1
|
Weiland JJ, Wyatt N, Camelo V, Spanner RE, Hladky LJ, Ramachandran V, Secor GA, Martin FN, Wintermantel WM, Bolton MD. Beet Soil-Borne Virus Is a Helper Virus for the Novel Beta vulgaris Satellite Virus 1A. PHYTOPATHOLOGY 2024; 114:1126-1136. [PMID: 38451582 DOI: 10.1094/phyto-08-23-0299-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.
Collapse
Affiliation(s)
- John J Weiland
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Nathan Wyatt
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Viviana Camelo
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Rebecca E Spanner
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Laura Jenkins Hladky
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Vanitharani Ramachandran
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Gary A Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Frank N Martin
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - William M Wintermantel
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Melvin D Bolton
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| |
Collapse
|
2
|
Liebe S, Maiss E, Varrelmann M. The arms race between beet necrotic yellow vein virus and host resistance in sugar beet. FRONTIERS IN PLANT SCIENCE 2023; 14:1098786. [PMID: 37063189 PMCID: PMC10102433 DOI: 10.3389/fpls.2023.1098786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) causes rhizomania disease in sugar beet (Beta vulgaris), which is controlled since more than two decades by cultivars harboring the Rz1 resistance gene. The development of resistance-breaking strains has been favored by a high selection pressure on the soil-borne virus population. Resistance-breaking is associated with mutations at amino acid positions 67-70 (tetrad) in the RNA3 encoded pathogenicity factor P25 and the presence of an additional RNA component (RNA5). However, natural BNYVV populations are highly diverse making investigations on the resistance-breaking mechanism rather difficult. Therefore, we applied a reverse genetic system for BNYVV (A type) to study Rz1 resistance-breaking by direct agroinoculation of sugar beet seedlings. The bioassay allowed a clear discrimination between susceptible and Rz1 resistant plants already four weeks after infection, and resistance-breaking was independent of the sugar beet Rz1 genotype. A comprehensive screen of natural tetrads for resistance-breaking revealed several new mutations allowing BNYVV to overcome Rz1. The supplementation of an additional RNA5 encoding the pathogenicity factor P26 allowed virus accumulation in the Rz1 genotype independent of the P25 tetrad. This suggests the presence of two distinct resistance-breaking mechanisms allowing BNYVV to overcome Rz1. Finally, we showed that the resistance-breaking effect of the tetrad and the RNA5 is specific to Rz1 and has no effect on the stability of the second resistance gene Rz2. Consequently, double resistant cultivars (Rz1+Rz2) should provide effective control of Rz1 resistance-breaking strains. Our study highlights the flexibility of the viral genome allowing BNYVV to overcome host resistance, which underlines the need for a continuous search for alternative resistance genes.
Collapse
Affiliation(s)
- Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Edgar Maiss
- Department of Phytomedicine, Plant Virology, Institute of Horticultural Production Systems, Leibniz University, Hannover, Germany
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
3
|
Müllender MM, Varrelmann M, Maiss E, Liebe S. Comparative analysis of virus pathogenicity and resistance-breaking between the P- and A-type from the beet necrotic yellow vein virus using infectious cDNA clones. J Gen Virol 2022; 103. [PMID: 35947097 DOI: 10.1099/jgv.0.001777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The A-type of beet necrotic yellow vein virus (BNYVV) is widely distributed in Europe and is one of the major virus types causing rhizomania disease in sugar beet. The closely related P-type is mainly limited to a small region in France (Pithiviers). Both virus types possess four RNAs (RNA1-4), but the P-type harbours an additional fifth RNA species (RNA5). The P-type is associated with stronger disease symptoms and resistance-breaking of Rz1, one of the two resistance genes which are used to control BNYVV infection. These characteristics are presumably due to the presence of RNA5, but experimental evidence for this is lacking. We generated the first infectious cDNA clone of BNYVV P-type to study its pathogenicity in sugar beet in comparison to a previously developed A-type clone. Using this tool, we confirmed the pathogenicity of the P-type clone in the experimental host Nicotiana benthamiana and two Beta species, B. macrocarpa and B. vulgaris. Independent of RNA5, both the A- and the P-type accumulated in lateral roots and reduced the taproot weight of a susceptible sugar beet genotype to a similar extent. In contrast, only the P-type clone was able to accumulate a virus titre in an Rz1-resistant variety whereas the A-type clone failed to infect this variety. The efficiency of the P-type to overcome Rz1 resistance was strongly associated with the presence of RNA5. Only a double resistant variety, harbouring Rz1 and Rz2, prevented an infection with the P-type. Reassortment experiments between the P- and A-type clones demonstrated that both virus types can exchange whole RNA components without losing the ability to replicate and to move systemically in sugar beet. Although our study highlights the close evolutionary relationship between the two virus types, we were able to demonstrate distinct pathogenicity properties that are attributed to the presence of RNA5 in the P-type.
