1
|
Vo-Quang E, Pawlotsky JM. 'Unusual' HCV genotype subtypes: origin, distribution, sensitivity to direct-acting antiviral drugs and behaviour on antiviral treatment and retreatment. Gut 2024; 73:1570-1582. [PMID: 38782565 PMCID: PMC11347264 DOI: 10.1136/gutjnl-2024-332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The high genetic diversity of hepatitis C virus (HCV) has led to the emergence of eight genotypes and a large number of subtypes in limited geographical areas. Currently approved pangenotypic DAA regimens have been designed and developed to be effective against the most common subtypes (1a, 1b, 2a, 2b, 2c, 3a, 4a, 5a and 6a). However, large populations living in Africa and Asia, or who have migrated from these regions to industrialised countries, are infected with 'unusual', non-epidemic HCV subtypes, including some that are inherently resistant to currently available direct-acting antiviral (DAA) drugs due to the presence of natural polymorphisms at resistance-associated substitution positions. In this review article, we describe the origin and subsequent global spread of HCV genotypes and subtypes, the current global distribution of common and unusual HCV subtypes, the polymorphisms naturally present in the genome sequences of unusual HCV subtypes that may confer inherently reduced susceptibility to DAA drugs and the available data on the response of unusual HCV subtypes to first-line HCV therapy and retreatment. We conclude that the problem of unusual HCV subtypes that are inherently resistant to DAAs and its threat to the global efforts to eliminate viral hepatitis are largely underestimated and warrant vigorous action.
Collapse
Affiliation(s)
- Erwan Vo-Quang
- National Reference Centre for Viral Hepatitis B, C and D, Department of Virology, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
- Institut Mondor de Recherche Biomédicale (INSERM U955), Créteil, France
- Department of Hepatology, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
| | - Jean-Michel Pawlotsky
- National Reference Centre for Viral Hepatitis B, C and D, Department of Virology, Hôpital Henri Mondor (AP-HP), Université Paris-Est, Créteil, France
- Institut Mondor de Recherche Biomédicale (INSERM U955), Créteil, France
| |
Collapse
|
2
|
Jiang H, Nair V, Sun Y, Ding C. The diverse roles of peroxisomes in the interplay between viruses and mammalian cells. Antiviral Res 2024; 221:105780. [PMID: 38092324 DOI: 10.1016/j.antiviral.2023.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Peroxisomes are ubiquitous organelles found in eukaryotic cells that play a critical role in the oxidative metabolism of lipids and detoxification of reactive oxygen species (ROS). Recently, the role of peroxisomes in viral infections has been extensively studied. Although several studies have reported that peroxisomes exert antiviral activity, evidence indicates that viruses have also evolved diverse strategies to evade peroxisomal antiviral signals. In this review, we summarize the multiple roles of peroxisomes in the interplay between viruses and mammalian cells. Focus is given on the peroxisomal regulation of innate immune response, lipid metabolism, ROS production, and viral regulation of peroxisomal biosynthesis and degradation. Understanding the interactions between peroxisomes and viruses provides novel insights for the development of new antiviral strategies.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Venugopal Nair
- Avian Oncogenic Viruses Group, UK-China Centre of Excellence in Avian Disease Research, The Pirbright Institute, Pirbright, Guildford, Surrey, United Kingdom
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China.
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
3
|
Varanda J, Santos JM. It Was Not the Perfect Storm: The Social History of the HIV-2 Virus in Guinea-Bissau. Trop Med Infect Dis 2023; 8:tropicalmed8050261. [PMID: 37235309 DOI: 10.3390/tropicalmed8050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The perfect storm model that was elaborated for the HIV-1M pandemic has also been used to explain the emergence of HIV-2, a second human immunodeficiency virus-acquired immunodeficiency syndrome (HIV-AIDS) that became an epidemic in Guinea-Bissau, West Africa. The use of this model creates epidemiological generalizations, ecological oversimplifications and historical misunderstandings as its assumptions-an urban center with explosive population growth, a high level of commercial sex and a surge in STDs, a network of mechanical transport and country-wide, en masse mobile campaigns-are absent from the historical record. This model fails to explain how the HIV-2 epidemic actually came about. This is the first study to conduct an exhaustive examination of sociohistorical contextual developments and align them with environmental, virological and epidemiological data. The interdisciplinary dialogue indicates that the emergence of the HIV-2 epidemic piggybacked on local sociopolitical transformations. The war's indirect effects on ecological relations, mobility and sociability were acute in rural areas and are a key to the HIV-2 epidemic. This setting had the natural host of the virus, the population numbers, the mobility trends and the use of technology on a scale needed to foster viral adaptation and amplification. The present analysis suggests new reflections on the processes of zoonotic spillovers and disease emergence.
