1
|
Fiallo-Olivé E, Navas-Castillo J. The Role of Extensive Recombination in the Evolution of Geminiviruses. Curr Top Microbiol Immunol 2023; 439:139-166. [PMID: 36592245 DOI: 10.1007/978-3-031-15640-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mutation, recombination and pseudo-recombination are the major forces driving the evolution of viruses by the generation of variants upon which natural selection, genetic drift and gene flow can act to shape the genetic structure of viral populations. Recombination between related virus genomes co-infecting the same cell usually occurs via template swapping during the replication process and produces a chimeric genome. The family Geminiviridae shows the highest evolutionary success among plant virus families, and the common presence of recombination signatures in their genomes reveals a key role in their evolution. This review describes the general characteristics of members of the family Geminiviridae and associated DNA satellites, as well as the extensive occurrence of recombination at all taxonomic levels, from strain to family. The review also presents an overview of the recombination patterns observed in nature that provide some clues regarding the mechanisms involved in the generation and emergence of recombinant genomes. Moreover, the results of experimental evolution studies that support some of the conclusions obtained in descriptive or in silico works are summarized. Finally, the review uses a number of case studies to illustrate those recombination events with evolutionary and pathological implications as well as recombination events in which DNA satellites are involved.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Avenida Dr. Wienberg s/n, 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Avenida Dr. Wienberg s/n, 29750, Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
2
|
Fiallo-Olivé E, García-Merenciano AC, Navas-Castillo J. Sweet Potato Symptomless Virus 1: First Detection in Europe and Generation of an Infectious Clone. Microorganisms 2022; 10:microorganisms10091736. [PMID: 36144338 PMCID: PMC9504438 DOI: 10.3390/microorganisms10091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Sweet potato (Ipomoea batatas), a staple food for people in many of the least developed countries, is affected by many viral diseases. In 2017, complete genome sequences of sweet potato symptomless virus 1 (SPSMV-1, genus Mastrevirus, family Geminiviridae) isolates were reported, although a partial SPSMV-1 genome sequence had previously been identified by deep sequencing. To assess the presence of this virus in Spain, sweet potato leaf samples collected in Málaga (southern continental Spain) and the Spanish Canary Islands of Tenerife and Gran Canaria were analyzed. SPSMV-1 was detected in samples from all the geographical areas studied, as well as in plants of several entries obtained from a germplasm collection supposed to be virus-free. Sequence analysis of full-length genomes of isolates from Spain showed novel molecular features, i.e., a novel nonanucleotide in the intergenic region, TCTTATTAC, and a 24-nucleotide deletion in the V2 open reading frame. Additionally, an agroinfectious clone was developed and infectivity assays showed that the virus was able to asymptomatically infect Nicotiana benthamiana, Ipomoea nil, I. setosa, and sweet potato, thus confirming previous suggestions derived from observational studies. To our knowledge, this is the first report of the presence of SPSMV-1 in Spain and Europe and the first agroinfectious clone developed for this virus.
Collapse
|
3
|
Venkataravanappa V, Vinaykumar HD, Hiremath S, Mantesh M, Shankarappa KS, Basha CRJ, Reddy MK, Reddy CNL. Molecular characterization of novel bipartite begomovirus associated with enation leaf disease of Garden croton (Codiaeum variegatum L.). Virusdisease 2022; 33:194-207. [DOI: 10.1007/s13337-022-00772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022] Open
|
4
|
Crespo-Bellido A, Hoyer JS, Dubey D, Jeannot RB, Duffy S. Interspecies Recombination Has Driven the Macroevolution of Cassava Mosaic Begomoviruses. J Virol 2021; 95:e0054121. [PMID: 34106000 PMCID: PMC8354330 DOI: 10.1128/jvi.00541-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Begomoviruses (family Geminiviridae, genus Begomovirus) significantly hamper crop production and threaten food security around the world. The frequent emergence of new begomovirus genotypes is facilitated by high mutation frequencies and the propensity to recombine and reassort. Homologous recombination has been especially implicated in the emergence of novel cassava mosaic begomovirus (CMB) genotypes, which cause cassava mosaic disease (CMD). Cassava (Manihot esculenta) is a staple food crop throughout Africa and an important industrial crop in Asia, two continents where production is severely constrained by CMD. The CMD species complex is comprised of 11 bipartite begomovirus species with ample distribution throughout Africa and the Indian subcontinent. While recombination is regarded as a frequent occurrence for CMBs, a revised, systematic assessment of recombination and its impact on CMB phylogeny is currently lacking. We assembled data sets of all publicly available, full-length DNA-A (n = 880) and DNA-B (n = 369) nucleotide sequences from the 11 recognized CMB species. Phylogenetic networks and complementary recombination detection methods revealed extensive recombination among the CMB sequences. Six out of the 11 species descended from unique interspecies recombination events. Estimates of recombination and mutation rates revealed that all species experience mutation more frequently than recombination, but measures of population divergence indicate that recombination is largely responsible for the genetic differences between species. Our results support that recombination has significantly impacted the CMB phylogeny and has driven speciation in the CMD species complex. IMPORTANCE Cassava mosaic disease (CMD) is a significant threat to cassava production throughout Africa and Asia. CMD is caused by a complex comprised of 11 recognized virus species exhibiting accelerated rates of evolution, driven by high frequencies of mutation and genetic exchange. Here, we present a systematic analysis of the contribution of genetic exchange to cassava mosaic virus species-level diversity. Most of these species emerged as a result of genetic exchange. This is the first study to report the significant impact of genetic exchange on speciation in a group of viruses.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Divya Dubey
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ronica B. Jeannot
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
5
|
Revealing the Complexity of Sweepovirus-Deltasatellite-Plant Host Interactions: Expanded Natural and Experimental Helper Virus Range and Effect Dependence on Virus-Host Combination. Microorganisms 2021; 9:microorganisms9051018. [PMID: 34068583 PMCID: PMC8150397 DOI: 10.3390/microorganisms9051018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Sweepoviruses are begomoviruses (genus Begomovirus, family Geminiviridae) with ssDNA genomes infecting sweet potato and other species of the family Convolvulaceae. Deltasatellites (genus Deltasatellite, family Tolecusatellitidae) are small-size non-coding DNA satellites associated with begomoviruses. In this study, the genetic diversity of deltasatellites associated with sweepoviruses infecting Ipomoea indica plants was analyzed by further sampling the populations where the deltasatellite sweet potato leaf curl deltasatellite 1 (SPLCD1) was initially found, expanding the search to other geographical areas in southern continental Spain and the Canary Islands. The sweepoviruses present in the samples coinfected with deltasatellites were also fully characterized by sequencing in order to define the range of viruses that could act as helper viruses in nature. Additionally, experiments were performed to assess the ability of a number of geminivirids (the monopartite tomato leaf deformation virus and the bipartite NW begomovirus Sida golden yellow vein virus, the bipartite OW begomovirus tomato leaf curl New Delhi virus, and the curtovirus beet curly top virus) to transreplicate SPLCD1 in their natural plant hosts or the experimental host Nicotiana benthamiana. The results show that SPLCD1 can be transreplicated by all the geminivirids assayed in N. benthamiana and by tomato leaf curl New Delhi virus in zucchini. The presence of SPLCD1 did not affect the symptomatology caused by the helper viruses, and its effect on viral DNA accumulation depended on the helper virus-host plant combination.