Collapse
Affiliation(s)
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Edgar Maiss
- Institute of Horticultural Production Systems, Plant Virology, Department of Phytomedicine, Leibniz University, Hannover, Germany
| | - Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
4
|
Bagayoko I, Celli MG, Romay G, Poulicard N, Pinel-Galzi A, Julian C, Filloux D, Roumagnac P, Sérémé D, Bragard C, Hébrard E. Genetic Diversity of Rice stripe necrosis virus and New Insights into Evolution of the Genus Benyvirus. Viruses 2021; 13:v13050737. [PMID: 33922593 PMCID: PMC8145960 DOI: 10.3390/v13050737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
The rice stripe necrosis virus (RSNV) has been reported to infect rice in several countries in Africa and South America, but limited genomic data are currently publicly available. Here, eleven RSNV genomes were entirely sequenced, including the first corpus of RSNV genomes of African isolates. The genetic variability was differently distributed along the two genomic segments. The segment RNA1, within which clusters of polymorphisms were identified, showed a higher nucleotidic variability than did the beet necrotic yellow vein virus (BNYVV) RNA1 segment. The diversity patterns of both viruses were similar in the RNA2 segment, except for an in-frame insertion of 243 nucleotides located in the RSNV tgbp1 gene. Recombination events were detected into RNA1 and RNA2 segments, in particular in the two most divergent RSNV isolates from Colombia and Sierra Leone. In contrast to BNYVV, the RSNV molecular diversity had a geographical structure with two main RSNV lineages distributed in America and in Africa. Our data on the genetic diversity of RSNV revealed unexpected differences with BNYVV suggesting a complex evolutionary history of the genus Benyvirus.
Collapse
Affiliation(s)
- Issiaka Bagayoko
- Earth and Life Institute, Applied Microbiology-Phytopathology, Université Catholique de Louvain (UCLouvain), Croix du Sud 2 Bte L07.05.03, 1348 Louvain-la-Neuve, Belgium; (I.B.); (G.R.); (C.B.)
| | - Marcos Giovanni Celli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina;
- Instituto de Patología Vegetal (IPAVE, CIAP, INTA), Camino 60 cuadras Km 5, Cordoba 5119, Argentina
| | - Gustavo Romay
- Earth and Life Institute, Applied Microbiology-Phytopathology, Université Catholique de Louvain (UCLouvain), Croix du Sud 2 Bte L07.05.03, 1348 Louvain-la-Neuve, Belgium; (I.B.); (G.R.); (C.B.)
| | - Nils Poulicard
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
| | - Agnès Pinel-Galzi
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
| | - Charlotte Julian
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- CIRAD, UMR PHIM, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France
| | - Denis Filloux
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- CIRAD, UMR PHIM, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France
| | - Philippe Roumagnac
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- CIRAD, UMR PHIM, Campus International de Montferrier-Baillarguet, 34398 Montpellier, France
| | - Drissa Sérémé
- Laboratoire de Laboratoire de Virologie et de Biotechnologies Végétales, INERA—Institut de l’Environnement et de Recherches Agricoles, LMI Patho-Bios, Ouagadougou 01 BP 476, Burkina Faso;
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, Université Catholique de Louvain (UCLouvain), Croix du Sud 2 Bte L07.05.03, 1348 Louvain-la-Neuve, Belgium; (I.B.); (G.R.); (C.B.)
| | - Eugénie Hébrard
- PHIM, Plant Health Institute, Université de Montpellier, IRD, INRAE, CIRAD, SupAgro, 911 Avenue Agropolis, 34394 Montpellier, France; (N.P.); (A.P.-G.); (C.J.); (D.F.); (P.R.)