Collapse
Affiliation(s)
- Jorge Varanda
- Centre for Research in Anthropology (CRIA-UC), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine-NOVA-Lisbon (GHTM-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - José Maurício Santos
- Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, 1600-276 Lisboa, Portugal
- Associated Laboratory TERRA, 1349-017 Lisboa, Portugal
| |
Collapse
|
4
|
Postigo-Hidalgo I, Magassouba N, Soropogui B, Fichet-Calvet E, Drexler JF. Association of Hepatitis C Virus Genotype 2 Spread With Historic Slave Trade and Commerce Routes in Western Africa. Virus Evol 2022; 8:veac066. [DOI: 10.1093/ve/veac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The hepatitis C virus genotype 2 (HCV2) is endemic in Western and Central Africa. The HCV2 evolutionary origins remain uncertain due to the paucity of available genomes from African settings. In this study, we investigated the molecular epidemiology of HCV infections in rural Guinea, Western Africa, during 2004 and 2014. Broadly reactive nested RT-PCR-based screening of sera from 1,571 asymptomatic adults resulted in the detection of 25 (1.5%, 95% CI 0.9-2.3) positive samples, with a median viral load of 2.54E+05 IU/mL (IQR 6.72E+05). HCV-infected persons had a median age of 47 years and 62.5% were male and 37.5% female. The full polyprotein-encoding genes were retrieved by a combination of high throughput and Sanger sequencing from 17 samples showing sufficiently high viral loads. Phylogenetic analysis and sequence distances ≥13% averaged over the polyprotein genes compared to other HCV2 subtypes revealed 9 previously unknown HCV2 subtypes. The time to the most recent common ancestor of the Guinean HCV2 strains inferred in a Bayesian framework was 493 years (95% HPD 453-532). Most of the Guinean strains clustered poorly by location both on the level of sampling sites within Guinea and the level of countries in the phylogenetic reconstructions. Ancestral state reconstruction provided decisive support (Bayes factor >100) for an origin of HCV2 in Western Africa. Phylogeographic reconstructions in a Bayesian framework pointed to a radial diffusion of HCV2 from Western African regions encompassing today’s countries like Ghana, Guinea Bissau, or Burkina Faso, to Central and Northern African regions that took place from the 16th century onwards. The spread of HCV2 coincided in time and space with the main historic slave trade and commerce routes, supported by Bayesian tip-association significance testing (p = 0.01). Our study confirms the evolutionary origins of HCV2 in Western Africa and provides a potential link between historic human movements and HCV2 dispersion.