Collapse
|
6
|
Wanjala BW, Ateka EM, Miano DW, Low JW, Kreuze JF. Storage Root Yield of Sweetpotato as Influenced by Sweetpotato leaf curl virus and Its Interaction With Sweetpotato feathery mottle virus and Sweetpotato chlorotic stunt virus in Kenya. PLANT DISEASE 2020; 104:1477-1486. [PMID: 32196415 DOI: 10.1094/pdis-06-19-1196-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, the effect of a Kenyan strain of Sweetpotato leaf curl virus (SPLCV) and its interactions with Sweetpotato feathery mottle virus (SPFMV) and Sweetpotato chlorotic stunt virus (SPCSV) on root yield was determined. Trials were performed during two seasons using varieties Kakamega and Ejumula and contrasting in their resistance to sweetpotato virus disease in a randomized complete block design with 16 treatments replicated three times. The treatments included plants graft inoculated with SPLCV, SPFMV, and SPCSV alone and in possible dual or triple combinations. Yield and yield-related parameters were evaluated at harvest. The results showed marked differences in the effect of SPLCV infection on the two varieties. Ejumula, which is highly susceptible to SPFMV and SPCSV, suffered no significant yield loss from SPLCV infection, whereas Kakamega, which is moderately resistant to SPFMV and SPCSV, suffered an average of 47% yield loss from SPLCV, despite only mild symptoms occurring in both varieties. These results highlight the variability in yield response to SPLCV between sweetpotato cultivars as well as a lack of correlation of SPLCV-related symptoms with yield reduction. In addition, they underline the lack of correlation between resistance to the RNA viruses SPCSV and SPFMV and the DNA virus SPLCV.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Bramwel W Wanjala
- Sub-Saharan Africa Regional Office, International Potato Center, 00603 Nairobi, Kenya
- School of Agriculture, Jomo Kenyatta University of Agriculture and Technology, 00200 Nairobi, Kenya
| | - Elijah M Ateka
- School of Agriculture, Jomo Kenyatta University of Agriculture and Technology, 00200 Nairobi, Kenya
| | - Douglas W Miano
- Department of Plant Science and Crop Protection, University of Nairobi, 00100 Nairobi, Kenya
| | - Jan W Low
- Sub-Saharan Africa Regional Office, International Potato Center, 00603 Nairobi, Kenya
| | - Jan F Kreuze
- International Potato Center, La Molina Apartado Postal 1558, Lima, Peru
| |
Collapse
|
7
|
Mondal D, Mandal S, Shil S, Sahana N, Pandit GK, Choudhury A. Genome wide molecular evolution analysis of begomoviruses reveals unique diversification pattern in coat protein gene of Old World and New World viruses. Virusdisease 2019; 30:74-83. [PMID: 31143834 DOI: 10.1007/s13337-019-00524-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/15/2019] [Indexed: 11/30/2022] Open
Abstract
Begomoviruses (Family-Geminiviridae) are plant infecting single stranded DNA viruses known to evolve very fast. Here, we have analysed the DNA-A sequences of 302 begomoviruses reported as 'type isolates' from different countries following the list of International Committee on Taxonomy of Viruses till 2017. Phylogenetic analysis was performed which revealed two major evolutionarily distinct groups namely Old World (OW) and New World (NW) viruses. Our work present evidence that cp gene has varied degree of diversification among the viruses reported from NW and OW. The NW viruses are more conserved in their cp gene sequences than that of OW viruses irrespective of host plant families. Further analysis reveals that cp gene differs in its recombination pattern among OW and NW viruses whereas rep gene is highly recombination prone in both OW and NW viruses. The sequence conservation in cp gene in NW viruses is a result of meagre recombination and subsequent low substitution rate in comparison to OW viruses. Our results demonstrated that the cp gene in NW viruses is less likely to possess nuclear localisation sequences than OW cp gene. Further we present evidence that the NW-cp is under the influence of strong purifying selection. We propose that the precoat protein (pcp) gene present exclusively in the 5' of cp gene in OW viruses is highly diversified and strong positive selection working on pcp gene might be attributing largely to the diversity of OW-cp gene.
Collapse
Affiliation(s)
- Debayan Mondal
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Somnath Mandal
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Sandip Shil
- Regional Research Centre, ICAR-CPCRI, Mohitnagar, Jalpaiguri, West Bengal 735102 India
| | - Nandita Sahana
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Goutam Kumar Pandit
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Ashok Choudhury
- 3Soil Microbiology Laboratory, Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| |
Collapse
|
8
|
Kim J, Kwak HR, Kim M, Seo JK, Yang JW, Chung MN, Kil EJ, Choi HS, Lee S. Phylogeographic analysis of the full genome of Sweepovirus to trace virus dispersal and introduction to Korea. PLoS One 2018; 13:e0202174. [PMID: 30102735 PMCID: PMC6089449 DOI: 10.1371/journal.pone.0202174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/26/2018] [Indexed: 01/04/2023] Open
Abstract
Sweet potato is a vegetatively propagated crop that is produced for both growth in Korean fields and for export out of the country. The viruses that are present in introduced sweet potatoes can spread both domestically and to foreign countries. Determining the time and path of virus movement could help curtail its spread and prevent future dispersal of related viruses. Determining the consequences of past virus and sweet potato dispersal could provide insight into the ecological and economic risks associated with other sweet potato-infecting viral invasions. We therefore applied Bayesian phylogeographic inferences and recombination analyses of the available Sweepovirus sequences (including 25 Korean Sweepovirus genomes) and reconstructed a plausible history of Sweepovirus diversification and movement across the globe. The Mediterranean basin and Central America were found to be the launchpad of global Sweepovirus dispersal. Currently, China and Brazil are acting as convergence regions for Sweepoviruses. Recently reported Korean Sweepovirus isolates were introduced from China in a recent phase and the regions around China and Brazil continue to act as centers of Sweepovirus diversity and sites of ongoing Sweepovirus evolution. The evidence indicates that the region is an epidemiological hotspot, which suggests that novel Sweepovirus variants might be found.
Collapse
Affiliation(s)
- Jaedeok Kim
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
| | - Mikyeong Kim
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
| | - Jang-Kyun Seo
- Graduate school of International Agricultural Technology, Seoul National University, Pyeongchang, Korea
| | - Jung Wook Yang
- Bioenergy Crop Research Institute, National Institute of Crop Science, Muan, Korea
| | - Mi-Nam Chung
- Research Policy Bureau, Rural Development Administration, Jeonju, Korea
| | - Eui-Joon Kil
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Science, Wanju, Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
9
|
Liu Q, Wang Y, Zhang Z, Lv H, Qiao Q, Qin Y, Zhang D, Tian Y, Wang S, Li J. Diversity of Sweepoviruses Infecting Sweet Potato in China. PLANT DISEASE 2017; 101:2098-2103. [PMID: 30677378 DOI: 10.1094/pdis-04-17-0524-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sweepoviruses (a group of begomoviruses that infect plants in the family Convolvulaceae) have monopartite genomes that consist of a circular, single-stranded DNA molecule. Seventy-three complete genomic sequences of sweepoviruses were characterized from the sweet potato samples collected in China. Eight sweepovirus species, including two novel species with proposed names of Sweet potato leaf curl China virus 2 and Sweet potato leaf curl Sichuan virus 2, were identified among these samples. One species, Sweet potato leaf curl Canary virus, was first identified in China. Among the 13 identified strains of Chinese sweepoviruses, 4 were newly discovered. Sweet potato leaf curl virus had the highest frequency (53.4%) of occurrence in the sweet potato samples from China. The similarities among the 73 sweepovirus genomic sequences were between 77.6 and 100.0%. Multiple recombination events were identified, and 16 recombinant sequences were determined. Recombination was observed between different species and between different strains of the same species. Recombination breakpoints were mainly localized on the intergenic region and in three open reading frames (AC1, AV1, and AV2). This study is the first comprehensive report on the genetic diversity of sweepoviruses in China.