- Correspondence:
| |
Collapse
|
5
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
6
|
RNAseq Analysis of Rhizomania-Infected Sugar Beet Provides the First Genome Sequence of Beet Necrotic Yellow Vein Virus from the USA and Identifies a Novel Alphanecrovirus and Putative Satellite Viruses. Viruses 2020; 12:v12060626. [PMID: 32531939 PMCID: PMC7354460 DOI: 10.3390/v12060626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
“Rhizomania” of sugar beet is a soilborne disease complex comprised of beet necrotic yellow vein virus (BNYVV) and its plasmodiophorid vector, Polymyxa betae. Although BNYVV is considered the causal agent of rhizomania, additional viruses frequently accompany BNYVV in diseased roots. In an effort to better understand the virus cohort present in sugar beet roots exhibiting rhizomania disease symptoms, five independent RNA samples prepared from diseased beet seedlings reared in a greenhouse or from field-grown adult sugar beet plants and enriched for virus particles were subjected to RNAseq. In all but a healthy control sample, the technique was successful at identifying BNYVV and provided sequence reads of sufficient quantity and overlap to assemble > 98% of the published genome of the virus. Utilizing the derived consensus sequence of BNYVV, infectious RNA was produced from cDNA clones of RNAs 1 and 2. The approach also enabled the detection of beet soilborne mosaic virus (BSBMV), beet soilborne virus (BSBV), beet black scorch virus (BBSV), and beet virus Q (BVQ), with near-complete genome assembly afforded to BSBMV and BBSV. In one field sample, a novel virus sequence of 3682 nt was assembled with significant sequence similarity and open reading frame (ORF) organization to members within the subgenus Alphanecrovirus (genus Necrovirus; family Tombusviridae). Construction of a DNA clone based on this sequence led to the production of the novel RNA genome in vitro that was capable of inducing local lesion formation on leaves of Chenopodium quinoa. Additionally, two previously unreported satellite viruses were revealed in the study; one possessing weak similarity to satellite maize white line mosaic virus and a second possessing moderate similarity to satellite tobacco necrosis virus C. Taken together, the approach provides an efficient pipeline to characterize variation in the BNYVV genome and to document the presence of other viruses potentially associated with disease severity or the ability to overcome resistance genes used for sugar beet rhizomania disease management.
Collapse
|
7
|
Yüksel Özmen C, Khabbazi SD, Khabbazi AD, Gürel S, Kaya R, Oğuz MÇ, Turan F, Rezaei F, Kibar U, Gürel E, Ergül A. Genome composition analysis of multipartite BNYVV reveals the occurrence of genetic re-assortment in the isolates of Asia Minor and Thrace. Sci Rep 2020; 10:4129. [PMID: 32139777 PMCID: PMC7058063 DOI: 10.1038/s41598-020-61091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) is the cause of rhizomania, an important disease of sugar beet around the world. The multipartite genome of the BNYVV contains four or five single-stranded RNA that has been used to characterize the virus. Understanding genome composition of the virus not only determines the degree of pathogenicity but also is required to development of resistant varieties of sugar beet. Resistance to rhizomania has been conferred to sugar beet varieties by conventional breeding methods or modern genome engineering tools. However, over time, viruses undergo genetic alterations and develop new variants to break crop resistance. Here, we report the occurrence of genetic reassortment and emergence of new variants of BNYVV among the isolates of Thrace and Asia Minor (modern-day Turkey). Our findings indicate that the isolates harbor European A-type RNA-2 and RNA-3, nevertheless, RNA-5 is closely related to East Asian J-type. Furthermore, RNA-1 and RNA-4 are either derived from A, B, and P-types or a mixture of them. The RNA-5 factor which enhance the pathogenicity, is rarely found in the isolates studied (20%). The creation of new variants of the virus emphasizes the necessity to develop new generation of resistant crops. We anticipate that these findings will be useful for future genetic characterization and evolutionary studies of BNYVV, as well as for developing sustainable strategies for the control of this destructive disease.
Collapse
Affiliation(s)
| | | | | | - Songül Gürel
- Bolu Abant İzzet Baysal University, Department of Biology, 14030, Bolu, Turkey
| | - Rıza Kaya
- Sugar Institute, Department of Phytopathology, Etimesgut, 06930, Ankara, Turkey
| | | | - Ferzat Turan
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey
| | - Fereshteh Rezaei
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey
- Başkent University, Institute of Transplantation and Gene Sciences, 06980, Kahramankazan, Ankara, Turkey
| | - Umut Kibar
- Republic of Turkey Ministry of Agriculture and Forestry, Agriculture and Rural Development Support Institution, 06550, Ankara, Turkey
| | - Ekrem Gürel
- Bolu Abant İzzet Baysal University, Department of Biology, 14030, Bolu, Turkey
| | - Ali Ergül
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey.