Collapse
Affiliation(s)
- Ignacio Postigo-Hidalgo
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology , Berlin, Germany
| | | | - Barré Soropogui
- Laboratoire du Projet des Fièvres Hémorragiques de Guinée (PFHG) , Conakry, Guinea
| | | | - Jan Felix Drexler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology , Berlin, Germany
- German Centre for Infection Research (DZIF), Associated partner site Charité Universitätsmedizin Berlin , Germany
| |
Collapse
|
5
|
Ebranati E, Mancon A, Airoldi M, Renica S, Shkjezi R, Dragusha P, Della Ventura C, Ciccaglione AR, Ciccozzi M, Bino S, Tanzi E, Micheli V, Riva E, Galli M, Zehender G. Time and Mode of Epidemic HCV-2 Subtypes Spreading in Europe: Phylodynamics in Italy and Albania. Diagnostics (Basel) 2021; 11:diagnostics11020327. [PMID: 33671355 PMCID: PMC7922790 DOI: 10.3390/diagnostics11020327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/21/2023] Open
Abstract
Hepatitis C virus (HCV) genotype 2 causes about 10% of global infections and has the most variable circulation profile in Europe. The history of “endemic” HCV-2 subtypes has been satisfactorily reconstructed, instead there is little information about the recent spread of the “epidemic” subtypes, including HCV-2c. To investigate the origin and dispersion pathways of HCV-2c, 245 newly characterized Italian and Albanian HCV-2 NS5B sequences were aligned with 247 publicly available sequences and included in phylogeographic and phylodynamic analyses using the Bayesian framework. Our findings show that HCV-2c was the most prevalent subtype in Italy and Albania. The phylogeographic analysis suggested an African origin of HCV-2c before it reached Italy about in the 1940s. Phylodynamic analysis revealed an exponential increase in the effective number of infections and Re in Italy between the 1940s and 1960s, and in Albania between the 1990s and the early 2000s. It seems very likely that HCV-2c reached Italy from Africa at the time of the second Italian colonization but did not reach Albania until the period of dramatic migration to Italy in the 1990s. This study contributes to reconstructing the history of the spread of epidemic HCV-2 subtypes to Europe.
Collapse
Affiliation(s)
- Erika Ebranati
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
| | - Alessandro Mancon
- Unit of Microbiology, Hospital Sacco of Milan, 20157 Milan, Italy; (A.M.); (V.M.)
| | - Martina Airoldi
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
| | - Silvia Renica
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
| | - Renata Shkjezi
- Faculty of Medicine and Surgery, Catholic University “Our Lady of the Good Counsel”, 1001 Tirana, Albania; (R.S.); (P.D.)
| | - Pranvera Dragusha
- Faculty of Medicine and Surgery, Catholic University “Our Lady of the Good Counsel”, 1001 Tirana, Albania; (R.S.); (P.D.)
| | - Carla Della Ventura
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
| | - Anna Rita Ciccaglione
- Viral Hepatitis Unit, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Roma, Italy;
| | - Silvia Bino
- National Institute of Health, 1001 Tirana, Albania;
| | - Elisabetta Tanzi
- Department of Biomedical Sciences for the Health, University of Milan, 20133 Milan, Italy;
| | - Valeria Micheli
- Unit of Microbiology, Hospital Sacco of Milan, 20157 Milan, Italy; (A.M.); (V.M.)
| | - Elisabetta Riva
- Laboratory of Virology, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-503-19770
| |
Collapse
|
6
|
Nii-Trebi NI, Brown CA, Osei YD, Ampofo WK, Nyarko AK. Core encoding sequences of Hepatitis C virus in Ghanaian blood donors are predominantly mosaics of different genotype 2 strains and cannot distinguish subtypes. BMC Infect Dis 2019; 19:533. [PMID: 31208352 PMCID: PMC6580569 DOI: 10.1186/s12879-019-4155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background Distribution of Hepatitis C virus (HCV) genotypes varies significantly worldwide. Genomic diversity between genotypes has implications for treatment, vaccine development and optimal design of HCV diagnostic assays. Molecular characterization of HCV in different geographical areas is therefore very essential for management and public health control of HCV infection. This study investigated the molecular epidemiology and characteristics of HCV genotypes in healthy individuals in Accra, Ghana. Methods An experimental study was carried out on blood samples obtained from voluntary blood donors. Two hundred samples were initially screened for HCV antibodies and infection was confirmed by RNA detection through RT-PCR of the 5′-untranslated region (5’UTR). The core gene sequences were analysed for HCV genotype determination by genotype-specific PCR; and then by cloning and direct sequencing followed by phylogenetic analysis. The sequences were further analysed in detail by similarity plotting. Results Molecular diagnosis confirmed the presence of HCV RNA in 2 out of 200 (1%) blood donors. Initial genotyping by genotype-specific PCR identified all two infections as subtypes 2a and 2b of genotype 2. Extensive evolutionary and genetic analyses indicated two epidemiological profiles. First, phylogenetic tree topologies clearly showed that, collectively, the core sequences of the Ghanaian HCV isolates belong to a single, distinct genetic group within HCV genotype 2 cluster, with high genetic similarity and rapid sequence variation in a single individual. Second, the sequences are mosaics comprising 2e and other genotype 2 subtype fragments. The analyses underscore a unique and complex HCV genotype 2 core sequence profile of the Ghanaian isolates. Conclusions Analysis of HCV core encoding sequences from Ghanaian blood donors in Accra confirmed predominance of genotype 2 HCV among healthy individuals. However, the isolates could not be classified into subtypes, possibly due to their complex sequence pattern that might suggest high mutability of the prevailing genotype. The core region of Ghanaian HCV therefore may not be suitable for distinguishing subtypes. These findings extend those from previous studies and thus underscore the need to search for subtype-informative region of Ghanaian HCV to elucidate the genetic diversity and factors determining outcome of HCV infections in Ghana.