Collapse
Affiliation(s)
- Qili Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P. R. China; College of Plant Protection, China Agricultural University, Beijing 100193; and College of Resources & Environmental Science, Henan Institute of Science and Technology, Xinxiang, P. R. China
| | - Yongjiang Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Zhenchen Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Hui Lv
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Qi Qiao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Yanhong Qin
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Desheng Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Yuting Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Shuang Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences; and IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou 450002, P. R. China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing
| |
Collapse
|
10
|
Kim J, Yang JW, Kwak HR, Kim MK, Seo JK, Chung MN, Lee HU, Lee KB, Nam SS, Kim CS, Lee GS, Kim JS, Lee S, Choi HS. Virus Incidence of Sweet Potato in Korea from 2011 to 2014. THE PLANT PATHOLOGY JOURNAL 2017; 33:467-477. [PMID: 29018310 PMCID: PMC5624489 DOI: 10.5423/ppj.oa.08.2016.0167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
A nationwide survey was performed to investigate the current incidence of viral diseases in Korean sweet potatoes for germplasm and growing fields from 2011 to 2014. A total of 83.8% of the germplasm in Korea was infected with viruses in 2011. Commercial cultivars that were used to supply growing fields were infected at a rate of 62.1% in 2012. Among surveyed viruses, the incidence of five Potyvirus species that infect sweet potato decreased between 2012 and 2013, and then increased again in 2014. Representatively, the incidence of Sweet potato feathery mottle virus (SPFMV) was 87.0% in 2012, 20.7% in 2013 and then increased to 35.3% in 2014. Unlike RNA viruses, DNA viruses were shown to decrease continuously. The incidence of Sweet potato leaf curl virus (SPLCV) was 5.5% in 2003, 59.5% in 2011, and 47.4% in 2012. It then decreased continuously year by year to 33.2% in 2013, and then 25.6% in 2014. While the infection rate of each virus species showed a tendency to decline, the virus infection status was more variable in 2013 and 2014. Nevertheless, the high rate of single infections and mixed infection combinations were more variable than the survey results from 2012. As shown in the results from 2013, the most prevalent virus infection was a single infection at 27.6%, with the highest rate of infection belonging to sweet potato symptomless virus-1 (SPSMV-1) (12.9%). Compared to 2013, infection combinations were more varied in 2014, with a total of 122 kinds of mixed infection.
Collapse
Affiliation(s)
- Jaedeok Kim
- Crop Protection Division, National Academy of Agricultural Science, Wanju 55365,
Korea
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Jung wook Yang
- Bioenergy Crop Research Institute, National Institute of Crop Science, Muan 58541,
Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Academy of Agricultural Science, Wanju 55365,
Korea
| | - Mi-Kyeong Kim
- Crop Protection Division, National Academy of Agricultural Science, Wanju 55365,
Korea
| | - Jang-Kyun Seo
- Crop Protection Division, National Academy of Agricultural Science, Wanju 55365,
Korea
| | - Mi-Nam Chung
- Bioenergy Crop Research Institute, National Institute of Crop Science, Muan 58541,
Korea
| | - Hyeong-un Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Muan 58541,
Korea
| | - Kyeong-Bo Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, Muan 58541,
Korea
| | - Sang Sik Nam
- Bioenergy Crop Research Institute, National Institute of Crop Science, Muan 58541,
Korea
| | - Chang-Seok Kim
- Crop Protection Division, National Academy of Agricultural Science, Wanju 55365,
Korea
| | - Gwan-Seok Lee
- Crop Protection Division, National Academy of Agricultural Science, Wanju 55365,
Korea
| | - Jeong-Soo Kim
- Plant Medicine Major, Department of Bioresource Sciences, Andong National University, Andong 36729,
Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Wanju 55365,
Korea
| |
Collapse
|
11
|
Lima ATM, Silva JCF, Silva FN, Castillo-Urquiza GP, Silva FF, Seah YM, Mizubuti ESG, Duffy S, Zerbini FM. The diversification of begomovirus populations is predominantly driven by mutational dynamics. Virus Evol 2017; 3:vex005. [PMID: 28458915 PMCID: PMC5399926 DOI: 10.1093/ve/vex005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Begomoviruses (single-stranded DNA plant viruses) are responsible for serious agricultural threats. Begomovirus populations exhibit a high degree of within-host genetic variation and evolve as quickly as RNA viruses. Although the recombination-prone nature of begomoviruses has been extensively demonstrated, the relative contribution of recombination and mutation to the genetic variation of begomovirus populations has not been assessed. We estimated the genetic variability of begomovirus datasets from around the world. An uneven distribution of genetic variation across the length of the cp and rep genes due to recombination was evident from our analyses. To estimate the relative contributions of recombination and mutation to the genetic variability of begomoviruses, we mapped all substitutions over maximum likelihood trees and counted the number of substitutions on branches which were associated with recombination (ηr) and mutation (ημ). In addition, we also estimated the per generation relative rates of both evolutionary mechanisms (r/μ) to express how frequently begomovirus genomes are affected by recombination relative to mutation. We observed that the composition of genetic variation in all begomovirus datasets was dominated by mutation. Additionally, the low correlation between the estimates indicated that the relative contributions of recombination and mutation are not necessarily a function of their relative rates. Our results show that, although a considerable fraction of the genetic variation levels could be assigned to recombination, it was always lower than that due to mutation, indicating that the diversification of begomovirus populations is predominantly driven by mutational dynamics.
Collapse
Affiliation(s)
- Alison T M Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - José C F Silva
- National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Fábio N Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Gloria P Castillo-Urquiza
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Fabyano F Silva
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Yee M Seah
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - Eduardo S G Mizubuti
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
12
|
Hassan I, Orílio AF, Fiallo-Olivé E, Briddon RW, Navas-Castillo J. Infectivity, effects on helper viruses and whitefly transmission of the deltasatellites associated with sweepoviruses (genus Begomovirus, family Geminiviridae). Sci Rep 2016; 6:30204. [PMID: 27453359 PMCID: PMC4958995 DOI: 10.1038/srep30204] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/30/2016] [Indexed: 11/08/2022] Open
Abstract
Begomoviruses (family Geminiviridae) are whitefly-transmitted viruses with single-stranded DNA genomes that are frequently associated with DNA satellites. These satellites include non-coding satellites, for which the name deltasatellites has been proposed. Although the first deltasatellite was identified in the late 1990s, little is known about the effects they have on infections of their helper begomoviruses. Recently a group of deltasatellites were identified associated with sweepoviruses, a group of phylogenetically distinct begomoviruses that infect plants of the family Convolvulaceae including sweet potato. In this work, the deltasatellites associated with sweepoviruses are shown to be transreplicated and maintained in plants by the virus with which they were identified, sweet potato leaf curl virus (SPLCV). These deltasatellites were shown generally to reduce symptom severity of the virus infection by reducing virus DNA levels. Additionally they were shown to be maintained in plants, and reduce the symptoms induced by two Old World monopartite begomoviruses, tomato yellow leaf curl virus and tomato yellow leaf curl Sardinia virus. Finally one of the satellites was shown to be transmitted plant-to-plant in the presence of SPLCV by the whitefly vector of the virus, Bemisia tabaci, being the first time a deltasatellite has been shown to be insect transmitted.