| |
Collapse
|
8
|
Liebe S, Wibberg D, Maiss E, Varrelmann M. Application of a Reverse Genetic System for Beet Necrotic Yellow Vein Virus to Study Rz1 Resistance Response in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2020; 10:1703. [PMID: 32010172 PMCID: PMC6978805 DOI: 10.3389/fpls.2019.01703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is causal agent of rhizomania disease, which is the most devastating viral disease in sugar beet production leading to a dramatic reduction in beet yield and sugar content. The virus is transmitted by the ubiquitous distributed soil-borne plasmodiophoromycete Polymyxa betae that infects the root tissue of young sugar beet plants. Rz1 is the major resistance gene widely used in most sugar beet varieties to control BNYVV. The strong selection pressure on the virus population promoted the development of strains that can overcome Rz1 resistance. Resistance-breaking has been associated with mutations in the RNA3-encoded pathogenicity factor P25 at amino acid positions 67-70 (tetrad) as well as with the presence of an additional RNA component (RNA5). However, respective studies investigating the resistance-breaking mechanism by a reverse genetic system are rather scarce. Therefore, we studied Rz1 resistance-breaking in sugar beet using a recently developed infectious clone of BNYVV A-type. A vector free infection system for the inoculation of young sugar beet seedlings was established. This assay allowed a clear separation between a susceptible and a Rz1 resistant genotype by measuring the virus content in lateral roots at 52 dpi. However, mechanical inoculation of sugar beet leaves led to the occurrence of genotype independent local lesions, suggesting that Rz1 mediates a root specific resistance toward BNYVV that is not active in leaves. Mutation analysis demonstrated that different motifs within the P25 tetrad enable increased virus replication in roots of the resistant genotype. The resistance-breaking ability was further confirmed by the visualization of BNYVV in lateral roots and leaves using a fluorescent-labeled complementary DNA clone of RNA2. Apart from that, reassortment experiments evidenced that RNA5 enables Rz1 resistance-breaking independent of the P25 tetrad motif. Finally, we could identify a new resistance-breaking mutation, which was selected by high-throughput sequencing of a clonal virus population after one host passage in a resistant genotype. Our results demonstrate the feasibility of the reverse genetic system for resistance-breaking analysis and illustrates the genome plasticity of BNYVV allowing the virus to adapt rapidly to sugar beet resistance traits.
Collapse
Affiliation(s)
- Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Edgar Maiss
- Plant Virology, Department of Phytomedicine, Institute of Horticultural Production Systems, Leibniz University, Hannover, Germany
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
9
|
Weiland JJ, Bornemann K, Neubauer JD, Khan MFR, Bolton MD. Prevalence and Distribution of Beet Necrotic Yellow Vein Virus Strains in North Dakota and Minnesota. PLANT DISEASE 2019; 103:2083-2089. [PMID: 31210599 DOI: 10.1094/pdis-02-19-0360-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is the causal agent of rhizomania, a disease of global importance to the sugar beet industry. The most widely implemented resistance gene to rhizomania to date is Rz1, but resistance has been circumvented by resistance-breaking (RB) isolates worldwide. In an effort to gain greater understanding of the distribution of BNYVV and the nature of RB isolates in Minnesota and eastern North Dakota, sugar beet plants were grown in 594 soil samples obtained from production fields and subsequently were analyzed for the presence of BNYVV as well as coding variability in the viral P25 gene, the gene previously implicated in the RB pathotype. Baiting of virus from the soil with sugar beet varieties possessing no known resistance to rhizomania resulted in a disease incidence level of 10.6% in the region examined. Parallel baiting analysis of sugar beet genotypes possessing Rz1, the more recently introgressed Rz2, and with the combination of Rz1 + Rz2 resulted in a disease incidence level of 4.2, 1.0, and 0.8%, respectively. Virus sequences recovered from sugar beet bait plants possessing resistance genes Rz1 and/or Rz2 exhibited reduced genetic diversity in the P25 gene relative to those recovered from the susceptible genotype while confirming the hypervariable nature of the coding for amino acids (AAs) at position 67 and 68 in the P25 protein. In contrast to previous reports, we did not find an association between any one specific AA signature at these positions and the ability to circumvent Rz1-mediated resistance. The data document ongoing virulence development in BNYVV populations to previously resistant varieties and provide a baseline for the analysis of genetic change in the virus population that may accompany the implementation of new resistance genes to manage rhizomania.
Collapse
Affiliation(s)
- John J Weiland
- 1United States Department of Agriculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Kathrin Bornemann
- 1United States Department of Agriculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- 2Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Jonathan D Neubauer
- 1United States Department of Agriculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Mohamed F R Khan
- 2Department of Plant Pathology, North Dakota State University, Fargo, ND
- 3Department of Plant Pathology, University of Minnesota, St. Paul, MN
| | - Melvin D Bolton
- 1United States Department of Agriculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- 2Department of Plant Pathology, North Dakota State University, Fargo, ND