Collapse
Affiliation(s)
- Nicholas Israel Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Charles Addoquaye Brown
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Yaa Difie Osei
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - William Kwabena Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Alexander Kwadwo Nyarko
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
7
|
Assih M, Ouattara AK, Diarra B, Yonli AT, Compaore TR, Obiri-Yeboah D, Djigma FW, Karou S, Simpore J. Genetic diversity of hepatitis viruses in West-African countries from 1996 to 2018. World J Hepatol 2018; 10:807-821. [PMID: 30533182 PMCID: PMC6280160 DOI: 10.4254/wjh.v10.i11.807] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/10/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
The severity of hepatic pathology and the response to treatment depend on the hepatitis virus genotype in the infected host. The objective of this review was to determine the distribution of hepatitis virus genotypes in West African countries. A systematic review of the literature in PubMed, Google Scholar and Science Direct was performed to identify 52 relevant articles reporting hepatitis A, B, C, D, E and G viruses genotypes. Hepatitis B virus (HBV) genotype E with a prevalence of 90.6% (95%CI: 0.891-0.920) found in this review, is characterized by low genetic diversity. Hepatitis C virus (HCV) genotypes 1 and 2 represented 96.4% of HCV infections in West African countries, while hepatitis delta virus, hepatitis A virus, hepatitis G virus genotypes 1 and HEV genotype 3 were reported in some studies in Ghana and Nigeria. HBV genotype E is characterized by high prevalence, low genetic diversity and wide geographical distribution. Further studies on the clinical implications of HBV genotype E and HCV genotypes 1 and 2 are needed for the development of an effective treatment against this viral hepatitis in West African countries. Surveillance of the distribution of different genotypes is also needed to reduce recombination rates and prevent the emergence of more virulent viral strains.
Collapse
Affiliation(s)
- Maléki Assih
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Abdoul Karim Ouattara
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso.
| | - Birama Diarra
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Albert Theophane Yonli
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Tegwindé Rebeca Compaore
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast 00233, Ghana
| | - Florencia Wendkuuni Djigma
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Simplice Karou
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA-UL), Universite de Lome, Lome 00229, Togo
| | - Jacques Simpore
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| |
Collapse
|
8
|
Hepatitis C Virus (HCV) RNA screening and sequencing using dry plasma spots. J Clin Virol 2017; 97:18-21. [PMID: 29080433 DOI: 10.1016/j.jcv.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/01/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND HCV RNA screening of large sample repositories provides data on HCV epidemic patterns that may help guide control policies. In resource-limited settings, shipment of frozen samples to molecular laboratory facilities and testing of individual samples may be prohibitively expensive. OBJECTIVE Our aim was to detect and sequence HCV RNA in a large HIV-positive cohort from Kumasi, Ghana, using pooled and individual dried plasma spots (DPS) produced from samples stored at -80°C. STUDY DESIGN In the validation phase, replicate DPS were prepared with six dilutions (500-10,000 IU/ml) of the 4th International Standard for HCV and tested in three independent experiments. In the testing phase, DPS prepared with plasma samples from 875 HIV-positive subjects were pooled for screening, followed by testing of individual DPS of positive pools. Input from individual DPS was two 6mm punches; pools comprised two punches from each of five DPS. Genotypes were determined by Sanger sequencing of HCV core and NS5B. RESULTS With the dilution series, sensitivity of HCV RNA detection was ≥2500 IU/ml. Replicate DPS gave intra-assay and inter-assay coefficients of variation ≤1.4%. With the stored samples, HCV RNA was detected in 5/175 DPS pools and in one DPS from each positive pool, yielding a HCV RNA prevalence of 5/875 (0.57%; 95% confidence interval 0.07-1.07%). The five samples were sequenced as HCV genotypes 2l and 2r. DISCUSSION DPS allowed reproducible HCV RNA detection, and pooling effectively contained the cost and labour of screening a previously untested, low-prevalence cohort. DPS were also suitable for HCV sequencing.