Collapse
Affiliation(s)
- Ishtiaq Hassan
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, 29750 Algarrobo-Costa, Málaga, Spain
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Anelise F. Orílio
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, 29750 Algarrobo-Costa, Málaga, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, 29750 Algarrobo-Costa, Málaga, Spain
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
13
|
Lozano G, Trenado HP, Fiallo-Olivé E, Chirinos D, Geraud-Pouey F, Briddon RW, Navas-Castillo J. Characterization of Non-coding DNA Satellites Associated with Sweepoviruses (Genus Begomovirus, Geminiviridae) - Definition of a Distinct Class of Begomovirus-Associated Satellites. Front Microbiol 2016; 7:162. [PMID: 26925037 PMCID: PMC4756297 DOI: 10.3389/fmicb.2016.00162] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Begomoviruses (family Geminiviridae) are whitefly-transmitted, plant-infecting single-stranded DNA viruses that cause crop losses throughout the warmer parts of the World. Sweepoviruses are a phylogenetically distinct group of begomoviruses that infect plants of the family Convolvulaceae, including sweet potato (Ipomoea batatas). Two classes of subviral molecules are often associated with begomoviruses, particularly in the Old World; the betasatellites and the alphasatellites. An analysis of sweet potato and Ipomoea indica samples from Spain and Merremia dissecta samples from Venezuela identified small non-coding subviral molecules in association with several distinct sweepoviruses. The sequences of 18 clones were obtained and found to be structurally similar to tomato leaf curl virus-satellite (ToLCV-sat, the first DNA satellite identified in association with a begomovirus), with a region with significant sequence identity to the conserved region of betasatellites, an A-rich sequence, a predicted stem–loop structure containing the nonanucleotide TAATATTAC, and a second predicted stem–loop. These sweepovirus-associated satellites join an increasing number of ToLCV-sat-like non-coding satellites identified recently. Although sharing some features with betasatellites, evidence is provided to suggest that the ToLCV-sat-like satellites are distinct from betasatellites and should be considered a separate class of satellites, for which the collective name deltasatellites is proposed.
Collapse
Affiliation(s)
- Gloria Lozano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas Algarrobo-Costa, Spain
| | - Helena P Trenado
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas Algarrobo-Costa, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas Algarrobo-Costa, Spain
| | | | | | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering Faisalabad, Pakistan
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas Algarrobo-Costa, Spain
| |
Collapse
|
14
|
Rosario K, Seah YM, Marr C, Varsani A, Kraberger S, Stainton D, Moriones E, Polston JE, Duffy S, Breitbart M. Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae) Reveal Novel Begomovirus Species in the New and Old Worlds. Viruses 2015; 7:5553-70. [PMID: 26516898 PMCID: PMC4632403 DOI: 10.3390/v7102895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 01/16/2023] Open
Abstract
Whitefly-transmitted viruses belonging to the genus Begomovirus (family Geminiviridae) represent a substantial threat to agricultural food production. The rapid evolutionary potential of these single-stranded DNA viruses combined with the polyphagous feeding behavior of their whitefly vector (Bemisia tabaci) can lead to the emergence of damaging viral strains. Therefore, it is crucial to characterize begomoviruses circulating in different regions and crops globally. This study utilized vector-enabled metagenomics (VEM) coupled with high-throughput sequencing to survey begomoviruses directly from whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Begomoviruses were detected in all locations, with the highest diversity identified in Guatemala where up to seven different species were identified in a single field. Both bipartite and monopartite viruses were detected, including seven new begomovirus species from Guatemala, Puerto Rico, and Spain. This begomovirus survey extends the known diversity of these highly damaging plant viruses. However, the new genomes described here and in the recent literature appear to reflect the outcome of interactions between closely-related species, often resulting from recombination, instead of unique, highly divergent species.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Yee Mey Seah
- Microbiology and Molecular Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Christian Marr
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Daisy Stainton
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", Algarrobo-Costa, Málaga 29750, Spain.
| | - Jane E Polston
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| |
Collapse
|
15
|
Cuellar WJ, Galvez M, Fuentes S, Tugume J, Kreuze J. Synergistic interactions of begomoviruses with Sweet potato chlorotic stunt virus (genus Crinivirus) in sweet potato (Ipomoea batatas L.). MOLECULAR PLANT PATHOLOGY 2015; 16:459-71. [PMID: 25187172 PMCID: PMC6638456 DOI: 10.1111/mpp.12200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Three hundred and ninety-four sweet potato accessions from Latin America and East Africa were screened by polymerase chain reaction (PCR) for the presence of begomoviruses, and 46 were found to be positive. All were symptomless in sweet potato and generated leaf curling and/or chlorosis in Ipomoea setosa. The five most divergent isolates, based on complete genome sequences, were used to study interactions with Sweet potato chlorotic stunt virus (SPCSV), known to cause synergistic diseases with other viruses. Co-infections led to increased titres of begomoviruses and decreased titres of SPCSV in all cases, although the extent of the changes varied notably between begomovirus isolates. Symptoms of leaf curling only developed temporarily in combination with isolate StV1 and coincided with the presence of the highest begomovirus concentrations in the plant. Small interfering RNA (siRNA) sequence analysis revealed that co-infection of SPCSV with isolate StV1 led to relatively increased siRNA targeting of the central part of the SPCSV genome and a reduction in targeting of the genomic ends, but no changes to the targeting of StV1 relative to single infection of either virus. These changes were not observed in the interaction between SPCSV and the RNA virus Sweet potato feathery mottle virus (genus Potyvirus), implying specific effects of begomoviruses on RNA silencing of SPCSV in dually infected plants. Infection in RNase3-expressing transgenic plants showed that this protein was sufficient to mediate this synergistic interaction with DNA viruses, similar to RNA viruses, but exposed distinct effects on RNA silencing when RNase3 was expressed from its native virus, or constitutively from a transgene, despite a similar pathogenic outcome.
Collapse
Affiliation(s)
- Wilmer J Cuellar
- The Virology Laboratory, International Potato Center (CIP), Av. La Molina 1895, Lima 12, Lima, Peru
| | | | | | | | | |
Collapse
|
16
|
Sobrinho RR, Xavier CAD, Pereira HMDB, Lima GSDA, Assunção IP, Mizubuti ESG, Duffy S, Zerbini FM. Contrasting genetic structure between two begomoviruses infecting the same leguminous hosts. J Gen Virol 2014; 95:2540-2552. [DOI: 10.1099/vir.0.067009-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Begomoviruses are whitefly-transmitted, ssDNA plant viruses and are among the most damaging pathogens causing epidemics in economically important crops worldwide. Wild/non-cultivated plants play a crucial epidemiological role, acting as begomovirus reservoirs and as ‘mixing vessels' where recombination can occur. Previous work suggests a higher degree of genetic variability in begomovirus populations from non-cultivated hosts compared with cultivated hosts. To assess this supposed host effect on the genetic variability of begomovirus populations, cultivated (common bean, Phaseolus vulgaris, and lima bean, Phaseolus lunatus) and non-cultivated (Macroptilium lathyroides) legume hosts were sampled from two regions of Brazil. A total of 212 full-length DNA-A genome segments were sequenced from samples collected between 2005 and 2012, and populations of the begomoviruses Bean golden mosaic virus (BGMV) and Macroptilium yellow spot virus (MaYSV) were obtained. We found, for each begomovirus species, similar genetic variation between populations infecting cultivated and non-cultivated hosts, indicating that the presumed genetic variability of the host did not a priori affect viral variability. We observed a higher degree of genetic variation in isolates from MaYSV populations than BGMV populations, which was explained by numerous recombination events in MaYSV. MaYSV and BGMV showed distinct distributions of genetic variation, with the BGMV population (but not MaYSV) being structured by both host and geography.