| |
Collapse
|
10
|
Galein Y, Legrève A, Bragard C. Long Term Management of Rhizomania Disease-Insight Into the Changes of the Beet necrotic yellow vein virus RNA-3 Observed Under Resistant and Non-resistant Sugar Beet Fields. FRONTIERS IN PLANT SCIENCE 2018; 9:795. [PMID: 30013579 PMCID: PMC6036237 DOI: 10.3389/fpls.2018.00795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/24/2018] [Indexed: 05/09/2023]
Abstract
Rhizomania disease, caused by the Beet necrotic yellow vein virus (BNYVV), is considered as one of the major constraints for sugar beet production, worldwide. As a result of the introgression of major resistance genes (Holly, Rz2) in commercially available sugar beet varieties, the virus has endured strong selection pressure since the 90s'. Understanding the virus response and diversity to sugar beet resistance is a key factor for a sustainable management of only few resistance genes. Here we report rhizomania surveys conducted in a rhizomania hot spot, the Pithiviers area (France) during a 4-year period and complementary to the study of Schirmer et al. (2005). The study aimed at evaluating the intra- and inter-field BNYVV diversity in response to different sources of resistance and over the growing season. To follow rhizomania development over the sugar beet growing season, extensive field samplings combined with field assays were performed in this study. The evolution of the BNYVV diversity was assessed at intra- and inter-field levels, with sugar beet cultivars containing different resistance genes (Rz1, Rz1 + Heterodera schachtii resistance and Rz1Rz2). Intra-field diversity was analyzed at the beginning and the end of the growing season of each field. From more than one thousand field samples, the simultaneous presence of the different A, B and P types of BNYVV was confirmed, with 21 variants identified at positions 67-70 of the p25 tetrad. The first variant, AYHR, was found most commonly followed by SYHG. Numerous mixed infections (9.93% of the samples), mostly of B-type with P-type, have also been evidenced. Different tetrads associated with the A- or B-type were also found with a fifth RNA-genome component known to allow more aggressiveness to BNYVV on sugar beet roots. Cultivars with Rz1+Rz2 resistant genes showed few root symptoms even if the BNYVV titre was quite high according to the BNYVV type present. The virus infectious potential in the soil at the end of the growing season with such cultivars was also lower despite a wider diversity at the BNYVV RNA3 sequence level. Rz1+Rz2 cultivars also exhibited a lower presence of Beet soil-borne virus (BSBV), a P. betae-transmitted Pomovirus. Cultivars with Rz1 and nematode (N) resistance genes cultivated in field infected with nematodes showed lower BNYVV titre than those with Rz1 or Rz1+Rz2 cultivars. Overall, the population structure of BNYVV in France is shown to be different from that previously evidenced in different world areas. Implications for long-term management of the resistance to rhizomania is discussed.
Collapse
Affiliation(s)
| | - Anne Legrève
- Applied Microbiology-Phytopathology, Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Applied Microbiology-Phytopathology, Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Laufer M, Mohammad H, Maiss E, Richert-Pöggeler K, Dall'Ara M, Ratti C, Gilmer D, Liebe S, Varrelmann M. Biological properties of Beet soil-borne mosaic virus and Beet necrotic yellow vein virus cDNA clones produced by isothermal in vitro recombination: Insights for reassortant appearance. Virology 2018; 518:25-33. [PMID: 29453056 DOI: 10.1016/j.virol.2018.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Two members of the Benyviridae family and genus Benyvirus, Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV), possess identical genome organization, host range and high sequence similarity; they infect Beta vulgaris with variable symptom expression. In the US, mixed infections are described with limited information about viral interactions. Vectors suitable for agroinoculation of all genome components of both viruses were constructed by isothermal in vitro recombination. All 35S promoter-driven cDNA clones allowed production of recombinant viruses competent for Nicotiana benthamiana and Beta macrocarpa systemic infection and Polymyxa betae transmission and were compared to available BNYVV B-type clone. BNYVV and BSBMV RNA1 + 2 reassortants were viable and spread long-distance in N. benthamiana with symptoms dependent on the BNYVV type. Small genomic RNAs were exchangeable and systemically infected B. macrocarpa. These infectious clones represent a powerful tool for the identification of specific molecular host-pathogen determinants.
Collapse
Affiliation(s)
- Marlene Laufer
- Institute of Sugar Beet Research, Dept. of Phytopathology, 37079 Göttingen, Germany
| | - Hamza Mohammad
- Institute of Horticultural Production Systems, Dept. Phytomedicine, Plant Virology, Leibniz University, 30419 Hannover, Germany
| | - Edgar Maiss
- Institute of Horticultural Production Systems, Dept. Phytomedicine, Plant Virology, Leibniz University, 30419 Hannover, Germany
| | - Katja Richert-Pöggeler
- Julius-Kühn-Institute, Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany
| | - Mattia Dall'Ara
- DipSA-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy; Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Claudio Ratti
- DipSA-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy.
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France.
| | - Sebastian Liebe
- Institute of Sugar Beet Research, Dept. of Phytopathology, 37079 Göttingen, Germany
| | - Mark Varrelmann
- Institute of Sugar Beet Research, Dept. of Phytopathology, 37079 Göttingen, Germany.