Collapse
|
9
|
Hundie GB, Raj VS, GebreMichael D, Pas SD, Haagmans BL. Genetic diversity of hepatitis C virus in Ethiopia. PLoS One 2017; 12:e0179064. [PMID: 28570623 PMCID: PMC5453619 DOI: 10.1371/journal.pone.0179064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is genetically highly divergent and classified in seven major genotypes and approximately hundred subtypes. These genotypes/subtypes have different geographic distribution and response to antiviral therapy. In Ethiopia, however, little is known about their molecular epidemiology and genetic diversity. The aim of this study was to investigate the distribution and genetic diversity of HCV genotypes/subtypes in Ethiopia, using 49 HCV RNA positive samples. HCV genotypes and subtypes were determined based on the sequences of the core and the nonstructural protein 5B (NS5B) genomic regions. Phylogenetic analysis revealed that the predominant was genotype 4 (77.6%) followed by 2 (12.2%), 1 (8.2%), and 5 (2.0%). Seven subtypes were identified (1b, 1c, 2c, 4d, 4l, 4r and 4v), with 4d (34.7%), 4r (34.7%) and 2c (12.2%) as the most frequent subtypes. Consistent with the presence of these subtypes was the identification of a potential recombinant virus. One strain was typed as genotype 2c in the NS5B region sequence and genotype 4d in the core region. In conclusion, genotype 4 HCV viruses, subtypes 4d and 4r, are most prevalent in Ethiopia. This genotype is considered to be difficult to treat, thus, our finding has an important impact on the development of treatment strategies and patient management in Ethiopia.
Collapse
Affiliation(s)
| | - V. Stalin Raj
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Suzan D. Pas
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
10
|
Wu Z, Cui L, Zhao W, Yang D, Chen H, Wang R, Wang X, Zhang L, He T. Molecular epidemiology of hepatitis C infections in Ningxia, China: genotype, phylogeny and mutation analysis. Virol J 2016; 13:172. [PMID: 27756381 PMCID: PMC5070218 DOI: 10.1186/s12985-016-0635-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
Background Current prevalence and genotype distribution of hepatitis C virus (HCV) infection remain unknown in Ningxia, northwest China. Methods From June to December 2013, 13,022 individuals were screened in Ningxia HIV/AIDS Sentinel Surveillance System, with their demographic features collected and serum samples tested for HCV antibody. Sero-positive drug users were further subjected to sequencing of NS5B and Core regions of HCV. Results The anti-HCV prevalence was 0.34 % among individuals without history of drug use, while it was 15.80 % among drug users. Of 79 NS5B sequences amplified from drug users, 64 (81.0 %) were male and 51 (64.0 %) were injection drug users (IDUs). Subtype 3a (40.5 %) and 1b (25.3 %) were the most predominant subtypes, followed in frequency by 3b (10.1 %) and 2a (7.6 %). Subtype distribution has no significant difference between injection and non-injection drug users. Based on phylogeographic analysis, HCV strains in Ningxia IDUs were mainly originated from two sites, Yunnan province (in southwest China bordering Myanmar, also known as Burma) and Xinjiang Autonomous Region (in northwest China on the border of Central Asia), which are the two major drug trafficking originates in China. Previously reported drug-resistance mutations were also scanned in this treatment-naïve population. Amino acid substitutions (C316N) associated with direct anti-viral agents (DAA) resistance were identified in the NS5B region in seven samples. Conclusion This study is the first to reveal the existence of multiple genotypes of HCV in Ningxia, an inland province in northwest China, suggesting the rapid spreading of the virus. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0635-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhonglan Wu
- Ningxia Center for Disease Control and Prevention, Ningxia, 750001, China