Collapse
Affiliation(s)
- Roberto Ramos Sobrinho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | | | | | | | - Iraíldes Pereira Assunção
- Departamento de Fitossanidade/CECA, Universidade Federal de Alagoas, Rio Largo, AL 57100-000, Brazil
| | | | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University Of New Jersey, New Brunswick, NJ 08901, USA
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
17
|
Bi H, Zhang P. Agroinfection of sweet potato by vacuum infiltration of an infectious sweepovirus. Virol Sin 2014; 29:148-54. [PMID: 24903591 DOI: 10.1007/s12250-014-3430-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/04/2014] [Indexed: 10/25/2022] Open
Abstract
Sweepovirus is an important monopartite begomovirus that infects plants of the genus Ipomoea worldwide. Development of artificial infection methods for sweepovirus using agroinoculation is a highly efficient means of studying infectivity in sweet potato. Unlike other begomoviruses, it has proven difficult to infect sweet potato plants with sweepoviruses using infectious clones. A novel sweepovirus, called Sweet potato leaf curl virus-Jiangsu (SPLCV-JS), was recently identified in China. In addition, the infectivity of the SPLCV-JS clone has been demonstrated in Nicotiana benthamiana. Here we describe the agroinfection of the sweet potato cultivar Xushu 22 with the SPLCV-JS infectious clone using vacuum infiltration. Yellowing symptoms were observed in newly emerged leaves. Molecular analysis confirmed successful inoculation by the detection of viral DNA. A synergistic effect of SPLCV-JS and the heterologous betasatellite DNA-β of Tomato yellow leaf curl China virus isolate Y10 (TYLCCNV-Y10) on enhanced symptom severity and viral DNA accumulation was confirmed. The development of a routine agroinoculation system in sweet potato with SPLCV-JS using vacuum infiltration should facilitate the molecular study of sweepovirus in this host and permit the evaluation of virus resistance of sweet potato plants in breeding programs.
Collapse
Affiliation(s)
- Huiping Bi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | |
Collapse
|
18
|
Fiallo-Olivé E, Chirinos DT, Geraud-Pouey F, Moriones E, Navas-Castillo J. Complete genome sequence of Jacquemontia yellow mosaic virus, a novel begomovirus from Venezuela related to other New World bipartite begomoviruses infecting Convolvulaceae. Arch Virol 2014; 159:1857-60. [PMID: 24463954 DOI: 10.1007/s00705-014-1996-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/17/2014] [Indexed: 11/24/2022]
Abstract
The complete genome of a bipartite begomovirus (genus Begomovirus, family Geminiviridae) infecting Jacquemontia sp. (Convolvulaceae) in Venezuela has been cloned and sequenced. Sequence comparison and phylogenetic analysis have shown that it represents an isolate of a novel species with closest relatives being two New World bipartite begomoviruses that infect Convolvulaceae, Jacquemontia mosaic Yucatan virus and Merremia mosaic virus. The DNA-As of these begomoviruses, however, share only 77.0-78.4 % nucleotide sequence identity with the DNA-A of the isolate described here, for which a recombinant origin is suggested. Based on the symptoms observed in the field, the name Jacquemontia yellow mosaic virus (JacYMV) is proposed for this novel bipartite begomovirus.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental La Mayora, Algarrobo-Costa, 29750, Málaga, Spain
| | | | | | | | | |
Collapse
|
19
|
Complete genome sequence of a novel monopartite begomovirus infecting sweet potato in China. Arch Virol 2014; 159:1537-40. [PMID: 24378821 DOI: 10.1007/s00705-013-1958-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
The complete genome sequence of a novel monopartite begomovirus, isolate G-YU-12-10, was obtained from sweet potato samples exhibiting severe leaf curl symptoms in Xinxiang, Henan Province, China. The genome sequence consisted of 2766 nucleotides and encoded two open reading frames (ORFs) (AV1 and AV2) in the viral-sense strand and four ORFs (AC1-AC4) in the complementary-sense strand. The genome of isolate G-YU-12-10 was closely related to other sweet-potato-infecting begomoviruses (sweepoviruses) and shared the highest nucleotide sequence identity (89.0 %) with sweet potato leaf curl China Sichuan virus (SPLCCSV, KC488316). Thus, the G-YU-12-10 isolate represents a novel species according to the demarcation criteria of species in the genus Begomovirus, for which the name Sweet potato leaf curl Henan virus (SPLCHnV) is proposed. Interspecific recombination analysis supported the recombination hypothesis, indicating that recombination with other begomoviruses had taken place within AC2 and AC3 ORFs of SPLCHnV and also in the non-coding intergenic region (IR).
Collapse
|
20
|
Natural association of two different betasatellites with Sweet potato leaf curl virus in wild morning glory (Ipomoea purpurea) in India. Virus Genes 2013; 47:184-8. [PMID: 23529301 DOI: 10.1007/s11262-013-0901-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
Abstract
Wild morning glory (Ipomoea purpurea) was observed to be affected by leaf curl and yellow vein diseases during summer-rainy season of 2009 in New Delhi, India. The virus was experimentally transmitted through whitefly, Bemisia tabaci to I. purpurea that reproduced the two distinct symptoms. Sequence analysis of multiple full-length clones obtained through rolling circle amplification from the leaf curl and yellow vein samples showed 91.8-95.3% sequence identity with Sweet potato leaf curl virus (SPLCV) and the isolates were phylogenetically distinct from those reported from Brazil, China, Japan and USA. Interestingly, two different betasatellites, croton yellow vein mosaic betasatellite and papaya leaf curl betasatellite were found with SPLCV in leaf curl and yellow vein diseases of I. purpurea, respectively. This study is the first report of occurrence of SPLCV in wild morning glory in India. SPLCV was known to infect other species of morning glory; our study revealed that I. purpurea, a new species of morning glory was a natural host of SPLCV. To date, betasatellite associated with SPLCV in Ipomoea spp. is not known. Our study provides evidence of natural association of two different betasatellites with SPLCV in leaf curl and yellow vein diseases of I. purpurea.
Collapse
|
21
|
Lima ATM, Sobrinho RR, González-Aguilera J, Rocha CS, Silva SJC, Xavier CAD, Silva FN, Duffy S, Zerbini FM. Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. J Gen Virol 2013; 94:418-431. [DOI: 10.1099/vir.0.047241-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Begomoviruses are ssDNA plant viruses that cause serious epidemics in economically important crops worldwide. Non-cultivated plants also harbour many begomoviruses, and it is believed that these hosts may act as reservoirs and as mixing vessels where recombination may occur. Begomoviruses are notoriously recombination-prone, and also display nucleotide substitution rates equivalent to those of RNA viruses. In Brazil, several indigenous begomoviruses have been described infecting tomatoes following the introduction of a novel biotype of the whitefly vector in the mid-1990s. More recently, a number of viruses from non-cultivated hosts have also been described. Previous work has suggested that viruses infecting non-cultivated hosts have a higher degree of genetic variability compared with crop-infecting viruses. We intensively sampled cultivated and non-cultivated plants in similarly sized geographical areas known to harbour either the weed-infecting Macroptilium yellow spot virus (MaYSV) or the crop-infecting Tomato severe rugose virus (ToSRV), and compared the molecular evolution and population genetics of these two distantly related begomoviruses. The results reinforce the assertion that infection of non-cultivated plant species leads to higher levels of standing genetic variability, and indicate that recombination, not adaptive selection, explains the higher begomovirus variability in non-cultivated hosts.