| |
Collapse
|
12
|
Zhuo N, Jiang N, Zhang C, Zhang ZY, Zhang GZ, Han CG, Wang Y. Genetic diversity and population structure of beet necrotic yellow vein virus in China. Virus Res 2015; 205:54-62. [PMID: 25997927 DOI: 10.1016/j.virusres.2015.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/04/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Beet necrotic yellow vein virus (BNYVV) is a serious threat to the sugar beet industry worldwide. However, little information is available regarding the genetic diversity and population structure of BNYVV in China. Here, we analyzed multiple sequences from four genomic regions (CP, RNA3, RNA4 and RNA5) of a set of Chinese isolates. Sequence analyses revealed that several isolates were mixed infections of variants with different genotypes and/or different p25 tetrad motifs. In total, 12 distinct p25 tetrads were found in the Chinese BNYVV population, of which four tetrads were newly identified. Phylogenetic analyses based on four genes (CP, RNA3-p25, RNA4-p31 and RNA5-p26) in isolates from around the world revealed the existence of two to four groups, which mostly corresponded to previously reported phylogenetic groups. Two new subgroups and a new group were identified from the Chinese isolates in p25 and p26 trees, respectively. Selection pressure analysis indicated that there was a positive selection pressure on the p25 from the Chinese isolates, but the other three proteins were under a negative selection pressure. There was frequent gene flow between geographically distant populations, which meant that BNYVV populations from different provinces were not geographically differentiated.
Collapse
Affiliation(s)
- Na Zhuo
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Ning Jiang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Chao Zhang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Zong-Ying Zhang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Guo-Zhen Zhang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Cheng-Gui Han
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Ying Wang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Bornemann K, Varrelmann M. Effect of sugar beet genotype on the Beet necrotic yellow vein virus P25 pathogenicity factor and evidence for a fitness penalty in resistance-breaking strains. MOLECULAR PLANT PATHOLOGY 2013; 14:356-64. [PMID: 23282068 PMCID: PMC6638868 DOI: 10.1111/mpp.12012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV), vectored by Polymyxa betae, causes rhizomania in sugar beet. For disease control, the cultivation of hybrids carrying Rz1 resistance is crucial, but is compromised by resistance-breaking (RB) strains with specific mutations in the P25 protein at amino acids 67-70 (tetrad). To obtain evidence for P25 variability from soil-borne populations, where the virus persists for decades, populations with wild-type (WT) and RB properties were analysed by P25 deep sequencing. The level of P25 variation in the populations analysed did not correlate with RB properties. Remarkably, one WT population contained P25 with RB mutations at a frequency of 11%. To demonstrate selection by Rz1 and the influence of RB mutations on relative fitness, competition experiments between strains were performed. Following a mixture of strains with four RNAs, a shift in tetrad variants was observed, suggesting that strains did not mix or transreplicate. The plant genotype exerted a clear influence on the frequency of RB tetrads. In Rz1 plants, the RB variants outcompeted the WT variants, and mostly vice versa in susceptible plants, demonstrating a relative fitness penalty of RB mutations. The strong genotype effect supports the hypothesized Rz1 RB strain selection with four RNAs, suggesting that a certain tetrad needs to become dominant in a population to influence its properties. Tetrad selection was not observed when an RB strain, with an additional P26 protein encoded by a fifth RNA, competed with a WT strain, supporting its role as a second BNYVV pathogenicity factor and suggesting the reassortment of both types.
Collapse
Affiliation(s)
- Kathrin Bornemann
- Department of Phytopathology, Institute of Sugar Beet Research, D-37079, Goettingen, Germany
| | | |
Collapse
|
14
|
Pavli OI, Tampakaki AP, Skaracis GN. High level resistance against rhizomania disease by simultaneously integrating two distinct defense mechanisms. PLoS One 2012; 7:e51414. [PMID: 23284692 PMCID: PMC3527438 DOI: 10.1371/journal.pone.0051414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 11/01/2012] [Indexed: 11/18/2022] Open
Abstract
With the aim of achieving durable resistance against rhizomania disease of sugar beet, the employment of different sources of resistance to Beet necrotic yellow vein virus was pursued. To this purpose, Nicotiana benthamiana transgenic plants that simultaneously produce dsRNA originating from a conserved region of the BNYVV replicase gene and the HrpZ(Psph) protein in a secreted form (SP/HrpZ(Psph)) were produced. The integration and expression of both transgenes as well as proper production of the harpin protein were verified in all primary transformants and selfed progeny (T1, T2). Transgenic resistance was assessed by BNYVV-challenge inoculation on T2 progeny by scoring disease symptoms and DAS-ELISA at 20 and 30 dpi. Transgenic lines possessing single transformation events for both transgenes as well as wild type plants were included in inoculation experiments. Transgenic plants were highly resistant to virus infection, whereas in some cases immunity was achieved. In all cases, the resistant phenotype of transgenic plants carrying both transgenes was superior in comparison with the ones carrying a single transgene. Collectively, our findings demonstrate, for a first time, that the combination of two entirely different resistance mechanisms provide high level resistance or even immunity against the virus. Such a novel approach is anticipated to prevent a rapid virus adaptation that could potentially lead to the emergence of isolates with resistance breaking properties.