| | - Lijia Cui
- Tsinghua University School of Medicine, Beijing, 100084, China
| | - Weiming Zhao
- Ningxia Medical University School of Public Health and Management, Ningxia, 750001, China
| | - Dongzhi Yang
- Ningxia Center for Disease Control and Prevention, Ningxia, 750001, China
| | - Hui Chen
- Ningxia Center for Disease Control and Prevention, Ningxia, 750001, China
| | - Ruiqing Wang
- Wuzhong Center of Disease Control and Prevention, Ningxia, 751100, China
| | - Xuemin Wang
- Ningxia Center for Disease Control and Prevention, Ningxia, 750001, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Tianhua He
- Tsinghua University School of Medicine, Beijing, 100084, China.
| |
Collapse
|
11
|
Salmona M, Caporossi A, Simmonds P, Thélu MA, Fusillier K, Mercier-Delarue S, De Castro N, LeGoff J, Chaix ML, François O, Simon F, Morand P, Larrat S, Maylin S. First next-generation sequencing full-genome characterization of a hepatitis C virus genotype 7 divergent subtype. Clin Microbiol Infect 2016; 22:947.e1-947.e8. [PMID: 27515394 DOI: 10.1016/j.cmi.2016.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
Abstract
We report the near-full-length genome sequence of a hepatitis C virus (HCV) isolate from a man originating from Democratic Republic of Congo, the genotype of which could not be determined by the routinely used sequencing technique. The near-complete genome sequence of this variant BAK1 was obtained by the association of two next-generation sequencing technologies. Evolutionary analysis indicates that this isolate, BAK1, could be the first reported strain belonging to a new HCV-7b subtype. This new subtype has been incorrectly identified as genotype 2 by the Versant HCV Genotype 2.0 assay (LiPA). The requirement of three independent isolates has been filled, and a new subtype can be assigned. More examples of HCV-7 are required to better understand its origin, its pathogenicity and its relationship with genotype 2.
Collapse
Affiliation(s)
- M Salmona
- Université Paris Diderot, Pres Sorbone Paris Cité, Microbiology Laboratory, Hôpital Universitaire Saint-Louis, France
| | - A Caporossi
- Clinical Investigation Center, Public Health, UJF-CNRS, Centre Hospitalier Universitaire de Grenoble-Alpes, France; TIMC-IMAG Laboratory, Université de Grenoble Alpes, UMR 5525, Saint-Martin-d'Hères, France
| | - P Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M-A Thélu
- Hepato-Gastroenterology Department, Centre Hospitalier Universitaire de Grenoble-Alpes, France
| | - K Fusillier
- Virology Laboratory, Institut de Biologie et Pathologie, Centre Hospitalier Universitaire de Grenoble-Alpes, France
| | - S Mercier-Delarue
- Université Paris Diderot, Pres Sorbone Paris Cité, Microbiology Laboratory, Hôpital Universitaire Saint-Louis, France
| | - N De Castro
- Infectious Diseases Department, Hôpital Saint-Louis, Paris, France
| | - J LeGoff
- Université Paris Diderot, Pres Sorbone Paris Cité, Microbiology Laboratory, Hôpital Universitaire Saint-Louis, France
| | - M-L Chaix
- Université Paris Diderot, Pres Sorbone Paris Cité, Microbiology Laboratory, Hôpital Universitaire Saint-Louis, France
| | - O François
- TIMC-IMAG Laboratory, Université de Grenoble Alpes, UMR 5525, Saint-Martin-d'Hères, France
| | - F Simon
- Université Paris Diderot, Pres Sorbone Paris Cité, Microbiology Laboratory, Hôpital Universitaire Saint-Louis, France
| | - P Morand
- Virology Laboratory, Institut de Biologie et Pathologie, Centre Hospitalier Universitaire de Grenoble-Alpes, France; IBS, UMR 5075 CEA-CNRS-UGA, Grenoble, France
| | - S Larrat
- Virology Laboratory, Institut de Biologie et Pathologie, Centre Hospitalier Universitaire de Grenoble-Alpes, France; IBS, UMR 5075 CEA-CNRS-UGA, Grenoble, France
| | - S Maylin
- Université Paris Diderot, Pres Sorbone Paris Cité, Microbiology Laboratory, Hôpital Universitaire Saint-Louis, France.