Collapse
Affiliation(s)
- Alison T. M. Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Roberto R. Sobrinho
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Jorge González-Aguilera
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Carolina S. Rocha
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Sarah J. C. Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - César A. D. Xavier
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Fábio N. Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| |
Collapse
|
22
|
Albuquerque LC, Inoue-Nagata AK, Pinheiro B, Resende RO, Moriones E, Navas-Castillo J. Genetic diversity and recombination analysis of sweepoviruses from Brazil. Virol J 2012; 9:241. [PMID: 23082767 PMCID: PMC3485178 DOI: 10.1186/1743-422x-9-241] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 10/17/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. RESULTS This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). CONCLUSIONS The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses.
Collapse
Affiliation(s)
- Leonardo C Albuquerque
- Embrapa Vegetables, Km 09, BR060, Cx. Postal 218, Brasília, DF, CEP 70359-970, Brazil
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental “La Mayora”, 29750, Algarrobo-Costa, Málaga, Spain
| | - Alice K Inoue-Nagata
- Embrapa Vegetables, Km 09, BR060, Cx. Postal 218, Brasília, DF, CEP 70359-970, Brazil
| | - Bruna Pinheiro
- Embrapa Vegetables, Km 09, BR060, Cx. Postal 218, Brasília, DF, CEP 70359-970, Brazil
| | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, CEP 70.910-970, Brasília, DF, Brazil
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental “La Mayora”, 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental “La Mayora”, 29750, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
23
|
Rey MEC, Ndunguru J, Berrie LC, Paximadis M, Berry S, Cossa N, Nuaila VN, Mabasa KG, Abraham N, Rybicki EP, Martin D, Pietersen G, Esterhuizen LL. Diversity of dicotyledenous-infecting geminiviruses and their associated DNA molecules in southern Africa, including the South-west Indian ocean islands. Viruses 2012; 4:1753-91. [PMID: 23170182 PMCID: PMC3499829 DOI: 10.3390/v4091753] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 11/16/2022] Open
Abstract
The family Geminiviridae comprises a group of plant-infecting circular ssDNA viruses that severely constrain agricultural production throughout the temperate regions of the world, and are a particularly serious threat to food security in sub-Saharan Africa. While geminiviruses exhibit considerable diversity in terms of their nucleotide sequences, genome structures, host ranges and insect vectors, the best characterised and economically most important of these viruses are those in the genus Begomovirus. Whereas begomoviruses are generally considered to be either monopartite (one ssDNA component) or bipartite (two circular ssDNA components called DNA-A and DNA-B), many apparently monopartite begomoviruses are associated with additional subviral ssDNA satellite components, called alpha- (DNA-αs) or betasatellites (DNA-βs). Additionally, subgenomic molecules, also known as defective interfering (DIs) DNAs that are usually derived from the parent helper virus through deletions of parts of its genome, are also associated with bipartite and monopartite begomoviruses. The past three decades have witnessed the emergence and diversification of various new begomoviral species and associated DI DNAs, in southern Africa, East Africa, and proximal Indian Ocean islands, which today threaten important vegetable and commercial crops such as, tobacco, cassava, tomato, sweet potato, and beans. This review aims to describe what is known about these viruses and their impacts on sustainable production in this sensitive region of the world.
Collapse
Affiliation(s)
- Marie E. C. Rey
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania;
| | - Leigh C. Berrie
- National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, 2131, South Africa
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Maria Paximadis
- National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, 2131, South Africa
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Shaun Berry
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, 4300, South Africa
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Nurbibi Cossa
- The Institute of Agricultural Research of Mozambique, Av. Das FPLM, No. 269 C.P. 3658, Maputo, Mozambique;
| | - Valter N. Nuaila
- Biotechnology Center, Eduardo Mondlane University, Praca 25 de Junho. Caixa, Potal 257, Maputo, Mozambique
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Ken G. Mabasa
- Crop Protection and Diagnostic Center, ARC-Roodeplaat-VOPI, Private Bag X134, Pretoria, 0001, South Africa
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Natasha Abraham
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa;
| | - Edward P. Rybicki
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa; (E.P.R.); (D.M.)
| | - Darren Martin
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa; (E.P.R.); (D.M.)
| | - Gerhard Pietersen
- ARC-Plant Protection Research Institute and University of Pretoria, Private Bag X134, Pretoria, 0001, South Africa;
| | | |
Collapse
|
24
|
Esterhuizen LL, van Heerden SW, Rey MEC, van Heerden H. Genetic identification of two sweet-potato-infecting begomoviruses in South Africa. Arch Virol 2012; 157:2241-5. [PMID: 22814698 DOI: 10.1007/s00705-012-1398-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/22/2012] [Indexed: 11/29/2022]
Abstract
The complete genome sequences of two monopartite begomovirus isolates (genus Begomovirus, family Geminiviridae) that occurred either alone or in mixed infection in sweet potato (Ipomoea batatas) plants collected in Waterpoort, South Africa, are presented. One of the isolates corresponds to sweet potato mosaic-associated virus (SPMaV; SPMaV-[ZA:WP:2011]), with which it shared 98.5 % nucleotide identity, whereas the second isolate corresponds to a new variant of sweet potato leaf curl Sao Paulo virus (SPLCSPV; SPLCSPV-[ZA:WP:2011]), with which it shared 91.4 % nucleotide identity. The phylogenetic and recombination relationships of these isolates to other monopartite Ipomoea-infecting begomoviruses were also investigated. SPLCSPV-[ZA:WP:2011] was found to be a natural recombinant of swepoviruses consisting of two distinct parental genomic sequences from SPLCSPV and sweet potato leaf curl Georgia virus (SPLCGV).
Collapse
Affiliation(s)
- L L Esterhuizen
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.
| | | | | | | |
Collapse
|
25
|
Bi H, Zhang P. Molecular characterization of two sweepoviruses from China and evaluation of the infectivity of cloned SPLCV-JS in Nicotiana benthamiana. Arch Virol 2012; 157:441-54. [PMID: 22179901 DOI: 10.1007/s00705-011-1194-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/01/2011] [Indexed: 11/25/2022]
Abstract
Sweepoviruses are important begomoviruses that infect Ipomoea plants worldwide and cause sweet potato yield losses and cultivar decline. Two sweepoviruses, sweet potato leaf curl virus-Jiangsu (SPLCV-JS) and sweet potato leaf curl China virus-Zhejiang (SPLCCNV-ZJ), were cloned from diseased sweet potato plants collected in the Jiangsu and Zhejiang provinces of China. Sequence characterization and phylogenetic analysis demonstrated that both are typical monopartite begomoviruses and have close relationships to several reported SPLCV and SPLCCNV isolates, respectively, from Asian countries. Analysis of the protein alignments and subcellular localizations of the six SPLCV-JS proteins was also conducted to verify their putative functions. In Nicotiana benthamiana, an infectivity assay of the infectious SPLCV-JS clone resulted in mild symptoms and weak viral DNA accumulation. Interestingly, SPLCV-JS, together with a heterologous betasatellite DNA (tomato yellow leaf curl China virus isolate Y10 [TYLCCNV-Y10] DNA-β), showed a synergistic effect on enhanced symptom severity and viral DNA accumulation. This is the first reported infectious SPLCV clone.