Collapse
Affiliation(s)
- Ourania I Pavli
- Department of Crop Sciences, Agricultural University of Athens, Athens, Greece.
| | | | | |
Collapse
|
15
|
Thiel H, Hleibieh K, Gilmer D, Varrelmann M. The P25 pathogenicity factor of Beet necrotic yellow vein virus targets the sugar beet 26S proteasome involved in the induction of a hypersensitive resistance response via interaction with an F-box protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1058-72. [PMID: 22512382 DOI: 10.1094/mpmi-03-12-0057-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
P25, a Beet necrotic yellow vein virus (BNYVV) pathogenicity factor, interacts with a sugar beet protein with high homology to Arabidopsis thaliana kelch repeat containing F-box family proteins (FBK) of unknown function in yeast. FBK are members of the Skp1-Cullin-F-box (SCF) complex that mediate protein degradation. Here, we confirm this sugar beet FBK-P25 interaction in vivo and in vitro and provide evidence for in planta interaction and similar subcellular distribution in Nicotiana tabacum leaf cells. P25 even interacts with an FBK from A. thaliana, a BNYVV nonhost. FBK functional classification was possible by demonstrating the interaction with A. thaliana orthologs of Skp1-like (ASK) genes, a member of the SCF E3 ligase. By means of a yeast two-hybrid bridging assay, a direct effect of P25 on SCF-complex formation involving ASK1 protein was demonstrated. FBK transient Agrobacterium tumefaciens-mediated expression in N. benthamiana leaves induced a hypersensitive response. The full-length F-box protein consists of one F-box domain followed by two kelch repeats, which alone were unable to interact with P25 in yeast and did not lead to cell-death induction. The results support the idea that P25 is involved in virus pathogenicity in sugar beet and suggest suppression of resistance response.
Collapse
Affiliation(s)
- Heike Thiel
- Department of Phytopathology, Institute of Sugar Beet Research, Gottingen, Germany
| | | | | | | |
Collapse
|
16
|
Bornemann K, Varrelmann M. Analysis of the resistance-breaking ability of different beet necrotic yellow vein virus isolates loaded into a single Polymyxa betae population in soil. PHYTOPATHOLOGY 2011; 101:718-24. [PMID: 21303211 DOI: 10.1094/phyto-06-10-0157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The genome of most Beet necrotic yellow vein virus (BNYVV) isolates is comprised of four RNAs. The ability of certain isolates to overcome Rz1-mediated resistance in sugar beet grown in the United States and Europe is associated with point mutations in the pathogenicity factor P25. When the virus is inoculated mechanically into sugar beet roots at high density, the ability depends on an alanine to valine substitution at P25 position 67. Increased aggressiveness is shown by BNYVV P type isolates, which carry an additional RNA species that encodes a second pathogenicity factor, P26. Direct comparison of aggressive isolates transmitted by the vector, Polymyxa betae, has been impossible due to varying population densities of the vector and other soilborne pathogens that interfere with BNYVV infection. Mechanical root inoculation and subsequent cultivation in soil that carried a virus-free P. betae population was used to load P. betae with three BNYVV isolates: a European A type isolate, an American A type isolate, and a P type isolate. Resistance tests demonstrated that changes in viral aggressiveness towards Rz1 cultivars were independent of the vector population. This method can be applied to the study of the synergism of BNYVV with other P. betae-transmitted viruses.
Collapse
Affiliation(s)
- Kathrin Bornemann
- Institute of Sugar Beet Research, Holtenser Landstr. 77, D-37079 Goettingen, Germany
| | | |
Collapse
|
17
|
Chiba S, Kondo H, Miyanishi M, Andika IB, Han C, Tamada T. The evolutionary history of Beet necrotic yellow vein virus deduced from genetic variation, geographical origin and spread, and the breaking of host resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:207-18. [PMID: 20977309 DOI: 10.1094/mpmi-10-10-0241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is an economically important pathogen of sugar beet and has been found worldwide, probably as the result of recent worldwide spread. The BNYVV genome consists of four or five RNA components. Here, we report analysis of sequence variation in the RNA3-p25, RNA4-p31, RNA2-CP, and RNA5-p26 genes of 73 worldwide isolates. The RNA3-p25 gene encodes virulence and avirulence factors. These four sets of gene sequences each fell into two to four groups, of which the three groups of p25 formed eight subgroups with different geographical distributions. Each of these subgroup isolates (strains) could have arisen from four original BNYVV population and their mixed infections. The genetic diversity for BNYVV was relatively small. Selection pressure varied greatly depending on the BNYVV gene and geographical location. Isolates of the Italy strain, in which p25 was subject to the strongest positive selection, were able to overcome the Rz1-host resistance gene to differing degrees, whereas other geographically limited strains could not. Resistance-breaking variants were generated by p25 amino acid changes at positions 67 and 68. Our studies suggest that BNYVV originally evolved in East Asia and has recently become a pathogen of cultivated sugar beet followed by the emergence of new resistance-breaking variants.