| |
Collapse
|
12
|
Forbi JC, Layden JE, Phillips RO, Mora N, Xia GL, Campo DS, Purdy MA, Dimitrova ZE, Owusu DO, Punkova LT, Skums P, Owusu-Ofori S, Sarfo FS, Vaughan G, Roh H, Opare-Sem OK, Cooper RS, Khudyakov YE. Next-Generation Sequencing Reveals Frequent Opportunities for Exposure to Hepatitis C Virus in Ghana. PLoS One 2015; 10:e0145530. [PMID: 26683463 PMCID: PMC4684299 DOI: 10.1371/journal.pone.0145530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Globally, hepatitis C Virus (HCV) infection is responsible for a large proportion of persons with liver disease, including cancer. The infection is highly prevalent in sub-Saharan Africa. West Africa was identified as a geographic origin of two HCV genotypes. However, little is known about the genetic composition of HCV populations in many countries of the region. Using conventional and next-generation sequencing (NGS), we identified and genetically characterized 65 HCV strains circulating among HCV-positive blood donors in Kumasi, Ghana. Phylogenetic analysis using consensus sequences derived from 3 genomic regions of the HCV genome, 5'-untranslated region, hypervariable region 1 (HVR1) and NS5B gene, consistently classified the HCV variants (n = 65) into genotypes 1 (HCV-1, 15%) and genotype 2 (HCV-2, 85%). The Ghanaian and West African HCV-2 NS5B sequences were found completely intermixed in the phylogenetic tree, indicating a substantial genetic heterogeneity of HCV-2 in Ghana. Analysis of HVR1 sequences from intra-host HCV variants obtained by NGS showed that three donors were infected with >1 HCV strain, including infections with 2 genotypes. Two other donors share an HCV strain, indicating HCV transmission between them. The HCV-2 strain sampled from one donor was replaced with another HCV-2 strain after only 2 months of observation, indicating rapid strain switching. Bayesian analysis estimated that the HCV-2 strains in Ghana were expanding since the 16th century. The blood donors in Kumasi, Ghana, are infected with a very heterogeneous HCV population of HCV-1 and HCV-2, with HCV-2 being prevalent. The detection of three cases of co- or super-infections and transmission linkage between 2 cases suggests frequent opportunities for HCV exposure among the blood donors and is consistent with the reported high HCV prevalence. The conditions for effective HCV-2 transmission existed for ~ 3-4 centuries, indicating a long epidemic history of HCV-2 in Ghana.
Collapse
Affiliation(s)
- Joseph C. Forbi
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jennifer E. Layden
- Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois, United States of America
- Department of Medicine, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, United States of America
| | - Richard O. Phillips
- Komfo Anokye Teaching Hospital, Kumasi, Ghana, West Africa
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, West Africa
| | - Nallely Mora
- Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Guo-liang Xia
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David S. Campo
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael A. Purdy
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Zoya E. Dimitrova
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Lili T. Punkova
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Pavel Skums
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Fred Stephen Sarfo
- Komfo Anokye Teaching Hospital, Kumasi, Ghana, West Africa
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, West Africa
| | - Gilberto Vaughan
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Hajung Roh
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Richard S. Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Yury E. Khudyakov
- Molecular Epidemiology and Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|