Collapse
Affiliation(s)
- Huiping Bi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | |
Collapse
|
26
|
Clark CA, Davis JA, Abad JA, Cuellar WJ, Fuentes S, Kreuze JF, Gibson RW, Mukasa SB, Tugume AK, Tairo FD, Valkonen JPT. Sweetpotato Viruses: 15 Years of Progress on Understanding and Managing Complex Diseases. PLANT DISEASE 2012; 96:168-185. [PMID: 30731810 DOI: 10.1094/pdis-07-11-0550] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
| | | | - Jorge A Abad
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Plant Germplasm Quarantine Programs, Beltsville, MD
| | | | | | | | - Richard William Gibson
- Natural Resources Institute, University of Greenwich, Chatham, Kent, CT2 7LT, United Kingdom
| | - Settumba B Mukasa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Arthur K Tugume
- Department of Biological Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | | | |
Collapse
|
27
|
Trenado HP, Orílio AF, Márquez-Martín B, Moriones E, Navas-Castillo J. Sweepoviruses cause disease in sweet potato and related Ipomoea spp.: fulfilling Koch's postulates for a divergent group in the genus begomovirus. PLoS One 2011; 6:e27329. [PMID: 22073314 PMCID: PMC3206953 DOI: 10.1371/journal.pone.0027329] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/13/2011] [Indexed: 11/18/2022] Open
Abstract
Sweet potato (Ipomoea batatas) and related Ipomoea species are frequently infected by monopartite begomoviruses (genus Begomovirus, family Geminiviridae), known as sweepoviruses. Unlike other geminiviruses, the genomes of sweepoviruses have been recalcitrant to rendering infectious clones to date. Thus, Koch's postulates have not been fullfilled for any of the viruses in this group. Three novel species of sweepoviruses have recently been described in Spain: Sweet potato leaf curl Lanzarote virus (SPLCLaV), Sweet potato leaf curl Spain virus (SPLCSV) and Sweet potato leaf curl Canary virus (SPLCCaV). Here we describe the generation of the first infectious clone of an isolate (ES:MAL:BG30:06) of SPLCLaV. The clone consisted of a complete tandem dimeric viral genome in a binary vector. Successful infection by agroinoculation of several species of Ipomoea (including sweet potato) and Nicotiana benthamiana was confirmed by PCR, dot blot and Southern blot hybridization. Symptoms observed in infected plants consisted of leaf curl, yellowing, growth reduction and vein yellowing. Two varieties of sweet potato, 'Beauregard' and 'Promesa', were infected by agroinoculation, and symptoms of leaf curl and interveinal loss of purple colouration were observed, respectively. The virus present in agroinfected plants was readily transmitted by the whitefly Bemisia tabaci to I. setosa plants. The progeny virus population present in agroinfected I. setosa and sweet potato plants was isolated and identity to the original isolate was confirmed by sequencing. Therefore, Koch's postulates were fulfilled for the first time for a sweepovirus.
Collapse
Affiliation(s)
- Helena P. Trenado
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM), Consejo Superior de Investigaciones Científicas, Algarrobo-Costa, Málaga, Spain
| | - Anelise F. Orílio
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM), Consejo Superior de Investigaciones Científicas, Algarrobo-Costa, Málaga, Spain
| | - Belén Márquez-Martín
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM), Consejo Superior de Investigaciones Científicas, Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM), Consejo Superior de Investigaciones Científicas, Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM), Consejo Superior de Investigaciones Científicas, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
28
|
Barkley NA, Pinnow DL, Wang ML, Ling KS, Jarret RL. Detection and Classification of SPLCV Isolates in the U.S. Sweetpotato Germplasm Collection via a Real-Time PCR Assay and Phylogenetic Analysis. PLANT DISEASE 2011; 95:1385-1391. [PMID: 30731795 DOI: 10.1094/pdis-01-11-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The United States Department of Agriculture-Agricultural Research Service sweetpotato (Ipomoea batatas) germplasm collection contains accessions that were initially collected from various countries worldwide. These materials have been maintained and distributed as in vitro plantlets since the mid-1980s. The status of viral infection by the emerging Sweet potato leaf curl virus (SPLCV) and other Begomovirus spp. in this germplasm has yet to be determined. In order to minimize the potential distribution of virus-infected clones, all accessions in the collection were tested for SPLCV using a real-time polymerase chain reaction assay. In total, 47 of 701 accessions of in vitro plantlets tested positive for SPLCV. The presence of SPLCV detected in these materials was confirmed via biological indexing using the indicator plants I. nil and I. muricata. Symptoms appeared more rapidly on I. muricata than on I. nil. Nucleotide polymorphisms among the isolates were evaluated by sequencing the AV1 coat protein gene from 24 SPLCV-infected accessions. The results revealed that the SPLCV isolates shared high sequence identity. Ten nucleotide substitutions were identified, most of which were synonymous changes. Phylogenetic analysis was conducted on those 24 SPLCV isolates in combination with six described SPLCV species and various SPLCV strains from GenBank to evaluate the relationships among viral species or strains. The results from this analysis indicated that most of the AV1 genes derived from previously classified SPLCV species clustered together, some of which formed well-supported monophyletic clades, further supporting the current taxonomy. Overall, identification of SPLCV-infected germplasm will allow approaches to be employed to eliminate the virus from the collection and limit the distribution of infected materials.
Collapse
Affiliation(s)
- N A Barkley
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Plant Genetic Resources Conservation Unit, Griffin, GA 30223
| | - D L Pinnow
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Plant Genetic Resources Conservation Unit, Griffin, GA 30223
| | - M L Wang
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Plant Genetic Resources Conservation Unit, Griffin, GA 30223
| | - K S Ling
- USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC 29414 USA
| | - R L Jarret
- USDA-ARS, Plant Genetic Resources Conservation Unit, Griffin, GA
| |
Collapse
|
29
|
Ramkat RC, Calari A, Maghuly F, Laimer M. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas. Virol J 2011; 8:386. [PMID: 21812981 PMCID: PMC3163225 DOI: 10.1186/1743-422x-8-386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/03/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. RESULTS A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA) for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA) were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV), Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya) contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV) and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a) primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b) primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. CONCLUSION Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully.
Collapse
Affiliation(s)
- Rose C Ramkat
- Plant Biotechnology Unit, IAM, VIBT, BOKU, Muthgasse 18, A - 1190 Vienna, Austria
| | - Alberto Calari
- Plant Biotechnology Unit, IAM, VIBT, BOKU, Muthgasse 18, A - 1190 Vienna, Austria
| | - Fatemeh Maghuly
- Plant Biotechnology Unit, IAM, VIBT, BOKU, Muthgasse 18, A - 1190 Vienna, Austria
| | - Margit Laimer
- Plant Biotechnology Unit, IAM, VIBT, BOKU, Muthgasse 18, A - 1190 Vienna, Austria
| |
Collapse
|
30
|
Albuquerque LC, Inoue-Nagata AK, Pinheiro B, Ribeiro SDG, Resende RO, Moriones E, Navas-Castillo J. A novel monopartite begomovirus infecting sweet potato in Brazil. Arch Virol 2011; 156:1291-4. [PMID: 21594599 DOI: 10.1007/s00705-011-1016-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 04/30/2011] [Indexed: 11/26/2022]
Abstract
The complete genome sequences of two monopartite begomovirus isolates (genus Begomovirus, family Geminiviridae) present in a single sweet potato (Ipomoea batatas) plant collected in São Paulo, Brazil, are presented. Based on the current taxonomic criteria for the genus Begomovirus, one of the isolates was shown to represent a novel species, tentatively named Sweet potato leaf curl Sao Paulo virus (SPLCSPV). The other isolate represented a new strain of sweet potato leaf curl virus, named sweet potato leaf curl virus-Sao Paulo (SPLCV-SP). The full genome sequence of the SPLCSPV isolate shared the highest nucleotide identity (87.6%) with isolates of sweet potato leaf curl Spain virus (SPLCESV). Phylogenetic and recombination analyses were used to investigate the relationships of these isolates to other monopartite Ipomoea-infecting begomoviruses.