Collapse
Affiliation(s)
- Soutaro Chiba
- Institute of Plant Science and Bioresources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Plant viruses exploit cellular factors, including host proteins, membranes and metabolites, for their replication in infected cells and to establish systemic infections. Besides traditional genetic, molecular, cellular and biochemical methods studying plant-virus interactions, both global and specialized proteomics methods are emerging as useful approaches for the identification of all the host proteins that play roles in virus infections. The various proteomics approaches include measuring differential protein expression in virus infected versus noninfected cells, analysis of viral and host protein components in the viral replicase or other virus-induced complexes, as well as proteome-wide screens to identify host protein - viral protein interactions using protein arrays or yeast two-hybrid assays. In this review, we will discuss the progress made in plant virology using various proteomics methods, and highlight the functions of some of the identified host proteins during viral infections. Since global proteomics approaches do not usually identify the molecular mechanism of the identified host factors during viral infections, additional experiments using genetics, biochemistry, cell biology and other approaches should also be performed to characterize the functions of host factors. Overall, the ever-improving proteomics approaches promise further understanding of plant-virus interactions that will likely result in new strategies for viral disease control in plants.
Collapse
Affiliation(s)
- Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, KY
| | | |
Collapse
|
19
|
Acosta-Leal R, Bryan BK, Rush CM. Host effect on the genetic diversification of beet necrotic yellow vein virus single-plant populations. PHYTOPATHOLOGY 2010; 100:1204-1212. [PMID: 20649415 DOI: 10.1094/phyto-04-10-0103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Theoretical models predict that, under restrictive host conditions, virus populations will exhibit greater genetic variability. This virus response has been experimentally demonstrated in a few cases but its relation with a virus's capability to overcome plant resistance is unknown. To explore the genetic host effects on Beet necrotic yellow vein virus (BNYVV) populations that might be related to resistance durability, a wild-type virus isolate was vector inoculated into partially resistant Rz1, Rz2, and susceptible sugar beet cultivars during a serial planting experiment. Cloning and sequencing a region of the viral RNA-3, involving the pathogenic determinant p25, revealed that virus diversity significantly increased in direct proportion to the strength of host resistance. Thus, whereas virus titers were highest, intermediate, and lowest in susceptible, Rz1, and Rz2 plants, respectively; the average number of nucleotide differences among single-plant populations was 0.8 (±0.1) in susceptible, 1.4 (±0.1) in Rz1, and 2.4 (±0.2) in Rz2 genotypes. A similar relationship between host restriction to BNYVV root accumulation and virus genetic variability was detected in fields of sugar beet where these specific Rz1- and Rz2-mediated resistances have been defeated.
Collapse
Affiliation(s)
- Rodolfo Acosta-Leal
- Texas AgriLife Research ( Texas A & M University System), Amarillo, TX, USA.
| | | | | |
Collapse
|
20
|
Acosta-Leal R, Bryan BK, Smith JT, Rush CM. Breakdown of host resistance by independent evolutionary lineages of Beet necrotic yellow vein virus involves a parallel c/u mutation in its p25 gene. PHYTOPATHOLOGY 2010; 100:127-33. [PMID: 20055646 DOI: 10.1094/phyto-100-2-0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABSTRACT Breakdown of sugar beet Rz1-mediated resistance against Beet necrotic yellow vein virus (BNYVV) infection was previously found, by reverse genetics, to be caused by a single mutation in its p25 gene. The possibility of alternative breaking mutations, however, has not been discarded. To explore the natural diversity of BNYVV in the field and its effects on overcoming Rz1, wild-type (WT) and resistance-breaking (RB) p25 genes from diverse production regions of North America were characterized. The relative titer of WT p25 was inversely correlated with disease expression in Rz1 plants from Minnesota and California. In Minnesota, the predominant WT p25 encoded the A(67)C(68) amino acid signature whereas, in California, it encoded A(67)L(68). In both locations, these WT signatures were associated with asymptomatic BNYVV infections of Rz1 cultivars. Further analyses of symptomatic resistant plants revealed that, in Minnesota, WT A(67)C(68) was replaced by V(67)C(68) whereas, in California, WT A(67)L(68) was replaced by V(67)L(68). Therefore, V(67) was apparently critical in overcoming Rz1 in both pathosystems. The greater genetic distances between isolates from different geographic regions rather than between WT and RB from the same location indicate that the underlying C to U transition originated independently in both BNYVV lineages.
Collapse
|
21
|
Mehrvar M, Valizadeh J, Koenig R, Bragard CG. Iranian beet necrotic yellow vein virus (BNYVV): pronounced diversity of the p25 coding region in A-type BNYVV and identification of P-type BNYVV lacking a fifth RNA species. Arch Virol 2009; 154:501-6. [DOI: 10.1007/s00705-009-0322-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/14/2009] [Indexed: 11/29/2022]
|