inhibition of NF-κB activity and knockdown of TPRG1L expression reduced the extracellular release of IL-6 by RNA1.2 mutant-infected cells, thus demonstrating that upregulation of TPRG1L activates NF-κB. The levels of MCP-1 and CXCL1 transcripts were also increased in RNA1.2 mutant-infected cells, further demonstrating the presence of active NF-κB signaling. These results suggest that RNA1.2 plays a role in manipulating intrinsic NF-κB-dependent cytokine and chemokine release during HCMV infection, thereby impacting downstream immune responses.
Collapse
Affiliation(s)
- Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Eddie C. Y. Wang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
4
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
miR-138 promotes migration and tube formation of human cytomegalovirus-infected endothelial cells through the SIRT1/p-STAT3 pathway. Arch Virol 2017; 162:2695-2704. [DOI: 10.1007/s00705-017-3423-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
6
|
Zhao J, Poelaert KCK, Van Cleemput J, Nauwynck HJ. CCL2 and CCL5 driven attraction of CD172a + monocytic cells during an equine herpesvirus type 1 (EHV-1) infection in equine nasal mucosa and the impact of two migration inhibitors, rosiglitazone (RSG) and quinacrine (QC). Vet Res 2017; 48:14. [PMID: 28241864 PMCID: PMC5327560 DOI: 10.1186/s13567-017-0419-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 11/10/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion and neurological disorders in horses. Besides epithelial cells, CD172a+ monocytic cells become infected with EHV-1 in the respiratory mucosa and transport the virus from the apical side of the epithelium to the lamina propria en route to the lymph and blood circulation. Whether CD172a+ monocytic cells are specifically recruited to the infection sites in order to pick up virus is unknown. In our study, equine nasal mucosa explants were inoculated with EHV-1 neurological strains 03P37 and 95P105 or the non-neurological strains 97P70 and 94P247 and the migration of monocytic cells was examined by immunofluorescence. Further, the role of monokines CCL2 and CCL5 was determined and the effect of migration inhibitors rosiglitazone (RSG) or quinacrine was analyzed. It was shown that with neurological strains but not with the non-neurological strains, CD172a+ cells specifically migrated towards EHV-1 infected regions and that CCL2 and CCL5 were involved. CCL2 started to be expressed in infected epithelial cells at 24 h post-incubation (hpi) and CCL5 at 48 hpi, which corresponded with the CD172a+ migration. RSG treatment of EHV-1-inoculated equine nasal mucosa had no effect on the virus replication in the epithelium, but decreased the migration of CD172a+ cells in the lamina propria. Overall, these findings bring new insights in the early pathogenesis of EHV-1 infections, illustrate differences between neurological and non-neurological strains and show the way for EHV-1 treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Katrien C K Poelaert
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Jolien Van Cleemput
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
7
|
Iyer JV, Agrawal R, Yeo TK, Gunasekeran DV, Balne PK, Lee B, Au VB, Connolly J, Teoh SCB. Aqueous humor immune factors and cytomegalovirus (CMV) levels in CMV retinitis through treatment - The CRIGSS study. Cytokine 2016; 84:56-62. [PMID: 27239802 DOI: 10.1016/j.cyto.2016.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/29/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aims to perform comprehensive longitudinal immune factor analysis of aqueous humor in relation to the aqueous CMV viral load and systemic CD4 counts during treatment of patients with co-infection of HIV and CMVR. METHODS Aqueous humor samples were collected from 17 HIV-positive patients with CMVR scheduled to undergo weekly intravitreal ganciclovir therapy as part of the prospective CMV Retinitis Intravitreal Ganciclovir Singapore Study (CRIGSS) over the course of 1year. Full data across all the 4 time points was obtained and analyzed for CMV DNA viral load, 41 cytokine and chemokine factors using real-time PCR with the FlexMAP 3D (Luminex®) platform and assessed using the Milliplex Human Cytokine® kit. RESULTS The following immune factors (Spearman correlation coefficient r value in parenthesis, p<0.05) showed strong correlation with CMV DNA load in the aqueous - MCP-1 (0.80, IFN-g (0.83), IP-10 (0.82), IL-8 (0.81), fractalkine (0.73), RANTES (0.68) - while the following showed moderate correlation - PDGF-AA (0.58), Flt-3L (0.59) and G-CSF (0.53). Only PDGF-AA revealed a statistically significant negative correlation with serum CD4 levels (r=-0.74). CONCLUSION Immune factors that correlate with intraocular CMV DNA load are identified. They are indicative of a Th1 and monocyte-macrophage mediated response, and exhibit a decreasing trend longitudinally through the course of treatment. These factors may be an important new consideration in individualizing the treatment of patients with CMVR.
Collapse
Affiliation(s)
- Jayant Venkatramani Iyer
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; Singapore National Eye Center, Singapore.
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Tun Kuan Yeo
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | | | | | - Bernett Lee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Veonice Bijin Au
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - John Connolly
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore; Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Stephen C B Teoh
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| |
Collapse
|