Collapse
|
31
|
Genetic diversity of sweet potato begomoviruses in the United States and identification of a natural recombinant between sweet potato leaf curl virus and sweet potato leaf curl Georgia virus. Arch Virol 2011; 156:955-68. [PMID: 21302123 DOI: 10.1007/s00705-011-0930-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
In the United States, two sweet potato begomoviruses, sweet potato leaf curl virus (SPLCV) and sweet potato leaf curl Georgia virus (SPLCGV), were previously identified in Louisiana. In recent years, at least seven additional sweet potato begomoviruses have been identified in other parts of the world. In an effort to determine the genetic diversity and distribution of sweet potato begomoviruses in the U.S., we focused our efforts on molecular characterization of field-collected begomovirus isolates in two states: Mississippi and South Carolina. Using rolling-circle amplification, a total of 52 clones of the full genome were obtained. Initial inspection of alignments of the end sequences in these clones revealed a strong genetic diversity. Overall, 10 genotypes could be assigned. A majority of the isolates (50/52) in eight genotypes were shown to be closely related to SPLCV. A representative clone of each genotype was fully sequenced and analyzed. Among them, four genotypes from South Carolina with 91-92% sequence identity to the type member of SPLCV were considered a new strain, whereas four other genotypes from Mississippi with >95% sequence identity to SPLCV were considered variants. In addition, a member of a proposed new begomovirus species was identified after comparative sequence analysis of the isolate [US:SC:646B-9] from South Carolina with less than 89% sequence identity to any known begomovirus. Hence, the provisional name Sweet potato leaf curl South Carolina virus (SPLCSCV) is proposed. Moreover, a natural recombinant consisting of two distinct parental genomic sequences from SPLCV and SPLCGV was identified in the sample [US:MS:1B-3] from Mississippi. Two recombinant breakpoints were identified, one in the origin of replication and the other between C2 and C4. This knowledge about the genetic diversity of begomoviruses infecting sweet potato will likely have a major impact on PCR-based virus detection and on disease management practice through breeding for virus resistance.
Collapse
|
32
|
Prasanna HC, Sinha DP, Verma A, Singh M, Singh B, Rai M, Martin DP. The population genomics of begomoviruses: global scale population structure and gene flow. Virol J 2010; 7:220. [PMID: 20828421 PMCID: PMC2945956 DOI: 10.1186/1743-422x-7-220] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/10/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The rapidly growing availability of diverse full genome sequences from across the world is increasing the feasibility of studying the large-scale population processes that underly observable pattern of virus diversity. In particular, characterizing the genetic structure of virus populations could potentially reveal much about how factors such as geographical distributions, host ranges and gene flow between populations combine to produce the discontinuous patterns of genetic diversity that we perceive as distinct virus species. Among the richest and most diverse full genome datasets that are available is that for the dicotyledonous plant infecting genus, Begomovirus, in the Family Geminiviridae. The begomoviruses all share the same whitefly vector, are highly recombinogenic and are distributed throughout tropical and subtropical regions where they seriously threaten the food security of the world's poorest people. RESULTS We focus here on using a model-based population genetic approach to identify the genetically distinct sub-populations within the global begomovirus meta-population. We demonstrate the existence of at least seven major sub-populations that can further be sub-divided into as many as thirty four significantly differentiated and genetically cohesive minor sub-populations. Using the population structure framework revealed in the present study, we further explored the extent of gene flow and recombination between genetic populations. CONCLUSIONS Although geographical barriers are apparently the most significant underlying cause of the seven major population sub-divisions, within the framework of these sub-divisions, we explore patterns of gene flow to reveal that both host range differences and genetic barriers to recombination have probably been major contributors to the minor population sub-divisions that we have identified. We believe that the global Begomovirus population structure revealed here could facilitate population genetics studies into how central parameters of population genetics namely selection, recombination, mutation, gene flow, and genetic drift shape the global begomovirus diversity.
Collapse
Affiliation(s)
- HC Prasanna
- Indian Institute of Vegetable Research, P B No. 1, P O - Jakhini, Shahanshapur, Varanasi, India
- Department of Plant sciences, Mail Stop 3, One Shields Avenue, University of California, Davis, 95616, California, USA
| | - D P Sinha
- Indian Institute of Vegetable Research, P B No. 1, P O - Jakhini, Shahanshapur, Varanasi, India
| | - Ajay Verma
- Dorectorate of Wheat Research, P B NO. 158, Aggrasain Marg, Karnal, India
| | - Major Singh
- Indian Institute of Vegetable Research, P B No. 1, P O - Jakhini, Shahanshapur, Varanasi, India
| | - Bijendra Singh
- Indian Institute of Vegetable Research, P B No. 1, P O - Jakhini, Shahanshapur, Varanasi, India
| | - Mathura Rai
- Indian Institute of Vegetable Research, P B No. 1, P O - Jakhini, Shahanshapur, Varanasi, India
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| |
Collapse
|
33
|
Alabi OJ, Kumar PL, Mgbechi-Ezeri JU, Naidu RA. Two new 'legumoviruses' (genus Begomovirus) naturally infecting soybean in Nigeria. Arch Virol 2010; 155:643-56. [PMID: 20229118 DOI: 10.1007/s00705-010-0630-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 02/08/2010] [Indexed: 11/26/2022]
Abstract
Two new 'legumoviruses' (genus Begomovirus; family Geminiviridae) naturally infecting soybean (Glycine max L. Merr.) in Nigeria were molecularly characterized. Based on characteristic symptoms in soybean, the two viruses are provisionally designated as Soybean mild mottle virus (SbMMV) and Soybean chlorotic blotch virus (SbCBV). SbCBV has a bipartite genome, whereas SbMMV has only a DNA A component. The DNA A component of SbMMV is 2,768 nucleotides (nt) long and the DNA A and DNA B components of SbCBV are 2,708 and 2,647 nt long, respectively. In pairwise comparisons, the DNA A component of SbMMV and SbCBV showed 62% nt sequence identity, indicating that these two viruses are distinct. Whereas the DNA A of SbMMV contains two virion- and four complementary-sense open reading frames, that of SbCBV lacks the virus-sense AV2, a signature gene present in 'Old World' begomoviruses. A pairwise comparison with the corresponding nucleotide sequence of other begomoviruses in the databases indicated that SbCBV had a maximum of 74% identity with cowpea golden mosaic virus and SbMMV had a maximum of 65% identity with mungbean yellow mosaic India virus and kudzu mosaic virus. Phylogenetic analysis of the DNA A component of SbCBV and SbMMV together with those of other begomoviruses available in the databases showed clustering of the two viruses within the 'legumovirus' clade of the begomovirus phylogenetic tree. In addition, the DNA A and B components of SbCBV from Centrosema pubescens Benth were found to be identical to those from soybean, indicating that leguminous wild species are a potential alternative host for the virus. Since soybean is an introduced crop, the identification of two distinct begomoviruses naturally infecting soybean in Nigeria suggests the occurrence of 'legumoviruses' in plant species indigenous to Africa and underscores their potential threat to sustainable cultivation of soybean on the African continent.
Collapse
Affiliation(s)
- Olufemi J Alabi
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, 24106 North Bunn Road, Prosser, WA 99350, USA
| | | | | | | |
Collapse
|